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Abstract
A Schur multiplier is a linear map on matrices which acts on its entries by multiplication with some function, called
the symbol. We consider idempotent Schur multipliers, whose symbols are indicator functions of smooth Euclidean
domains. Given 1 < 𝑝 ≠ 2 < ∞, we provide a local characterization (under some mild transversality condition) for
the boundedness on Schatten p-classes of Schur idempotents in terms of a lax notion of boundary flatness. We prove
in particular that all Schur idempotents are modeled on a single fundamental example: the triangular projection. As
an application, we fully characterize the local 𝐿𝑝-boundedness of smooth Fourier idempotents on connected Lie
groups. They are all modeled on one of three fundamental examples: the classical Hilbert transform and two new
examples of Hilbert transforms that we call affine and projective. Our results in this paper are vast noncommutative
generalizations of Fefferman’s celebrated ball multiplier theorem. They confirm the intuition that Schur multipliers
share profound similarities with Euclidean Fourier multipliers – even in the lack of a Fourier transform connection
– and complete, for Lie groups, a longstanding search of Fourier 𝐿𝑝-idempotents.
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1. Introduction

Schur multipliers are linear maps on matrix algebras with a great impact on geometric group theory,
operator algebras and functional analysis. Their definition is rather simple on discrete spaces 𝑆𝑀 (𝐴) =
(𝑀 ( 𝑗 , 𝑘)𝐴 𝑗𝑘 ) 𝑗𝑘 . It easily extends to nonatomic 𝜎-finite measure spaces (Ω, 𝜇) by restricting to operators
A in 𝐿2 (Ω, 𝜇) admitting a kernel representation over Ω × Ω. Their role in geometric group theory and
operator algebras was first analyzed by Haagerup. His pioneering work on free groups [20] and the
research thereafter on semisimple lattices [4, 13] encoded deep geometric properties via approximation
properties with Schur multipliers. Other interesting links can be found in [1, 22, 37, 39, 41, 42, 44].

In 2011, stronger rigidity properties of high rank lattices were discovered by studying 𝐿𝑝-
approximations [27, 28]. First, there are no 𝐿𝑝-approximations by means of Fourier or Schur multipliers
over SL𝑛 (R) for 𝑝 > 2 + 𝛼𝑛, with 𝛼𝑛 → 0 as 𝑛 → ∞. Second, it turns out that this unprecedented
pathology leads to a strong form of nonamenability which is potentially useful to distinguish the group
von Neumann algebras of PSL𝑛 (Z) for different values of 𝑛 ≥ 3, the most iconic form of Connes’
rigidity conjecture. This has strongly motivated our recent work [10, 35] with several forms of the
Hörmander-Mikhlin theorem. Nevertheless, there is still much to learn about less regular multipliers. A
key point in [28] was a careful analysis of Schur multipliers over the n-sphere for symbols of the form
𝑀𝜑 (𝑥, 𝑦) = 𝜑(〈𝑥, 𝑦〉). More precisely, the boundedness of 𝑆𝑀𝜑 on the Schatten class 𝑆𝑝 for 𝑝 > 2+ 2

𝑛−1
imposes Hölder regularity conditions on 𝜑. This article grew from the analysis of the spherical Hilbert
transform

𝐻S : 𝐴 ↦→
(
− 𝑖 sgn 〈𝑥, 𝑦〉𝐴𝑥𝑦

)
𝑥𝑦

.

Is it 𝑆𝑝-bounded for some 2𝑛
𝑛+1 < 𝑝 ≠ 2 < 2𝑛

𝑛−1 ? Its 𝑆𝑝-boundedness is equivalent to that of 1
2 (1+𝑖𝐻S)

– whose symbol is 𝜒Σ with Σ = {(𝑥, 𝑦) : 〈𝑥, 𝑦〉 > 0} – and it is worth noting the analogy with the ball
multiplier problem, which was only known to be unbounded for p outside this range before Fefferman’s
celebrated contribution [15]. Our main result completely solves this problem: 𝐻S is 𝑆𝑝-unbounded
unless 𝑛 = 1 or 𝑝 = 2. We characterize 𝑆𝑝-boundedness for a lot more idempotents.

Let 𝑀, 𝑁 be two differentiable manifolds with the Lebesgue measure coming from any Riemmanian
structure on them. Consider a C1-domain Σ ⊂ 𝑀 × 𝑁 so that its boundary 𝜕Σ is a smooth hypersurface,
which is locally represented by level sets of some real-valued C1-functions with nonvanishing gradients.
We say that 𝜕Σ is transverse at a point (𝑥, 𝑦) when the tangent space of 𝜕Σ at (𝑥, 𝑦) maps surjectively
on each factor 𝑇𝑥𝑀 and 𝑇𝑦𝑁 . In that case, both sections

𝜕Σ𝑥 =
{
𝑦′ ∈ 𝑁 | (𝑥, 𝑦′) ∈ 𝜕Σ

}
and 𝜕Σ𝑦 =

{
𝑥 ′ ∈ 𝑀 | (𝑥 ′, 𝑦) ∈ 𝜕Σ

}
become codimension 1 manifolds on some neighbourhood of y and x, respectively.

Theorem A. Let 𝑝 ∈ (1,∞) \ {2} and consider a C1-domain Σ ⊂ 𝑀 ×𝑁 . Then the following statements
are equivalent for any transverse point (𝑥0, 𝑦0) ∈ 𝜕Σ :

(1) 𝑆𝑝-boundedness. The idempotent Schur multiplier 𝑆Σ whose symbol equals 1 on Σ and 0 elsewhere
is bounded on 𝑆𝑝 (𝐿2 (𝑈), 𝐿2 (𝑉)) for some pair of neighbourhoods 𝑈,𝑉 of 𝑥0, 𝑦0 in 𝑀, 𝑁 .

(2) Zero-curvature condition. There are neighbourhoods 𝑈,𝑉 of 𝑥0, 𝑦0 in 𝑀, 𝑁 such that the tangent
spaces 𝑇𝑦 (𝜕Σ𝑥1) and 𝑇𝑦 (𝜕Σ𝑥2) coincide for any pair of points (𝑥1, 𝑦), (𝑥2, 𝑦) ∈ 𝜕Σ ∩ (𝑈 ×𝑉).

(3) Triangular truncation representation. There are neighbourhoods 𝑈,𝑉 of the points 𝑥0, 𝑦0 in 𝑀, 𝑁
and C1-functions 𝑓1 : 𝑈 → R and 𝑓2 : 𝑉 → R, such that Σ ∩ (𝑈 × 𝑉) =

{
(𝑥, 𝑦) ∈ 𝑈 × 𝑉 :

𝑓1(𝑥) > 𝑓2(𝑦)
}
.

Theorem A characterizes the local geometry of 𝑆𝑝-bounded idempotent Schur multipliers and vastly
amplifies the ball multiplier theorem [15]. A first interesting consequence is that this property does not
depend on the value of p. It is important to insist here that the characterization is local. If the global
aspects are taken into account, the 𝑆𝑝-boundedness of idempotent Schur multipliers does depend on
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Figure 1. Failure of (2) for spherical Hilbert transforms 𝐻S, 𝛿 .
Here 𝐻S, 𝛿 = −𝑖(2𝑆Σ𝛿 − id) with Σ𝛿 =

{
(𝑥, 𝑦) ∈ S𝑛 × S𝑛 : 〈𝑥, 𝑦〉 > 𝛿

}
for 𝑛 = 2.

p: in the discrete setting, whenever 𝑝 < 𝑞 with p is an even integer, there is an idempotent Schur
multiplier that is 𝑆𝑝-bounded but not 𝑆𝑞-bounded [22]. Remark 2.7 provides other examples where the
local theorem fails to be global.

Theorem A is only interesting when M and N have dimension at least 2. When M or N is a discrete
space – in other words, dim 𝑀 = 0 or dim 𝑁 = 0 – it is obvious just by taking 𝑈 = {𝑥0} or 𝑉 = {𝑦0}.
Similarly, when dim 𝑀 = 1 or dim 𝑁 = 1, condition (3) always holds by the implicit function theorem,
and the other conditions are also easily seen to always hold. However, in dimension at least 2, the
conditions become restrictive. A simple example of a transverse domain that fails to satisfy (2) or (3) at
any boundary point is shown in Figure 1 above.

The implication (3)⇒(1) is the easy one. By known techniques, it follows from the classical
𝑆𝑝-boundedness of the triangular projection (𝐴 𝑗𝑘 ) ↦→ (𝜒 𝑗≥𝑘𝐴 𝑗𝑘 ) with 𝑗 , 𝑘 ∈ N, closely related to
the 𝐿𝑝-boundedness of the Hilbert transform. On the contrary, the converse implication (1)⇒(3) is
certainly unexpected. It says that the triangular projection is the only local model for 𝑆𝑝-bounded
idempotents. Our proof decomposes in two independent parts. The implication (1)⇒(2) is very much
analytical. By well-known Fourier-Schur transference results, Fefferman’s theorem corresponds to the
case 𝑀 = 𝑁 = R𝑛 and domains Σ =

{
(𝑥, 𝑦) : 𝑥 − 𝑦 ∈ Ω

}
for a Euclidean C1-domain Ω. Transversality

trivially holds at every boundary point in this case. In the general case, the main idea (Lemma 2.3)
is a new connection between Schur and Fourier multipliers: it gives an 𝐿𝑝 square-function inequality
for half-space multipliers out of the 𝑆𝑝-boundedness of 𝑆Σ. This is a noncommutative form of Meyer’s
lemma, which derived such a square inequality from 𝐿𝑝-bounded Fourier multipliers, and which was a
key part in the proof of the ball multiplier theorem. However, the implication (2)⇒(3) is a purely geo-
metric statement about hypersurfaces in product manifolds (Theorem 2.5) to which we failed to find a
straightforward proof.

It is rather surprising to us that Theorem A holds for Schur multipliers on general manifolds which –
contrary to Euclidean spaces, where Fefferman’s result held so far – lack to admit a Fourier transform
connection. Also observe that when we take 𝑀 = 𝑁 = R𝑛 and write

n(𝑥, 𝑦) =
(
n1(𝑥, 𝑦), n2 (𝑥, 𝑦)

)
for a normal vector to 𝜕Σ at (𝑥, 𝑦), transversality means that both n-dimensional components n1, n2
are nonzero. The zero-curvature condition means that n2 (𝑥1, 𝑦) and n2 (𝑥2, 𝑦) are parallel—equivalent
forms in terms of n1(𝑥, 𝑦1) and n1 (𝑥, 𝑦2) instead, or simpler formulations for C2-domains will be also
discussed. In a different direction, a global (nonlocal) characterization of 𝑆𝑝-bounded idempotent Schur
multipliers also follows for relatively compact fully transverse domains Σ.

Theorem A has profound consequences for Fourier multipliers on Lie group von Neumann algebras.
Smooth Fourier multipliers on group algebras were intensively investigated over the last decade [5, 11,
18, 24, 25, 32, 35]. The nonsmooth theory concerns a longstanding search to classify idempotent Fourier
𝐿𝑝-multipliers, but their geometric behavior is very sensitive to the underlying group. Harcharras inves-
tigated noncommutative Λ(𝑝)-sets in [22]. Bożejko and Fendler [3] studied an analog of Fefferman’s
ball multiplier theorem in the free group for |1/𝑝 − 1/2| > 1/6. More recently, Mei and Ricard found a
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large class of free Hilbert transforms in their remarkable work [31]. The search for Hilbert transforms
on general groups also includes crossed products and groups acting on tree-like structures [19, 36].

In this paper, we shall give a complete characterization of the local boundary behavior for completely
bounded idempotent Fourier multipliers on arbitrary Lie groups. We say that a function 𝑚 : G → C
defines locally at 𝑔0 ∈ G a completely bounded Fourier 𝐿𝑝-multiplier if there is a function 𝜑 : G → C
equal to 1 on a neighbourhood of 𝑔0 such that 𝜑𝑚 defines (globally) a completely bounded Fourier
𝐿𝑝-multiplier. Our result is more easily stated for simply connected groups. We refer to Section 3 for
various characterizations of local Fourier multipliers and for the statement of our result below on general
Lie groups (Theorem 3.3).

Theorem B. Let 𝑝 ∈ (1,∞) \ {2}. Let G be a simply connected Lie group, Ω ⊂ G a C1-domain and
𝑔0 ∈ 𝜕Ω a point in the boundary of Ω. The following are equivalent:

(1) 𝜒Ω defines locally at 𝑔0 a completely bounded Fourier 𝐿𝑝-multiplier.
(2) There is a smooth action G → Diff(R) by diffeomorphisms on the real line, such that Ω coincides

on a neighbourhood of 𝑔0 with {𝑔 ∈ G | 𝑔 · 0 > 𝑔0 · 0}.

Alternatively, this means that 𝜕Ω is locally a coset of a codimension 1 subgroup. There are two
ingredients in the proof of Theorem B. The first is Theorem A. The second is a general result relating
local complete 𝐿𝑝-boundedness of Fourier and Schur multipliers for arbitrary locally compact groups.
Such a result is known to be true globally at the endpoints 𝑝 = 1,∞ [3] or when the group G is amenable
[7, 34]. The eventuality that it could be true locally is a recent observation [35] for even integers 𝑝 ∈ 2Z+

and unimodular groups G. In Theorem 3.1 below, we manage to prove it in full generality as a crucial
step towards Theorem B.

Lie himself classified Lie groups admitting (local) actions by diffeomorphisms on the real line [30].
This classification into three types (translation, affine and projective) gives rise to the following three
fundamental examples of a group G with a smooth domain Ω:

i) The real line G1 = R with Ω1 = (0,∞).
ii) The affine group G2 = Aff+(R)1 and Ω2 = {𝑎𝑥 + 𝑏 : 𝑏 > 0}.

iii) The universal covering group G3 = P̃SL2(R)2 with Ω3 = {𝑔 : 𝛼𝑔 (0) > 0}.

The domains Ω 𝑗 define global (not just local) completely bounded idempotent Fourier 𝐿𝑝-multipliers
for 1 < 𝑝 < ∞. Ω1 gives the classical Hilbert transform 𝐻 = −𝑖(2𝑇𝜒Ω1

− id). 𝐿𝑝-boundedness for the
domain Ω3 follows from recent Cotlar identities for unimodular groups [19]. G2 is nonunimodular, and
𝐿𝑝-boundedness for Ω2 is properly justified in Example 3.8. The basic models 𝐻 𝑗 = −𝑖(2𝑇𝜒Ω 𝑗

− id) will
be referred to as classical, affine and projective Hilbert transforms. We find very surprising that every
other idempotent Fourier multiplier locally comes from a surjective homomorphism on one of these
three groups.

Corollary B1. Conditions (1) and (2) in Theorem B are equivalent to the following:

(3) There is 𝑗 ∈ {1, 2, 3} and a smooth surjective homomorphism 𝑓 : G → G 𝑗 such that the domain Ω
coincides on a neighbourhood of 𝑔0 with 𝑔0 𝑓

−1(Ω 𝑗 ).

When G = R𝑛, a homomorphism as in Corollary B1 above is of the form R𝑛 
 𝜉 ↦→ 𝑐〈𝜉, 𝑢〉 ∈ R
for 𝑐 ∈ R∗ and 𝑢 ∈ S𝑛−1. Thus, Corollary B1 recovers that 𝐿𝑝-bounded idempotent Fourier multipliers
in the Euclidean setting locally correspond (up to translations) to half-space multipliers with symbol
𝑚𝑢 (𝜉) = 𝜒〈𝜉 ,𝑢〉>0 for some 𝑢 ∈ S𝑛−1. This is well understood since Fefferman’s solution to the Ball
multiplier problem. Note in passing that these half-space multipliers are directional extensions of the
Riesz projection 𝑅 = 1

2 (𝑖𝐻 + id). By analogy, we could rephrase Corollary B1 by saying that every

1Affine increasing bijections 𝑥 ↦→ 𝑎𝑥 + 𝑏 for 𝑎 ∈ R∗
+ and 𝑏 ∈ R, isomorphic to R � R∗

+.
2The action 𝛼 : P̃SL2 (R) � R is obtained by lifting the standard action of PSL2 (R) on the projective line to the universal

covers. If 𝑝 : R → 𝑃1 (R) denotes the universal cover, then the universal cover of SL2 (R) is identified with the group of
homeomorphisms 𝑔 : R → R for which there is 𝐴 ∈ PSL2 (R) such that 𝑝 ◦ 𝑔 = 𝐴 · 𝑝.
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Fourier 𝐿𝑝-idempotent on an arbitrary Lie group arises as a directional amplification of one of the three
fundamental models of Riesz projections above.

Theorem B and Corollary B1 give very satisfactory descriptions of completely bounded Fourier
idempotents in arbitrary Lie groups. It is certainly surprising that these multipliers are modeled out of
exactly three fundamental examples, the classical Hilbert transform and its affine and projective variants.
It also shows that every C1-idempotent is automatically C∞. This rigidity property collides head-on with
the much more flexible scenario of Theorem A.

Corollary B2. Let 𝑝 ∈ (1,∞) \ {2} and let G be a Lie group:

i) If G is simply connected and nilpotent, every cb-𝐿𝑝-bounded smooth Fourier idempotent is locally of
the form 𝑅◦𝜑, for the classical Riesz projection R and some continuous homomorphism 𝜑 : G → R.

ii) If G is a simple Lie group which is not locally isomorphic to SL2(R), then G does not carry any
smooth Fourier idempotent which is locally completely 𝐿𝑝-bounded on its group von Neumann
algebra.

iii) If G is locally isomorphic to SL2(R), then G carries a unique local Fourier idempotent which is
completely 𝐿𝑝-bounded on its group algebra (up to left/right translations) given by 𝑔 ↦→ 1

2
(
1 +

sgn Tr(𝑔𝑒12)
)
.

As an illustration for stratified Lie groups, 𝜑 corresponds on the Lie algebra level with the projection
onto any 1-dimensional subspace of the first stratum. The second statement spotlights the singular
nature of harmonic analysis over simple Lie groups. It also yields an alternative way to justify that the
spherical Hilbert transform 𝐻S is not 𝐿𝑝-bounded for any 𝑝 ≠ 2. Finally, as we shall justify, the third
statement gives a straightforward solution (in the negative) to Problem A in [19]. We refer to [38, 40]
for the operator space background necessary for this paper.

The plan of the paper is as follows. Section 2 is devoted to idempotent Schur multipliers. It contains the
proof of Theorem A and several discussions, including our analysis of the spherical Hilbert transform.
Section 3 is devoted to Fourier multipliers. It contains the proof of Theorem B and its corollaries. The
proof relies on a result of independent interest on the local transference between Fourier and Schur
multipliers for arbitrary locally compact groups, Theorem 3.1.

2. Idempotent Schur multipliers

In this section, we give a complete proof of Theorem A. We begin by recalling some particularly flexible
changes of variables for Schur symbols, which preserve the 𝑆𝑝-norm of the corresponding Schur
multipliers on nonatomic spaces. Then, we prove the implications (1) ⇒ (2) ⇒ (3) ⇒ (1) in Theorem A
separately. We shall finish with some comments and applications to spherical Hilbert transforms.

2.1. Schur multipliers

Let (𝑋, 𝜇) and (𝑌, 𝜈) be 𝜎-finite measure spaces. Given 1 ≤ 𝑝 < ∞, let 𝑆𝑝 (𝐿2 (𝑌 ), 𝐿2 (𝑋)) be the space
all of bounded linear operators 𝑇 : 𝐿2 (𝑌 ) → 𝐿2 (𝑋) with Tr |𝑇 |𝑝 < ∞, which is a Banach space for the
norm below

‖𝑇 ‖𝑆𝑝 =
(
Tr |𝑇 |𝑝
) 1

𝑝 .

When 𝑝 = 2, the Schatten class 𝑆2 (𝐿2 (𝑌 ), 𝐿2 (𝑋)) is the space of Hilbert-Schmidt operators 𝐿2 (𝑌 ) →
𝐿2 (𝑋). It coincides with 𝐿2 (𝑋 × 𝑌 ), regarding any 𝐿2-function (𝑥, 𝑦) ↦→ 𝐾 (𝑥, 𝑦) as the kernel of the
corresponding Hilbert-Schmidt operator

𝑇𝐾 𝑓 (𝑥) =
∫
𝑌
𝐾 (𝑥, 𝑦) 𝑓 (𝑦)𝑑𝜈(𝑦).
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Given a bounded measurable function 𝑚 : 𝑋 × 𝑌 → C, the Schur 𝑆𝑝-multiplier with symbol m is
defined (when it exists) as the unique bounded linear map 𝑆𝑚 on 𝑆𝑝 (𝐿2 (𝑌 ), 𝐿2 (𝑋)) which assigns
𝑇𝐾 = (𝐾 (𝑥, 𝑦))𝑥∈𝑋,𝑦∈𝑌 ∈ 𝑆2 ∩ 𝑆𝑝 to (𝑚(𝑥, 𝑦)𝐾 (𝑥, 𝑦))𝑥∈𝑋,𝑦∈𝑋𝑌 = 𝑆𝑚(𝑇𝐾 ). We shall write ‖𝑚‖𝑀𝑆𝑝

for its norm, with the convention ‖𝑚‖𝑀𝑆𝑝
= ∞ if 𝑆𝑚 does not exist. By definition, if it exists, 𝑆𝑚

is unchanged when m is modified on a measure 0 subset, so we can and will often consider 𝑆𝑚 for
𝑚 ∈ 𝐿∞(𝑋 × 𝑌 ).

The following general fact will be crucial in our proof of Theorem A. It evidences a much greater
flexibility of Schur multipliers compared to Fourier multipliers. The proof follows from [28], we include
the argument below.
Lemma 2.1. Let (𝑋, 𝜇), (𝑋 ′, 𝜇′), (𝑌, 𝜈), (𝑌 ′, 𝜈′) be atomless 𝜎-finite measure spaces and 𝑓 : 𝑋 → 𝑋 ′

and 𝑔 : 𝑌 → 𝑌 ′ be measurable maps. Assume the pushforward measures 𝑓∗𝜇 and 𝑔∗𝜈 are absolutely
continuous with respect to the measures 𝜇′ and 𝜈′, respectively. Then, for every 𝑚 ∈ 𝐿∞(𝑋 ′ × 𝑌 ′),

‖𝑚 ◦ ( 𝑓 × 𝑔)‖𝑀𝑆𝑝 (𝐿2 (𝑌 ,𝜈) ,𝐿2 (𝑋,𝜇)) ≤ ‖𝑚‖𝑀𝑆𝑝 (𝐿2 (𝑌 ′,𝜈′) ,𝐿2 (𝑋 ′,𝜇′)) .

The absolute continuity of 𝑓∗𝜇 and 𝑔∗𝜈 is necessary. Indeed, otherwise there would exist a bounded
measurable function 𝑚 : 𝑋 ′ × 𝑌 ′ → C with 𝑚 = 0𝜇′ ⊗ 𝜈′-almost everywhere but 𝑚 : (𝑥, 𝑦) ↦→

𝑚( 𝑓 (𝑥), 𝑔(𝑦)) does not vanish almost 𝜇 ⊗ 𝜈-almost everywhere. And in particular,

0 < ‖𝑚 ◦ ( 𝑓 × 𝑔)‖𝑀𝑆𝑝 (𝐿2 (𝑌 ,𝜈) ,𝐿2 (𝑋,𝜇)) � ‖𝑚‖𝑀𝑆𝑝 (𝐿2 (𝑌 ′,𝜈′) ,𝐿2 (𝑋 ′,𝜇′)) = 0.

Proof. The inequality

‖𝑚‖𝑀𝑆𝑝 (𝐿2 (𝑌 ′,𝑔∗𝜈) ,𝐿2 (𝑋 ′, 𝑓∗𝜇)) ≤ ‖𝑚‖𝑀𝑆𝑝 (𝐿2 (𝑌 ′,𝜈′) ,𝐿2 (𝑋 ′,𝜇′))

follows directly from [28, Lemma 1.9] and the absolute continuity assumption. So our goal will be to
prove the following equality:

‖𝑚 ◦ ( 𝑓 × 𝑔)‖𝑀𝑆𝑝 (𝐿2 (𝑌 ,𝜈) ,𝐿2 (𝑋,𝜇)) = ‖𝑚‖𝑀𝑆𝑝 (𝐿2 (𝑌 ′,𝑔∗𝜈) ,𝐿2 (𝑋 ′, 𝑓∗𝜇)) .

To lighten the notation, let us assume that (𝑋, 𝜇) = (𝑌, 𝜈), (𝑋 ′, 𝜇′) = (𝑌 ′, 𝜈′) and 𝑓 = 𝑔. Let B,B′ be
the underlying 𝜎-algebras, and consider A := 𝑓 −1(B′). Then f allows to identify 𝐿2 (𝑋

′,B′, 𝑓∗𝜇) with
𝐿2 (𝑋,A, 𝜇). In particular,

‖𝑚 ◦ ( 𝑓 × 𝑓 )‖𝑀𝑆𝑝 (𝐿2 (𝑋,A,𝜇)) = ‖𝑚‖𝑀𝑆𝑝 (𝐿2 (𝑋 ′,B′, 𝑓∗𝜇)) ,

and similarly for the cb-norm. However, [28, Lemma 1.13] implies that the cb norms of 𝑚 ◦ ( 𝑓 × 𝑓 ) on
𝑆𝑝 (𝐿2 (A, 𝜇)) and 𝑆𝑝 (𝐿2 (B, 𝜇)) coincide, so we deduce

‖𝑚 ◦ ( 𝑓 × 𝑓 )‖cb𝑀𝑆𝑝 (𝐿2 (𝑋,B,𝜇)) = ‖𝑚‖cb𝑀𝑆𝑝 (𝐿2 (𝑋 ′,B′, 𝑓∗𝜇)) .

Then [28, Theorem 1.18] allows us to conclude. Indeed, our assumptions that 𝜇 and 𝜇′ have no atoms
imply that both cb-norms are equal to their norms. �

2.2. Proof of Theorem A: Boundedness implies zero-curvature

In this paragraph, we prove (1) ⇒ (2) from the statement of Theorem A. The proof of this implication
follows the same path as in Fefferman’s solution of the ball multiplier theorem [15]. The first step in his
argument is a reduction due to Yves Meyer [15, Lemma 1] from the ball multiplier to square function
estimates for half-space multipliers. Given a nonzero vector 𝑢 ∈ R𝑛, let 𝐻𝑢 denote the corresponding
u-directional half-space multiplier

𝐻𝑢 𝑓 (𝜉) = 𝜒〈𝜉 ,𝑢〉>0 𝑓̂ (𝜉).
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Lemma 2.2 (Meyer). Assume that the ball multiplier in R2 is 𝐿𝑝-bounded with norm ≤ 𝐶. For every
integer N, every sequence of unit vectors 𝑢1, 𝑢𝑒, . . . , 𝑢𝑁 ∈ R2 and functions 𝑓1, 𝑓2, . . . , 𝑓𝑁 ∈ 𝐿𝑝 (R2),
the following inequality holds :




( 𝑁∑
𝑗=1

��𝐻𝑢 𝑗 ( 𝑓 𝑗 )
��2) 12 




𝐿𝑝 (R2)
≤ 𝐶



( 𝑁∑

𝑗=1
| 𝑓 𝑗 |

2
) 1

2




𝐿𝑝 (R2)

. (2.1)

The second step in the argument in [15] is the proof that (2.1) does not hold if 𝑝 ≥ 2. The argument
relies on Besicovitch’s construction for the Kakeya needle problem. The key new idea we introduce is
a form of Meyer’s Lemma 2.2 that is valid for Schur multipliers. It shows that, under the assumption
that the indicator function of a domain Σ defines an 𝑆𝑝-bounded Schur multiplier with norm ≤ 𝐶, the
square function estimate (2.1) will hold whenever 𝑢1, . . . , 𝑢𝑁 are normal vectors to 𝜕Σ𝑥 𝑗 at a given
point y. To make this precise, we introduce some notation: if Σ ⊂ R𝑛 is a C1-domain and 𝑧 ∈ 𝜕Σ, let
n(𝑧) = (n1 (𝑧), n2 (𝑧)) ∈ R𝑛 ⊕ R𝑛 be a normal to 𝜕Σ at z pointing away from Σ.

Lemma 2.3. Let 𝑈,𝑉 ⊂ R𝑛 be open subsets and Σ ⊂ 𝑈 × 𝑉 a C1-domain. Assume that the Schur
multiplier 𝑆Σ whose symbol is the characteristic function of Σ is bounded on 𝑆𝑝 (𝐿2 (𝑈), 𝐿2 (𝑉)) with
norm C. Let 𝑥1, 𝑥2, . . . , 𝑥𝑁 ∈ 𝑈 and 𝑦 ∈ 𝑉 such that 𝑧 𝑗 = (𝑥 𝑗 , 𝑦) is a transverse point in the boundary
𝜕Σ for every 𝑗 = 1, 2, . . . , 𝑁 . Define 𝑢 𝑗 = n2 (𝑧 𝑗 ) and consider functions 𝑓1, 𝑓2, . . . , 𝑓𝑁 ∈ 𝐿𝑝 (R𝑛).
Then, we have




( 𝑁∑
𝑗=1

��𝐻𝑢 𝑗 ( 𝑓 𝑗 )
��2) 12 




𝐿𝑝 (R𝑛)
≤ 𝐶



( 𝑁∑

𝑗=1
| 𝑓 𝑗 |

2
) 1

2




𝐿𝑝 (R𝑛)

.

Proof. Given 𝑢 ∈ R𝑛 \ {0}, define

𝑚𝑢 (𝜉, 𝜂) = 𝜒〈𝜉−𝜂,𝑢〉>0 =

{
1 if 〈𝜉 − 𝜂, 𝑢〉 > 0
0 otherwise.

Then, the proof relies on the following two claims:

(A) Let (𝑥, 𝑦) be a transverse point in the boundary of 𝜕Σ and let𝑇 ∈ GL𝑛 (R) be such that𝑇∗n1 (𝑥, 𝑦) =
−n2 (𝑥, 𝑦). Then, the following identity holds for almost every 𝜉, 𝜂 ∈ R𝑛:

lim
𝜀→0+

𝜒Σ
(
𝑥 + 𝜀𝑇𝜉, 𝑦 + 𝜀𝜂

)
= 𝑚n2 (𝑥,𝑦) (𝜉, 𝜂).

(B) Let 𝑢 𝑗 be as in the statement. Then the Schur multiplier

𝑀 :
(
(𝜉, 𝑗), 𝜂
)
∈
(
R𝑛 × {1, . . . , 𝑁}

)
× R𝑛 ↦→ 𝑚𝑢 𝑗 (𝜉, 𝜂)

is bounded on 𝑆𝑝 (𝐿2 (R𝑛), 𝐿2 (R𝑛 × {1, 2, . . . , 𝑁})) with norm ≤ 𝐶.

Assuming the validity of the above claims, we may now conclude the proof using standard transference
ideas that go back at least to the work of Bożejko and Fendler [2]. Consider 𝑓1, 𝑓2, . . . , 𝑓𝑁 ∈ 𝐿𝑝 (R𝑛).
If 𝑒 𝑗 ,1 denotes the standard elementary matrices, if 𝐶 =

∑𝑁
𝑗=1 𝑐 𝑗𝑒 𝑗 ,1, we have |𝐶 |𝑝 = (𝐶∗𝐶)

𝑝
2 =

(
∑

𝑗 |𝑐 𝑗 |
2)

𝑝
2 𝑒1,1. Taking 𝑐 𝑗 = 𝑓 𝑗 (𝑥) and integrating with respect to x, we get




( 𝑁∑
𝑗=1

| 𝑓 𝑗 |
2
) 1

2




𝐿𝑝 (R𝑛)

=



 𝑁∑
𝑗=1

𝑓 𝑗 ⊗ 𝑒 𝑗 ,1





𝐿𝑝 (R𝑛;𝑆𝑝)

.
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We know from [7, Theorem 5.2] that there is an ultrafilter U on N and a completely isometric map

𝑗𝑝 : 𝐿𝑝 (R𝑛) →
∏
U

𝑆𝑝 (𝐿2 (R𝑛))

that intertwines Fourier and Schur multipliers. The notation
∏

U 𝑆𝑝 (𝐿2 (R𝑛)) stands for the Banach
space ultraproduct, that is the quotient of∏

𝛼∈N
𝑆𝑝 (𝐿2 (R𝑛)) :=

{
(𝐴𝛼)𝛼∈N | 𝐴𝛼 ∈ 𝑆𝑝 (𝐿2 (R𝑛)), sup

𝛼
‖𝐴𝛼‖𝑝 < ∞

}
by its closed subspace {(𝐴𝛼)𝛼 | lim𝛼→U ‖𝐴𝛼‖𝑝 = 0}. Pick a representative (𝐴 𝑗 ,𝛼)𝛼∈N of 𝑗𝑝 ( 𝑓 𝑗 ). This
gives that (𝑆𝑚𝑢 (𝐴 𝑗 ,𝛼))𝛼∈N is a representative of 𝑗𝑝 (𝐻𝑢 ( 𝑓 𝑗 )) for every 𝑢 ∈ R𝑛. That 𝑗𝑝 is a complete
isometry gives 


( 𝑁∑

𝑗=1
| 𝑓 𝑗 |

2
) 1

2




𝐿𝑝 (R𝑛)

= lim
𝛼→U




 𝑁∑
𝑗=1

𝐴 𝑗 ,𝛼 ⊗ 𝑒 𝑗 ,1





𝑆𝑝

, (2.2)

and applying it to 𝐻𝑢 𝑗 ( 𝑓 𝑗 ) instead of 𝑓 𝑗 , we obtain




( 𝑁∑
𝑗=1

|𝐻𝑢 𝑗 ( 𝑓 𝑗 ) |
2
) 1

2




𝐿𝑝 (R𝑛)

= lim
𝛼→U




 𝑁∑
𝑗=1

𝑆𝑚𝑢𝑗
(𝐴 𝑗 ,𝛼) ⊗ 𝑒 𝑗 ,1





𝑆𝑝

.

In the preceding equality and in what follows, if 𝐴1, . . . , 𝐴𝑁 ∈ 𝑆𝑝 (𝐿2 (R𝑛)), we see the sum
∑𝑁

𝑗=1 𝐴 𝑗 ⊗

𝑒 𝑗 ,1 as the element of 𝑆𝑝 (𝐿2 (R𝑛), 𝐿2 (R𝑛 × {1, 2, . . . , 𝑁})) mapping 𝑔 ∈ 𝐿2 (R𝑛) to the function
(𝜉, 𝑗) ∈ R𝑛 × {1, 2, . . . , 𝑁} ↦→ (𝐴 𝑗𝑔) (𝜉). In the particular case when 𝐴 𝑗 ∈ 𝑆𝑝 ∩ 𝑆2 has kernel
𝐾 𝑗 ∈ 𝐿2 (R𝑛 × R𝑛),

∑𝑁
𝑗=1 𝐴 𝑗 ⊗ 𝑒 𝑗 ,1 maps g to the function (𝜉, 𝑗) ↦→

∫
𝐾 𝑗 (𝜉, 𝜂)𝑔(𝜂)𝑑𝜂, so it is the

Hilbert-Schmidt operator with kernel ((𝜉, 𝑗), 𝜂) ↦→ 𝐾 𝑗 (𝜉, 𝜂). Similarly,
∑𝑁

𝑗=1 𝑆𝑚 𝑗 (𝐴 𝑗 ) ⊗ 𝑒 𝑗 ,1 is the
Hilbert-Schmidt operators with kernel ((𝜉, 𝑗), 𝜂) ↦→ 𝑚 𝑗 (𝜉, 𝜂)𝐾 𝑗 (𝜉, 𝜂). Therefore, we have

𝑆𝑀

( 𝑁∑
𝑗=1

𝐴 𝑗 ⊗ 𝑒 𝑗 ,1

)
=

𝑁∑
𝑗=1

𝑆𝑚 𝑗 (𝐴 𝑗 ) ⊗ 𝑒 𝑗 ,1, (2.3)

where 𝑆𝑀 is the Schur multiplier appearing in claim (B). Claim (B) therefore implies that (2.3) holds
for every 𝐴1, . . . , 𝐴𝑁 ∈ 𝑆𝑝 (𝐿2 (R𝑛)) and that the 𝑆𝑝-norm of (2.3) is ≤ 𝐶‖

∑𝑁
𝑗=1 𝐴 𝑗 ⊗ 𝑒 𝑗 ,1‖𝑝 .

Let us apply this with 𝐴 𝑗 = 𝐴 𝑗 ,𝛼. According to claim (2.2), we get




( 𝑁∑
𝑗=1

|𝐻𝑢 𝑗 ( 𝑓 𝑗 ) |
2
) 1

2




𝐿𝑝 (R𝑛)

≤ 𝐶 lim
𝛼→U




 𝑁∑
𝑗=1

𝐴 𝑗 ,𝛼 ⊗ 𝑒 𝑗 ,1





𝑆𝑝

= 𝐶



( 𝑁∑

𝑗=1
| 𝑓 𝑗 |

2
) 1

2




𝐿𝑝 (R𝑛)

.

Thus, the assertion is a consequence of claim (B), for which we need to justify claim (A)
first. To do so, we can assume that Σ = 𝑓 −1(−∞, 0) for a C1-submersion 𝑓 : 𝑈 × 𝑉 → R. Then
∇ 𝑓 (𝑥, 𝑦) = (∇𝑥 𝑓 (𝑥, 𝑦),∇𝑦 𝑓 (𝑥, 𝑦)) is a normal vector to the boundary 𝜕Σ = 𝑓 −1(0) at every (𝑥, 𝑦) ∈ 𝜕Σ,
pointing away from Σ. Thus, replacing f by a positive multiple, we can assume that its gradient is
(n1 (𝑥, 𝑦), n2(𝑥, 𝑦)). Then, the Taylor expansion of f gives

𝑓
(
𝑥 + 𝜀𝑇𝜉, 𝑦 + 𝜀𝜂

)
= 𝜀
〈
n1 (𝑥, 𝑦), 𝑇𝜉

〉
+ 𝜀
〈
n2 (𝑥, 𝑦), 𝜂

〉
+ 𝑜(𝜀)

= 𝜀
〈
n2 (𝑥, 𝑦), 𝜂 − 𝜉

〉
+ 𝑜(𝜀).
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Therefore, if 𝜂 − 𝜉 is not orthogonal to n2 (𝑥, 𝑦) (a condition that holds for almost every 𝜉 and 𝜂), we
have 𝜒Σ (𝑥 + 𝜀𝑇𝜉, 𝑦 + 𝜀𝜂) = 𝑚n2 (𝑥,𝑦) (𝜉, 𝜂) for every 𝜀 > 0 small enough. This proves claim (A).

To prove claim (B) we apply (A). More precisely, let 𝑇𝑗 ∈ GL𝑛 (R) be such that 𝑇∗
𝑗 n1 (𝑥 𝑗 , 𝑦) =

−n2 (𝑥 𝑗 , 𝑦) = −𝑢 𝑗 for every 𝑗 = 1, 2, . . . , 𝑁 . The existence of these maps is clear, because by the
transversality assumption, both n1(𝑥 𝑗 , 𝑦) and n2(𝑥 𝑗 , 𝑦) are nonzero vectors in R𝑛 and GL𝑛 (R) acts
transitively on them. By Lemma 2.1, the Schur multiplier with symbol

𝑚𝜀
(
(𝜉, 𝑗), 𝜂
)
= 𝜒Σ
(
𝑥 𝑗 + 𝜀𝑇𝑗𝜉, 𝑦 + 𝜀𝜂

)
is bounded with norm ≤ 𝐶 for every 𝜀 > 0. Taking 𝜀 → 0+, we obtain that the almost everywhere limit
of 𝑚𝜀 is 𝑆𝑝-bounded with norm ≤ 𝐶. However, this limit is 𝑚𝑢 𝑗 (𝜉, 𝜂) from claim (A). This proves
claim (B). �

Remark 2.4. Taking

Σ =
{
(𝑥, 𝑦) : 𝑥 − 𝑦 ∈ Ω

}
for a smooth domain Ω, Lemma 2.3 reduces to the classical Meyer’s lemma.

Proof of (1)⇒(2) in Theorem A. Let us assume that (1) in Theorem A holds. By taking charts, we can
and will assume that M and N are open subsets of R𝑚 and R𝑛, respectively. We shall further assume
that 𝑚 = 𝑛. For instance, if 𝑚 < 𝑛, we can replace M by 𝑀 × R𝑛−𝑚 and Σ by{(

(𝑥, 𝑥 ′), 𝑦
)
| (𝑥, 𝑦) ∈ Σ, 𝑥 ′ ∈ R𝑛−𝑚

}
.

By the transversality assumption, the map 𝑧 ↦→ n2 (𝑧)/‖n2(𝑧)‖ is continuous on a neighbourhood of
the transverse point (𝑥0, 𝑦0) in Theorem A. Moreover, for y close to 𝑦0, we have that 𝜕Σ𝑦 is locally a
manifold, so is connected. Thus, if (2) was not true, there would exist y close to 𝑦0 such that the subset
of the sphere 𝑋 = {n2(𝑥

′, 𝑦)/‖n2 (𝑥
′, 𝑦)‖ : 𝑥 ′ ∈ 𝜕Σ𝑦 ∩𝑈} contains a connected subset not reduced to

a point. According to (1) and Lemma 2.3, this would imply that the square function inequality holds
uniformly in 𝐿𝑝 (R𝑛) for any finite set in X. However, Fefferman’s main result in his proof of the ball
multiplier theorem [15] claims that such a uniform inequality cannot hold. In fact, Fefferman stated it
for 𝑛 = 2, but the result in arbitrary dimension follows from the 2-dimensional case by K. de Leeuw’s
restriction theorem [29]. Hence, the zero-curvature condition (2) must hold. �

2.3. Proof of Theorem A: Zero-curvature implies triangular truncations

The implication (2)⇒(3) is a general geometric statement concerning transverse hypersurfaces in
manifolds of product type. Let 𝑀, 𝑁 be manifolds of dimension 𝑚, 𝑛. Following the terminology in the
Introduction, we say that a C1-submanifold Π ⊂ 𝑀 × 𝑁 of codimension 1 is said to be transverse at
𝑧 = (𝑥, 𝑦) ∈ Π if the tangent space of Π at z maps surjectively on each factor 𝑇𝑥𝑀 and 𝑇𝑦𝑁 . In that
case, Π𝑥 = {𝑦′ ∈ 𝑁 | (𝑥, 𝑦′) ∈ Π} and Π𝑦 = {𝑥 ′ ∈ 𝑀 | (𝑥 ′, 𝑦) ∈ Π} are manifolds on a neighbourhood
y and x, respectively.

Theorem 2.5. Let Π ⊂ 𝑀 × 𝑁 be a C1-submanifold of codimension 1 that is transverse at
𝑧0 = (𝑥0, 𝑦0) ∈ Π. Then, the following are equivalent :

(a) There are neighbourhoods 𝑈,𝑉 of 𝑥0 and 𝑦0 in 𝑀, 𝑁 such that for every 𝑥, 𝑥 ′ ∈ 𝑈 and 𝑦 ∈ 𝑉 with
(𝑥, 𝑦), (𝑥 ′, 𝑦) ∈ Π, 𝑇𝑦Π𝑥 = 𝑇𝑦Π𝑥′ .

(b) There are neighbourhoods 𝑈,𝑉 of 𝑥0 and 𝑦0 in 𝑀, 𝑁 such that for every 𝑥 ∈ 𝑈 and 𝑦, 𝑦′ ∈ 𝑉 with
(𝑥, 𝑦), (𝑥, 𝑦′) ∈ Π, 𝑇𝑥Π𝑦 = 𝑇𝑥Π𝑦′ .

(c) There are neighbourhoods𝑈,𝑉 of 𝑥0 and 𝑦0 in 𝑀, 𝑁 and𝐶1 submersions 𝑓 : 𝑈 → R and 𝑔 : 𝑉 → R
with Π ∩ (𝑈 ×𝑉) = {(𝑥, 𝑦) ∈ 𝑈 ×𝑉 | 𝑓 (𝑥) = 𝑔(𝑦)}.
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The difficult direction in Theorem 2.5 is (a)⇒(c). Both conditions are invariant by diffeomorphisms
of product type, that is of the form (𝑥, 𝑦) ↦→ (𝜙(𝑥), 𝜓(𝑦)). It will be useful to have a description of a
local normal form (that is of an element in every orbit) of transverse manifolds.

Lemma 2.6. Consider a C1-submanifold Π ⊂ 𝑀 × 𝑁 of codimension 1 that is transverse at
𝑧0 = (𝑥0, 𝑦0) ∈ Π. Then, there are diffeomorphisms 𝜙 and 𝜓 from neighbourhoods U and V of 𝑥0 and
𝑦0, respectively, into R𝑚 and R𝑛 satisfying that 𝜙(𝑥0) = 0 = 𝜓(𝑦0) and such that

Π ∩ (𝑈 ×𝑉) = (𝜙 × 𝜓)−1{(𝑥, 𝑦) | 𝑥1 = 𝑔(𝑥2, . . . , 𝑥𝑚, 𝑦)
}

for some C1 function 𝑔 : R𝑚−1 × R𝑛 → R satisfying 𝑔(0, 𝑦) = 𝑦1 for every y.

Proof. By the transversality assumption that 𝑇𝑧0Π surjects onto 𝑇𝑦0 𝑀 , we see that 𝑇𝑧0Π∩ (𝑇𝑥0 𝑀 ⊕ 0) ≠
𝑇𝑥0 𝑀 ⊕ 0. Thus, by applying a local diffeomorphism 𝜙 : 𝑀 → R𝑚, we can assume that 𝑀 = R𝑚, 𝑥0 = 0
and (1, 0, . . . , 0) ∉ 𝑇𝑧0Π. Then by the implicit function theorem, there is a C1 function ℎ : R𝑚−1×𝑁 → R
such that, on a neighbourhood of (0, 𝑦0),

Π =
{
(𝑥, 𝑦) | 𝑥1 = ℎ(𝑥2, . . . , 𝑥𝑚, 𝑦)

}
.

The function ℎ(0, ·) vanishes at 𝑦0 and, by the second half of the transversality assumption, has
nonzero differential at 𝑦0. By the implicit function theorem (or the surjection theorem) again, there is a
diffeomorphism 𝜓 from a neighbourhood of 𝑦0 into R𝑛 vanishing at 𝑦0 and such that ℎ(0, 𝑦) = 𝜓(𝑦)1
for every y close enough to 𝑦0. This proves the lemma with 𝑔(0, 𝑦) = ℎ(0, 𝜓−1 (𝑦)). �

Proof of Theorem 2.5. By symmetry of the two variables, it is enough to prove (a)⇔(c). The implication
(c)⇒(a) is clear with the same U and V because in that case, 𝑇𝑦Π𝑥 is the kernel of 𝑑𝑦𝑔, which
is independent of x. It remains to prove the implication (a)⇒(c). Observe that both conditions are
unchanged if we replace (𝑥0, 𝑦0,Π) by (𝜙(𝑥0), 𝜓(𝑦0), 𝜙 × 𝜓(Π)) for local diffeomorphisms. Therefore,
by the normal form Lemma 2.6, we may assume that 𝑀 × 𝑁 = R𝑚 × R𝑛, (𝑥0, 𝑦0) = (0, 0) and

Π ∩ (𝑈 ×𝑉) =
{
(𝑥, 𝑦) ∈ 𝑈 ×𝑉 | 𝑥1 = 𝑔(𝑥2, . . . , 𝑥𝑚, 𝑦)

}
for some C1 function 𝑔 : R𝑚−1 × R𝑛 → R satisfying 𝑔(0, 𝑦) = 𝑦1. Then, for every (𝑥, 𝑦) ∈ Π with
𝑥 = (𝑥1, 𝑥), we have 𝑇𝑦Π𝑥 = ker(𝑑𝑦𝑔(𝑥, 𝑦)). Let 𝑈̃ ⊂ R𝑚−1, 𝑉̃ ⊂ 𝑉 be square neighbourhoods of
0 such that (𝑔(𝑥, 𝑦), 𝑥) ∈ 𝑈 for (𝑥, 𝑦) ∈ 𝑈̃ × 𝑉̃ . Then for every such 𝑥, 𝑦, condition (a) applied to
𝑥 = (𝑔(𝑥, 𝑦), 𝑥) and 𝑥 ′ = (𝑔(0, 𝑦), 0) yields ker 𝑑𝑦𝑔(𝑥, 𝑦) = ker 𝑑𝑦𝑔(0, 𝑦) = span(𝑒2, . . . , 𝑒𝑛). In
particular, 𝜕𝑦 𝑗𝑔(𝑥, 𝑦) = 0 for every 𝑗 ≥ 2, so (since 𝑉̃ is a square) 𝑔(𝑥, 𝑦) = 𝑤(𝑥, 𝑦1) for certain C1

function 𝑤 : R𝑚−1 × R → R satisfying 𝑤(0, 𝑠) = 𝑠 for all s. By the implicit function theorem, we get{
(𝑥1, 𝑥, 𝑠) | 𝑥1 = 𝑤(𝑥, 𝑠)

}
=
{
(𝑥1, 𝑥, 𝑠) | 𝑠 = 𝑢(𝑥1, 𝑥)

}
locally for a C1 function 𝑢 : R𝑚 → R. This completes the proof of Theorem 2.5. �

Proof of (2)⇒(3) in Theorem A. This is (a)⇒(c) in Theorem 2.5 for Π = 𝜕Σ. �

2.4. Proof of Theorem A: Transference on triangular truncations

We record finally the easy last implication, which completes the proof of Theorem A.

Proof of (3)⇒(1) in Theorem A. This is immediate from the classical boundedness of the triangular
projection on Schatten p-classes for 1 < 𝑝 < ∞ (due to Macaev [48]; see also [17, Chap III, §6]) and
the transference Lemma 2.1 above. �
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2.5. Relatively compact domains

Using a partition of unity argument, it is not difficult to prove that Theorem A holds globally for relatively
compact fully transverse domains Σ. More precisely, let 𝑝 ∈ (1,∞) \ {2} and consider a relatively
compact domain Σ in 𝑀 × 𝑁 which is transverse at every point of 𝜕Σ. Then 𝑆Σ is an 𝑆𝑝-bounded
multiplier if and only if any of the equivalent conditions (2) and (3) in the statement of Theorem A holds
at every point of the boundary.

Remark 2.7. The fact that Σ is relatively compact is crucial in the preceding argument. For instance,
(2) holds trivially at every boundary point for every fully transverse C1-domain of R × R. But there are
examples of such domains – which are Toeplitz, arising from Fourier symbols – that do not define an
𝑆𝑝 multiplier for any 𝑝 ≠ 2. An explicit construction is given in [6, Appendix A].

At this point, it is interesting to observe the difference here between Fourier and Schur idempotents.
We know from Fefferman’s theorem [15] that there are no Fourier 𝐿𝑝-idempotents associated to smooth
compact domains. However, there are plenty such Schur idempotents: necessarily nonToeplitz, since
Toeplitz symbols give rise to Fourier idempotents. A funny instance is precisely given by other forms
of ball multipliers Σ𝑅 = {(𝑥, 𝑦) ∈ R𝑛 × R𝑛 : |𝑥 |2 + |𝑦 |2 < 𝑅2}, which are clearly 𝑆𝑝-bounded and have
been recently used by Chuah-Liu-Mei in their recent paper [9, Example 4.4]. Theorem A proves in
addition that the spheres 𝜕Σ𝑅 satisfy the zero-curvature condition (2). More intriguing examples are the
spherical Hilbert transforms defined in the Introduction as

𝐻S : 𝐴 ↦→
(
− 𝑖 sgn〈𝑥, 𝑦〉𝐴𝑥𝑦

)
𝑥,𝑦∈S𝑛

.

More generally, we also define 𝐻S, 𝛿 = −𝑖(2𝑆Σ𝛿 − id) with 𝑆Σ𝛿 (𝐴) = (𝜒〈𝑥,𝑦〉>𝛿𝐴𝑥𝑦) for 𝛿 ∈ (−1, 1).
The case 𝛿 = 0 corresponds to the spherical transform 𝐻S above.

Corollary 2.8. Let us fix 1 < 𝑝 ≠ 2 < ∞. Then, the n-dimensional spherical Hilbert transforms 𝐻S, 𝛿
are all 𝑆𝑝-bounded for 𝑛 = 1 and 𝑆𝑝-unbounded for 𝑛 ≥ 2.

Proof. Spherical Hilbert transforms 𝐻S, 𝛿 arise from relatively compact domains Σ𝛿 whose boundary
is fully transverse. In particular, we may apply Theorem A. In dimension 1, the assertion follows
immediately since the zero-curvature condition (2) is trivially satisfied. Alternatively, the symbol can
be expressed as a triangular truncation in terms of the polar coordinates of x and y. When 𝑛 ≥ 2, it
is easily checked that the tangent spaces at 𝜕Σ𝑥1 and 𝜕Σ𝑥2 differ at their intersection points. This was
illustrated for 𝑛 = 2 in Figure 1. Theorem A implies the assertion. �

Remark 2.9. Alternatively, Corollary 2.8 also follows as a special case of Corollary B2. Indeed, Lemma
2.1 implies that 𝐻S, 𝛿 has the same norm as the Schur multiplier on SO(𝑛 + 1) × SO(𝑛 + 1) with symbol
(𝑔, ℎ) ↦→ sgn((𝑔−1ℎ)1,1), which by [7] coincides with the cb-norm of the Fourier multipler with symbol
𝑔 ↦→ sgn(𝑔1,1). But for 𝑛 ≥ 2, SO(𝑛 + 1) is a simple Lie group not locally isomorphic to SL2 (R), so it
does not carry any idempotent multiplier.

Remark 2.10. We may also consider symbols Σ𝛿 = {(𝑥, 𝑦) ∈ R𝑛 : 〈𝑥, 𝑦〉 > 𝛿} in the full Euclidean
space for 𝑛 ≥ 2. In this case, Theorem A gives 𝑆𝑝-unboundedness for (𝑛, 𝛿) ≠ (2, 0). By [28, Theorem
1.18] and since 𝑆Σ0 = 𝐻S,0 ⊗ idR+

, it turns out that 𝑆𝑝-boundedness for (𝑛, 𝛿) = (2, 0) follows from
Corollary 2.8.

2.6. Curvature on smoother domains

Our curvature condition (2) admits an alternative formulation under additional regularity. Let Σ be a
C2-domain. Then Σ ∩ (𝑈 × 𝑉) =

{
(𝑥, 𝑦) : 𝐹 (𝑥, 𝑦) > 0

}
for some C2-function 𝐹 : 𝑀 × 𝑁 → R and

small enough neighbourhoods 𝑈,𝑉 . Our curvature condition holds if and only if we have
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〈
𝑑𝑥𝑑𝑦𝐹 (𝑥, 𝑦), 𝑢 ⊗ 𝑣

〉
:= 𝑢t ·
(
𝜕𝑥 𝑗 𝜕𝑦𝑘𝐹 (𝑥, 𝑦)

)
𝑗 ,𝑘

· 𝑣 = 0

for (𝑢, 𝑣) ∈ ker 𝑑𝑥𝐹 (𝑥, 𝑦) ×ker 𝑑𝑦𝐹 (𝑥, 𝑦) at every (𝑥, 𝑦) ∈ 𝜕Σ∩ (𝑈 ×𝑉). The argument is quite simple.
By fixing boundary points (𝑥, 𝑦) and vectors (𝑢, 𝑣) as specified above, let 𝛾 : [0, 1] → 𝜕Σ𝑦 ∩𝑈 be a
curve with 𝛾(0) = 𝑥 and 𝛾′(0) = 𝑢, and set ℎ(𝑠) = 𝑑𝑦𝐹 (𝛾(𝑠), 𝑦). The curvature condition (2) means
that ℎ(𝑠) = 𝛼(𝑠)ℎ(0) for some nonvanishing function 𝛼 : [0, 1] → R. In particular, we get〈

𝑑𝑥𝑑𝑦𝐹 (𝑥, 𝑦), 𝑢 ⊗ 𝑣
〉
=
〈
ℎ′(0), 𝑣
〉
= 𝛼′(0)
〈
ℎ(0), 𝑣
〉
= 0.

Reciprocally, assume that the C2-curvature condition above holds. Consider a curve 𝛾 : [0, 1] → 𝜕Σ𝑦∩𝑈
and define h as above. Since we have 𝛾′(𝑠) ∈ ker 𝑑𝑥𝐹 (𝛾(𝑠), 𝑦) and ℎ′(𝑠) = 𝛾′(𝑠)t · 𝑑𝑥𝑑𝑦𝐹 (𝛾(𝑠), 𝑦) by
construction, it turns out that 〈ℎ′(𝑠), 𝑣〉 equals 〈𝑑𝑥𝑑𝑦𝐹 (𝛾(𝑠), 𝑦), 𝛾′(𝑠) ⊗𝑣〉 for any 𝑣 ∈ ker 𝑑𝑦𝐹 (𝛾(𝑠), 𝑦).
Applying the C2-curvature condition, this implies that ℎ′(𝑠) is parallel to ℎ(𝑠) for every s, which leads
to the ODE

ℎ′(𝑠) = 𝜆(𝑠)ℎ(𝑠)
ℎ(0) = 𝑑𝑦𝐹 (𝑥, 𝑦)

}
⇒ ℎ(𝑠) = exp

( ∫ 𝑠

0
𝜆(𝑡)𝑑𝑡
)
ℎ(0) = 𝛼(𝑠)ℎ(0)

for a nonvanishing 𝛼 : [0, 1] → R. This implies condition (2) in Theorem A.

Remark 2.11. In this form, (2) is invariant under exchanging x and y, which is clear a posteriori without
the C2 assumption, since both (1) and (3) are. However, condition (2) in Theorem A seems new, while
its C2-form above is quite similar to the rotational curvature det[𝑑𝑥𝑑𝑦𝐹 (𝑥, 𝑦)] defined by Stein in [45,
XI.3.1].

2.7. On the transversality condition

The transversality assumption has been essential in our proofs of (1)⇒(2)⇒(3) in Theorem A, but it is
not clear that it is really needed for the statement. Indeed, conditions (1) and (3) make sense without it,
and (2) is already meaningful if one only assumes that n2 (𝑥0, 𝑦0) ≠ 0, and we do not have an example
where the equivalence fails. It is likely that such examples can be found, but probably not for domains
with analytic boundary. We leave these questions as open problems. In the degenerate case where n1
is identically 0, or equivalently when Σ is locally of the form Σ = {(𝑥, 𝑦) : 𝑦 ∈ Ω}, all conditions
in Theorem A hold. The 𝑆𝑝-boundedness is in that case even true for 1 ≤ 𝑝 ≤ ∞ because the Schur
multiplier whose symbol is the indicator function of Σ is just the right-multiplication by the orthogonal
projection on 𝐿2 (Ω).

3. Idempotent Fourier multipliers on Lie groups

Let G be a Lie group, that we equip with a left Haar measure. As to every locally compact group, we
can associate to it the following:

• Its von Neumann algebra LG.
• The noncommutative 𝐿𝑝 spaces 𝐿𝑝 (LG) for 1 ≤ 𝑝 < ∞.
• The Fourier 𝐿𝑝-multipliers 𝑇𝑚 with symbol 𝑚 : G → C.

The group von Neumann algebra LG is the weak-∗ closure in 𝐵(𝐿2 (G)) of the algebra of convolution
operators 𝜆( 𝑓 ) : 𝜉 ∈ 𝐿2 (G) ↦→ 𝑓 ∗ 𝜉 for 𝑓 ∈ C𝑐 (G). When G is unimodular, its 𝐿𝑝-theory is quite
elementary: LG carries a natural semifinite trace 𝜏 given by 𝜏(𝜆( 𝑓 )∗𝜆( 𝑓 )) =

∫
| 𝑓 (𝑔) |2𝑑𝑔 for every

𝑓 ∈ 𝐿2 (G) with 𝜆( 𝑓 ) ∈ LG; 𝐿𝑝 (LG) is then defined as the completion of {𝑥 ∈ LG : ‖𝑥‖𝑝 < ∞} for
the norm ‖𝑥‖𝑝 = 𝜏(|𝑥 |𝑝)1/𝑝 . It turns out that 𝐿𝑝 (LG) contains {𝜆( 𝑓 ) : 𝑓 ∈ C𝑐 (G) ∗ C𝑐 (G)} as a dense
subspace. A bounded measurable 𝑚 : G → C defines a Fourier 𝐿𝑝-multiplier if 𝜆( 𝑓 ) ↦→ 𝜆(𝑚 𝑓 ) extends
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to a bounded map 𝑇𝑚 on 𝐿𝑝 (LG). These definitions are more involved for nonunimodular groups and
will be recalled in Section 3.3 below.

When 𝑝 = 1,∞, a bounded measurable function 𝑚 : G → C defines a completely bounded Fourier
𝐿𝑝-multiplier if and only if the Schur multiplier associated to the symbol (𝑔, ℎ) ↦→ 𝑚(𝑔ℎ−1) – called
the Herz-Schur multiplier with symbol m and denoted 𝑆𝑚 – is completely 𝑆𝑝-bounded, with same
norms [3]. For amenable groups, the same holds for 1 < 𝑝 < ∞ [7, 34], and it is an intriguing open
problem whether this holds beyond amenable groups. We shall use that this always holds locally. This
phenomenon was discovered recently [35, Theorem 1.4] when p is an even integer and G unimodular,
and the following generalizes this to the general case; see [8] for other local results of similar nature. In
what follows, the Fourier support of an element 𝑥 ∈ 𝐿𝑝 (LG) will refer to the smallest closed subset Λ
such that 𝑇𝑚 (𝑥) = 0 for every Fourier 𝐿𝑝-multiplier with symbol m whose support is a compact subset
of G\Λ. When G is unimodular and 𝑥 = 𝜆( 𝑓 ) for 𝑓 ∈ C𝑐 (G) ∗C𝑐 (G), it is easy to see that this coincides
with the support of the function f.

Theorem 3.1. Let G be a locally compact group and consider a bounded measurable function
𝑚 : G → C. Then, the following are equivalent for 𝑝 ∈ (1,∞) and 𝑔0 ∈ G:

(a) There is a neighbourhood U of 𝑔0 such that the restriction 𝑇𝑚,𝑈 of 𝑇𝑚 to the space of elements of
𝐿𝑝 (LG) Fourier supported in U is completely bounded.

(b) There exists a function 𝜑 : G → C which equals 1 on a neighbourhood of 𝑔0 such that 𝜑𝑚 defines
a completely bounded Fourier multiplier on 𝐿𝑝 (LG).

(c) There are open sets 𝑉,𝑊 ⊂ G with 𝑔0 ∈ 𝑉𝑊−1 such that the function (𝑔, ℎ) ∈ 𝑉 ×𝑊 ↦→ 𝑚(𝑔ℎ−1)
defines a completely bounded Schur multiplier on the Schatten class 𝑆𝑝 (𝐿2 (𝑉), 𝐿2 (𝑊)).

When these conditions hold, we say that m defines locally at 𝑔0 a completely bounded Fourier
𝐿𝑝-multiplier. The proof is given in Section 3.2. We can record the following consequence, which is
immediate by looking at condition (c).

Corollary 3.2. Let G be a connected Lie group and denote by G̃ its universal cover. Let 𝑔̃0 ∈ G̃ be any
lift of 𝑔0 ∈ G. Then 𝑚 : G → C defines locally at 𝑔0 a completely bounded Fourier 𝐿𝑝-multiplier over
LG if and only its lift 𝑚 defines locally at 𝑔̃0 a completely bounded Fourier 𝐿𝑝-multiplier as well.

3.1. Idempotent multipliers

Now we are ready to prove Theorem B and also Corollaries B1 and B2 from the Introduction. In fact,
we shall prove a slightly expanded version of Theorem B which includes non-simply connected groups
and Corollary B1 at once. The groups G1, G2, G3 in the statement below refer to the real line R, Aff+(R)

and P̃SL2(R) as in the Introduction.

Theorem 3.3. Let 𝑝 ∈ (1,∞) \ {2}. Let G be a connected Lie group, Ω ⊂ G a C1-domain and 𝑔0 ∈ 𝜕Ω
a point in the boundary of Ω. Consider the following conditions:

(1) 𝜒Ω defines locally at 𝑔0 a completely bounded Fourier 𝐿𝑝-multiplier.
(2) There is a smooth action G → Diff(R) by diffeomorphisms on the real line, such that Ω coincides

on a neighbourhood of 𝑔0 with {𝑔 ∈ G | 𝑔 · 0 > 𝑔0 · 0}.
(3) There is 𝑗 ∈ {1, 2, 3} and a smooth surjective homomorphism 𝑓 : G → G 𝑗 such that the domain Ω

coincides on a neighbourhood of 𝑔0 with 𝑔0 𝑓
−1(Ω 𝑗 ).

(4) 𝜕Ω = 𝑔0 exp(𝔥) locally near 𝑔0 for some codimension 1 Lie subalgebra 𝔥 ⊂ 𝔤.

Then (1) ⇔ (4) ⇐ (2) ⇔ (3). If G is simply connected, then we also have (4) ⇒ (2).

Proof. The main difficulty is to prove the equivalence (1) ⇔ (4), which we leave to the end of the
proof. The implication (2) ⇒ (4) is clear, with H = exp(𝔥) the stabilizer of 0. Under the assumption
that G is simply connected, the converse (4) ⇒ (2) holds by a Theorem of Mostow [33], which implies
that H is a closed subgroup. Therefore, G/H is a 1-dimensional manifold that is simply connected,

https://doi.org/10.1017/fmp.2025.6 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2025.6


14 J. Parcet, M. de la Salle and E. Tablate

and so is diffeomorphic to R. The implication (3) ⇒ (2) is also clear because G 𝑗 is given as a group
of diffeomorphisms of R with Ω 𝑗 = {𝑔 ∈ G 𝑗 | 𝑔 · 0 > 0}. The converse (2) ⇒ (3) follows from
Lie’s classification of (local) actions by diffeomorphism on the real line [30]; see also [47] for modern
presentations and [16] for the global aspect. More precisely, the fact that 𝑔0 belongs to the boundary
of Ω implies that 0 is not fixed by G and – here we use that G is connected – the G-orbit of 0 is an
open interval, so by identifying it with R, we can assume that the G-action is transitive. In that case, the
image of G in Diff (R) is one of the three groups in condition (3) of Corollary B1, see [16, Section 4.1]
for the details.

Next, let us focus on the equivalence (1) ⇔ (4) for general Lie groups. If we translate Ω by 𝑔−1
0 , we

may assume that 𝑔0 = 𝑒 and the tangent space of G at 𝑔0 identifies with its Lie algebra 𝔤. Also, the
tangent space of 𝜕Ω at 𝑔0 identifies with a codimension 1 subspace 𝔥 of 𝔤. Define the C1-manifold

Ω̃ =
{
(𝑔, ℎ) ∈ G × G | 𝑔ℎ ∈ Ω

}
.

Its sections Ω̃𝑔 and Ω̃ℎ are left and right translates of the C1-domain Ω

Ω̃𝑔 :=
{
ℎ : (𝑔, ℎ) ∈ Ω̃

}
= 𝑔−1Ω and Ω̃ℎ :=

{
𝑔 : (𝑔, ℎ) ∈ Ω̃

}
= Ωℎ−1. (3.1)

In particular, Ω̃ is transverse at every point of its boundary. By Lemma 2.1 and Theorem 3.1, we know
that (1) is equivalent to the existence of a neighbourhood of the identity 𝑈 ⊂ G such that 𝜒Ω̃ defines a
Schur multiplier on 𝑆𝑝 (𝐿2 (𝑈)). By Theorem A, this is equivalent to the existence of a neighbourhood
of the identity 𝑉 ⊂ G such that both conditions below hold:

𝑇ℎ𝜕Ω̃𝑔1 = 𝑇ℎ𝜕Ω̃𝑔2 for every 𝑔1, 𝑔2, ℎ ∈ 𝑉 such that 𝑔1ℎ, 𝑔2ℎ ∈ 𝜕Ω. (3.2)

𝑇𝑔𝜕Ω̃
ℎ1 = 𝑇𝑔𝜕Ω̃

ℎ2 for every 𝑔, ℎ1, ℎ2 ∈ 𝑉 such that 𝑔ℎ1, 𝑔ℎ2 ∈ 𝜕Ω. (3.3)

By the above idenfications (3.1), if we denote by 𝐿𝑥 , 𝑅𝑥 : G → G the left and right multiplication by x,
these conditions are equivalent to the existence of a neighbourhood of the identity W such that

𝑑𝑥1 𝐿𝑥2𝑥
−1
1
(𝑇𝑥1𝜕Ω) = 𝑇𝑥2𝜕Ω for every 𝑥1, 𝑥2 ∈ 𝜕Ω ∩𝑊. (3.4)

𝑑𝑥1𝑅𝑥−1
1 𝑥2

(𝑇𝑥1𝜕Ω) = 𝑇𝑥2𝜕Ω for every 𝑥1, 𝑥2 ∈ 𝜕Ω ∩𝑊. (3.5)

Indeed, taking 𝑥 𝑗 = 𝑔 𝑗ℎ for 𝑗 = 1, 2 we have

𝑇ℎ (𝑔
−1
𝑗 𝜕Ω) = 𝑑𝑥 𝑗 𝐿𝑔−1

𝑗
(𝑇𝑥 𝑗 𝜕Ω).

Composing by (𝑑𝑥2 𝐿𝑔−1
2
)−1 = 𝑑ℎ𝐿𝑔2 , and using (𝑑ℎ𝐿𝑔2 ) ◦ (𝑑𝑥1 𝐿𝑔−1

1
) = 𝑑𝑥1 𝐿𝑥2𝑥

−1
1

by the chain rule, we
see that (3.2) is equivalent to (3.4). The equivalence for right multiplication maps is entirely similar.
Next, recalling that 𝑇𝑒𝜕Ω = 𝔥, the above conditions can be written in the equivalent forms:

𝑑𝑒𝐿𝑥 (𝔥) = 𝑇𝑥𝜕Ω for every 𝑥 ∈ 𝜕Ω ∩𝑊. (3.6)

𝑑𝑒𝑅𝑥 (𝔥) = 𝑇𝑥𝜕Ω for every 𝑥 ∈ 𝜕Ω ∩𝑊. (3.7)

If we remember that Ad𝑥 = 𝑑𝑒 (𝑅𝑥−1 𝐿𝑥), we obtain that this system is equivalent to 𝑑𝑒𝐿𝑥 (𝔥) = 𝑇𝑥𝜕Ω
and Ad𝑥 𝔥 = 𝔥 for every 𝑥 ∈ 𝜕Ω ∩ 𝑊 . Therefore, we have proved that (1) at 𝑔0 = 𝑒 is equivalent
to the existence of a neighbourhood of the identity W such that 𝑇𝑥𝜕Ω = 𝑑𝑒𝐿𝑥 (𝔥) and Ad𝑥 𝔥 = 𝔥 for
every 𝑥 ∈ 𝜕Ω ∩𝑊 . These conditions clearly hold if 𝔥 is a Lie algebra and 𝜕Ω locally coincides with
the exponential of a neighbourhood of 0 in 𝔥. Conversely, assume 𝑇𝑥𝜕Ω = 𝑑𝑒𝐿𝑥 (𝔥) and Ad𝑥 (𝔥) = 𝔥
for every 𝑥 ∈ 𝜕Ω ∩𝑊 . Making x go to the identity element e in the second condition, we deduce that
adX(𝔥) ⊂ 𝔥 for every X ∈ 𝔥. That is, 𝔥 is a Lie subalgebra. By the local uniqueness of a manifold in
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G containing e and whose tangent space at x is 𝑑𝑒𝐿𝑥 (𝔥) (Frobenius’ theorem), we deduce that 𝜕Ω is
locally the exponential of a neighbourhood of 0 in 𝔥. This completes the proof. �

Remark 3.4. By a partition of the unity argument, the following global form of Theorem 3.3 holds: if
𝑝 ∈ (1,∞)\{2}, G is a connected Lie group andΩ ⊂ G a relatively compact C1-domain, then 𝜒Ω defines
a Fourier cb-𝐿𝑝-multiplier if and only if the condition (4) holds for every point 𝑔0 in the boundary of Ω.

Proof of Corollary B2. Assertion i) follows since the quotient of a nilpotent Lie algebra remains nilpo-
tent, so the nonnilpotent examples in Theorem 3.3 (3) cannot happen when G is nilpotent. Assertions
ii) and iii) follow immediately from Lie’s classification [30]: up to isomorphism, there is a unique pair
(𝔥, 𝔤) where 𝔤 is a simple Lie algebra and 𝔥 is a codimension 1 subalgebra. It is given by 𝔤 = 𝔰𝔩2 and 𝔥
the subalgebra of upper-triangular matrices. This completes the proof. �

3.2. Local Fourier-Schur transference

The rest of this paper will be devoted to justify Theorem 3.1. We will sometimes consider the Fourier
algebra 𝐴(G) of G [14] – that is,

𝐴(G) =
{
𝑔 ↦→

∫
𝜙(𝑔ℎ)𝜓(ℎ) 𝑑ℎ : 𝜙, 𝜓 ∈ 𝐿2(G)

}
.

A form of the following lemma was proved in [35, Lemma 1.3] for p an even integer and G unimodular,
which was enough for the applications there. Here, we need a form valid for every p and every locally
compact group.

Lemma 3.5. Let 𝑉,𝑊 ⊂ G be open sets and 𝑔0 ∈ 𝑉𝑊−1. Then, there are a neighbourhood U of 𝑔0,
a constant C, and maps 𝐽𝑝 : 𝐿𝑝 (LG) → 𝑆𝑝 (𝐿2 (𝑉), 𝐿2 (𝑊)) for 1 ≤ 𝑝 ≤ ∞ intertwining Fourier and
Herz-Schur multipliers and such that

𝐶−1‖𝑥‖𝑝 ≤ ‖𝐽𝑝 (𝑥)‖𝑝 ≤ 𝐶‖𝑥‖𝑝

for every 𝑛 ≥ 1 and every 𝑥 ∈ 𝑀𝑛 ⊗ 𝐿𝑝 (LG) which is Fourier supported in U.

Remark 3.6. The proof of Lemma 3.5 that we present was kindly communicated to us by Éric Ricard.
Our original proof was more complicated but worked whenever U is a relatively compact subset of𝑉𝑊−1.
The simpler version above is, however, enough to prove the main implication (c)⇒(a) in Theorem 3.1,
and by using a partition of the unity argument in the Fourier algebra of G [14], it is not hard to deduce
that this implication holds actually whenever U is a relatively compact subset of 𝑉𝑊−1.

For the reader’s convenience, we first prove Lemma 3.5 and Theorem 3.1 for unimodular groups and
explain in the next paragraph how to modify the definition of Fourier multiplier and the argument for
nonunimodular groups.

Proof of Lemma 3.5 for G unimodular. Translating V and W, we can assume that the identity belongs
to V and W and 𝑔0 = 𝑒. Let U be a neighbourhood of e such that 𝑈 ⊂ 𝑉 and 𝑈−1𝑈 ⊂ 𝑊 . Let 𝜙 = 1

|𝑈 |
𝜒𝑈

and 𝜓 = 𝜒𝑈−1𝑈 , so that ∫
𝜙(𝑔ℎ)𝜓(ℎ)𝑑ℎ = 1 for every𝑔 ∈ 𝑈.

Consider the map

𝐽𝑝 : 𝐿𝑝 (LG) 
 𝑥 ↦→ 𝜙
1
𝑝 𝑥𝜓

1
𝑝 ∈ 𝑆𝑝 (𝐿2 (𝑉), 𝐿2 (𝑊)),
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where we identify 𝜙, 𝜓 with the operators of multiplication by 𝜙, 𝜓. The convention is that 0 1
∞ = 0. We

claim that the maps 𝐽𝑝 are completely bounded with cb-norm

‖𝐽𝑝 ‖cb(𝐿𝑝 ,𝑆𝑝) ≤ ‖𝜙‖
1
𝑝

𝐿2 (G)
‖𝜓‖

1
𝑝

𝐿2 (G)

whenever 1 ≤ 𝑝 ≤ ∞. By interpolation, it is enough to justify the extreme cases 𝑝 = 1 and 𝑝 = ∞. The
case 𝑝 = ∞ is clear. For the case 𝑝 = 1, we factorize 𝑥 = 𝑥1𝑥2 so that 𝐽1(𝑥) = 𝜙𝑥1 · 𝑥2𝜓. Take them so
that ‖𝑥‖1 = ‖𝑥1‖2‖𝑥2‖2, and it suffices to show that both factors are bounded in 𝑆2 (𝐿2 (G)) � 𝐿2 (G×G)

by ‖𝜙‖𝐿2 (G) ‖𝑥1‖𝐿2 (LG) and ‖𝜓‖𝐿2 (G) ‖𝑥2‖𝐿2 (LG) , respectively. Using that

𝐽∞ : 𝑥 ↦→
(
𝑥̂(𝑔ℎ−1)
)
,

the expected bounds follow from Plancherel theorem 𝐿2 (LG) � 𝐿2 (G). Moreover when 𝑥 = 𝜆( 𝑓 ), the
operator 𝐽𝑝 (𝑥) has kernel (𝜙(𝑔)1/𝑝 𝑓 (𝑔ℎ−1)𝜓(ℎ)1/𝑝). Thus, it is clear that the map 𝐽𝑝 intertwines the
Fourier multiplier with symbol 𝑔 ↦→ 𝑚(𝑔) and the Schur multiplier with symbol (𝑔, ℎ) ↦→ 𝑚(𝑔ℎ−1).

The inequality 𝐶−1‖𝑥‖𝑝 ≤ ‖𝐽𝑝 (𝑥)‖𝑝 is a bit more involved. Let 𝑓 ∈ 𝑀𝑛 ⊗ C𝑐 (𝑈) with 𝜆( 𝑓 ) ∈

𝐿𝑝 (𝑀𝑛 ⊗ LG) and assume that 𝑥 = 𝜆( 𝑓 ) by density. Let q be the conjugate exponent of p and
𝛾 ∈ 𝑀𝑛 ⊗ C𝑐 (G) with 𝜆(𝛾) ∈ 𝐿𝑞 (𝑀𝑛 ⊗ LG). Then we have

Tr ⊗ Tr𝑛
(
𝐽𝑝 (𝜆( 𝑓 ))𝐽𝑞 (𝜆(𝛾))

∗
)
= Tr𝑛
∫

G×G
𝜙(𝑔) 𝑓 𝛾∗(𝑔ℎ−1)𝜓(ℎ)𝑑𝑠𝑑𝑡

=
∫

G
Tr𝑛
(
𝑓 (𝑔)𝛾(𝑔)∗

) [ ∫
G
𝜙(𝑔ℎ)𝜓(ℎ) 𝑑ℎ

]
𝑑𝑔

=
∫

G
Tr𝑛
(
𝑓 (𝑔)𝛾(𝑔)∗

)
𝑑𝑔 = 𝜏 ⊗ Tr𝑛

(
𝜆( 𝑓 )𝜆(𝛾)∗

)
.

In the last line, we used that
∫

G 𝜙(𝑔ℎ)𝜓(ℎ) 𝑑ℎ = 1 on supp 𝑓 ⊂ 𝑈. By Hölder’s inequality, we get

��𝜏 ⊗ Tr𝑛 (𝜆( 𝑓 )𝜆(𝛾)∗)
�� ≤ ‖𝐽𝑝 (𝜆( 𝑓 ))‖𝑝 ‖𝐽𝑞 (𝜆(𝛾)‖𝑞

≤ ‖𝐽𝑞 ‖cb‖𝐽𝑝 (𝜆( 𝑓 ))‖𝑝 ‖𝜆(𝛾)‖𝑞

≤ ‖𝐽𝑞 ‖cb‖𝜆(𝛾)‖𝑞 ‖𝐽𝑝 (𝜆( 𝑓 ))‖𝑝 .

Taking the sup over 𝛾, we get 𝐶−1‖𝑥‖𝑝 ≤ ‖𝐽𝑝 (𝑥)‖𝑝 for 𝐶 = ‖𝐽𝑞 ‖cb < ∞. �

With the same argument as in [35], we deduce the following:

Proof of Theorem 3.1. The implication (a)⇒(b) is easy. Indeed, if (a) holds and 𝜑 ∈ 𝐴(G) is supported
in U and equal to 1 on a neighbourhood of 𝑔0 (for the construction of 𝜑, see the proof of Lemma
3.5), then 𝑇𝜑 is completely bounded on 𝐿𝑝 (LG) for every 1 ≤ 𝑝 ≤ ∞, and takes values in the space
of elements Fourier supported in U. In particular, 𝑇𝑚𝜑 = 𝑇𝑚,𝑈 ◦ 𝑇𝜑 is also completely bounded. The
implication (b)⇒(c) follows from [7, Theorem 4.2], which implies that

(𝑔, ℎ) ∈ G × G ↦→ 𝑚(𝑔ℎ−1)𝜑(𝑔ℎ−1)

defines a completely bounded Fourier 𝐿𝑝-multiplier. Thus, we get (c) if 𝑉,𝑊 are chosen so that 𝜑 = 1
on 𝑉𝑊−1. Finally, (c)⇒(a) follows from Lemma 3.5. �
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3.3. Nonunimodular groups

Let G be an arbitrary locally compact group with modular function Δ : G → R+. Our choice of Δ is
characterized by the following identity for all 𝑓 ∈ C𝑐 (G)∫

G
𝑓 (ℎ𝑔) 𝑑ℎ = Δ (𝑔)−1

∫
G

𝑓 (ℎ) 𝑑ℎ.

When G is not unimodular – that is, Δ is not the constant 1 function – the natural weight 𝜆( 𝑓 )∗𝜆( 𝑓 ) ↦→∫
| 𝑓 |2 on LG is not tracial. Even when LG is semifinite, it is better to work with the general definition of

𝐿𝑝 spaces associated to a von Neumann algebra. Several concrete descriptions are possible: Haagerup’s
original one [21], Kosaki’s complex interpolation [26], Connes-Hilsum’s [12, 23]. . .; see [43]. Here, we
will use the Connes-Hilsum spatial description because we want to rely on some results from [7, 46],
to which we refer for precise definitions. In that case, 𝐿𝑝 (LG) is realized as a space of unbounded
operators on 𝐿2 (G).

In [7], Caspers and the second-named author defined Fourier 𝐿𝑝-multipliers for symbols that ensure
that the Fourier multiplier is completely bounded for every 1 ≤ 𝑝 ≤ ∞. Here, we extend the definition,
allowing to talk about Fourier multipliers for a single p, and possibly only bounded. The shortest way
to do so properly in this context is by using Terp’s Hausdorff-Young inequality [46].

Informally, a typical element of 𝐿𝑝 (LG) is of the form 𝜆( 𝑓 )Δ
1
𝑝 – where we are identifying the

function Δ with the densely defined operator of multiplication by Δ on 𝐿2 (G) – for some suitable
function f. Keeping at the informal level, the Fourier multiplier with symbol 𝑚 : G → C should be,
whenever it exists, the operator acting as follows:

𝜆( 𝑓 )Δ
1
𝑝 ↦→ 𝜆(𝑚 𝑓 )Δ

1
𝑝 .

Making this definition precise requires some lengthy and unpleasant discussions about domains/cores
of unbounded operators, but fortunately, we can rely on the results from [46], where these discussions
have been performed. We shall need to distinguish the cases 𝑝 ≥ 2 and 𝑝 ≤ 2. Let 𝑞 = 𝑝

𝑝−1 be the
conjugate exponent of p. When 𝑝 ≥ 2, the Fourier transform

F𝑞 : 𝐿𝑞 (G) → 𝐿𝑝 (LG)

is an injective norm 1 linear map with dense image, where F𝑞 ( 𝑓 ) is defined as a suitable extension
of 𝜆( 𝑓 )Δ1/𝑝; see [46, Theorem 4.5]. When 𝑝 ≤ 2, the adjoint of F𝑝 gives a norm 1 injective map
with dense image F 𝑝 : 𝐿𝑝 (LG) → 𝐿𝑞 (G). If 𝐼𝑞 denotes the isometry of 𝐿𝑞 (G) defined by 𝐼𝑞 ( 𝑓 ) (𝑔) =
𝑓 (𝑔−1)Δ (𝑔)−1/𝑞 , we know from [46, Proposition 1.15] that every element x of 𝐿𝑝 (LG) is a suitable
extension of 𝜆( 𝑓 )Δ1/𝑝 for 𝑓 = 𝐼𝑞 ◦ F 𝑝 (𝑥) ∈ 𝐿𝑞 (G). In the particular case 𝑝 = 2, these two statements
together yield Plancherel’s formula: F2 is a unitary. If 𝑝 = 1, the image of F1 is the Fourier algebra
𝐴(G), and following standard notation, we write

tr(𝑥) = 𝜑(𝑒) if F1 (𝑥) = 𝜑. (3.8)

Definition 3.7. Let 1 < 𝑝 < ∞ and 𝑚 ∈ 𝐿∞(G). We say that m defines a bounded Fourier 𝐿𝑝-multiplier
when the condition below holds according to the value of 𝑝 :

• Case 𝑝 ≥ 2. The map

F𝑞 ( 𝑓 ) ↦→ F𝑞 (𝑚 𝑓 )

(densely defined on F𝑞 (𝐿𝑞 (G))) extends to a bounded map 𝑇𝑚 on 𝐿𝑝 (LG).
• Case 𝑝 ≤ 2. The multiplication by m preserves the image of 𝐼𝑞 ◦ F 𝑝 when the map 𝑇𝑚 : 𝑥 ↦→

(𝐼𝑞 ◦ F 𝑝)
−1(𝑚(𝐼𝑞 ◦ F 𝑝 (𝑥))) is a bounded map on 𝐿𝑝 (LG).
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We say that m defines a completely bounded Fourier 𝐿𝑝-multiplier when m defines a bounded Fourier
𝐿𝑝-multiplier and the Fourier multiplier 𝑇𝑚 is completely bounded.

It follows from the above definition that m defines a (completely) bounded 𝐿𝑝 multiplier if and only
it defines a (completely) bounded 𝐿𝑞 multiplier, and in that case,

tr(𝑇𝑚 (𝑥)𝑦∗) = tr(𝑥(𝑇𝑚 (𝑦))∗) for all 𝑥 ∈ 𝐿𝑝 (LG), 𝑦 ∈ 𝐿𝑞 (LG).

Once we have polished the definition of Fourier 𝐿𝑝-multipliers in nonunimodular group von Neumann
algebras, we can extend a Cotlar identity from [19] to arbitrary locally compact groups.
Example 3.8. Let G → Homeo+(R) be a continuous action of a connected Lie group. Then, the
indicator function m of {𝑔 ∈ G | 𝑔 · 0 > 0} defines a completely bounded 𝐿𝑝 Fourier multiplier on G
with completely bounded norm ≤ 2 max{𝑝, 𝑝

𝑝−1 }.
Proof. Let m be the indicator function of {𝑔 ∈ G | 𝑔 · 0 > 0}. It suffices to prove the following
implication for every 2 ≤ 𝑝 < ∞: if m defines a completely bounded Fourier 𝐿𝑝-multiplier with norm
≤ 𝐶𝑝 , then it defines a completely bounded Fourier 𝐿2𝑝-multiplier with norm ≤ 2𝐶𝑝 . Indeed, using
that 𝐶2 = ‖𝑚‖∞ = 1, we deduce 𝐶2𝑁 ≤ 2𝑁 for every integer N, so by interpolation, 𝐶𝑝 ≤ 2𝑝 for all
𝑝 ≥ 2. By duality, the conclusion also holds for 𝑝 ≤ 2.

Let r be the dual exponent of 2𝑝. Let 𝑓 ∈ C𝑐 (G) and consider 𝑋 = F𝑟 ( 𝑓 ) and 𝑌 = F𝑟 (𝑚 𝑓 ); these
are well-defined elements of 𝐿2𝑝 (L𝐺) by [46]. Then, we claim that the equality below holds:

𝑌 ∗𝑌 = 𝑇𝑚 (𝑌
∗𝑋) + 𝑇𝑚 (𝑌

∗𝑋)∗. (3.9)

Indeed, this inequality is equivalent to the almost everywhere equality

(𝑚 𝑓 )∗ ∗ (𝑚 𝑓 ) = 𝑚
(
(𝑚 𝑓 )∗ ∗ 𝑓

)
+
(
𝑚
(
(𝑚 𝑓 )∗ ∗ 𝑓

) )∗
,

which follows for the fact that 𝑚(𝑔−1)𝑚(𝑔−1ℎ) = 𝑚(ℎ)𝑚(𝑔−1) + 𝑚(ℎ−1)𝑚(𝑔−1ℎ) for almost every
𝑔, ℎ ∈ G. If the whole group G fixes 0, this is obvious because m is identically 0. Otherwise, the
stabilizer of 0 is a closed subgroup, so it has measure 0 and it is enough to justify the equality for
ℎ · 0 ≠ 0. Set (𝛼, 𝛽) = (𝑔 · 0, ℎ · 0) and observe that 𝑚(𝑔−1)𝑚(𝑔−1ℎ) = 1 if and only if 𝛼 < min{0, 𝛽}.
Similarly, we have 𝑚(ℎ)𝑚(𝑔−1) = 1 iff 𝛼 < 0 < 𝛽 and 𝑚(ℎ−1)𝑚(𝑔−1ℎ) = 1 iff 𝛼 < 𝛽 < 0. Therefore,
the expected identity reduces to the trivial one 𝜒𝛼<0∧𝛽 = 𝜒𝛼<0<𝛽 + 𝜒𝛼<𝛽<0. This justifies (3.9), both
sides of which are in 𝐿𝑝 (LG). Thus, taking the norm and applying the triangle inequality, the hypothesis
and Hölder’s inequality leads to

‖𝑌 ‖2
2𝑝 ≤ 2𝐶𝑝 ‖𝑋 ‖2𝑝 ‖𝑌 ‖2𝑝 .

We deduce ‖𝑌 ‖2𝑝 ≤ 2𝐶𝑝 ‖𝑋 ‖2𝑝 . Since C𝑐 (G) is dense in 𝐿𝑟 (G), we obtain that m defines a Fourier
𝐿2𝑝-multiplier with norm ≤ 2𝐶𝑝 . A similar argument gives the same bound for the completely bounded
norm, which concludes the proof. �

Remark 3.9. The Cotlar-type identity from [19] is refined in some cases by (3.9).
The following summarizes the properties that we need.

Lemma 3.10. Let 1 ≤ 𝑝 ≤ ∞ and consider functions 𝜙, 𝜓 ∈ 𝐿2𝑝 (G), which we identify with (possibly
unbounded) multiplication operators on 𝐿2(G). Then
• Given 𝑥 ∈ 𝐿2𝑝 (LG), 𝑥𝜙 is densely defined and closable. In fact, its closure [𝑥𝜙] belongs to

𝑆2𝑝 (𝐿2 (G)) and has 𝑆2𝑝-norm ≤ ‖𝜙‖𝐿2𝑝 (G) ‖𝑥‖𝐿2𝑝 (LG) .
• There exists a bounded linear map 𝐿𝑝 (LG) → 𝑆𝑝 (𝐿2 (G))3 sending 𝑦∗𝑥 to [𝑦𝜓∗]∗ [𝑥𝜙] for every

𝑥, 𝑦 ∈ 𝐿2𝑝 (LG). It has norm ≤ ‖𝜙‖𝐿2𝑝 (G) ‖𝜓‖𝐿2𝑝 (G) .

3That, with a slight abuse of notation, we denote 𝑧 ↦→ 𝜓𝑧𝜙.
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• If q denotes the conjugate exponent of p, consider 𝜙′, 𝜓 ′ ∈ 𝐿2𝑞 (G) and 𝑦 ∈ 𝐿𝑞 (LG). Then, we have

Tr
(
𝜙𝑥𝜓(𝜙′𝑦𝜓 ′)∗

)
= tr(𝑇𝑚 (𝑥)𝑦∗), (3.10)

where 𝑚 ∈ 𝐴(G) is the function 𝑚(𝑔) =
∫

G
(𝜙𝜙′) (ℎ) (𝜓𝜓 ′) (𝑔−1ℎ) 𝑑ℎ.

Proof. When 𝜙 = 𝜓 are indicator functions, the first two points were proved in [7, Proposition 3.3,
Theorem 5.2]. The same argument applies in our case. Let us justify identity (3.10). First, observe that
𝜙𝜙′ and 𝜓𝜙′ belong to 𝐿2 (G) by Hölder’s inequality, so that m indeed belongs to 𝐴(G). In particular, m
defines a completely bounded 𝐿1 and 𝐿∞ Fourier multiplier. Thus, it also defines a Fourier 𝐿𝑝-multiplier
[7, Definition-Proposition 3.5]. Therefore, by interpolation [7, Section 6], it suffices to prove (3.10) for
𝑝 = 1 and 𝑝 = ∞. These two cases are formally equivalent, and we just consider 𝑝 = ∞. In that case,
𝑦 ∈ 𝐿1 (LG) corresponds to an element 𝑓 ∈ 𝐴(G) and 𝜙′𝑦𝜓 ′ is the trace class operator with kernel(

𝜙′(𝑔) 𝑓 (ℎ𝑔−1)𝜓 ′(ℎ)
)
𝑔,ℎ∈G

;

see [7, Lemma 3.4]. By a weak-∗ density argument, it is enough to prove (3.10) for 𝑥 = 𝜆(𝑔0) for some
𝑔0 ∈ G. In that case, 𝑇𝑚 (𝑥) = 𝑚(𝑔0)𝜆(𝑔0) and we obtain tr(𝑇𝑚 (𝑥)𝑦∗) = 𝑚(𝑔0) 𝑓 (𝑔

−1
0 ). We can compute

Tr
(
𝜙𝑥𝜓(𝜙′𝑦𝜓 ′)∗

)
= Tr
(
𝜆(𝑔0)𝜓𝜓 ′𝑦∗𝜙𝜙′

)
[5𝑝𝑡] = Tr

[(
𝜓𝜓 ′) (𝑔−1

0 𝑔) 𝑓 (𝑔−1
0 𝑔ℎ−1)(𝜙𝜙′) (ℎ)

)
𝑔,ℎ∈G

]
=
∫

G
(𝜓𝜓 ′) (𝑔−1

0 𝑔) 𝑓 (𝑔−1
0 )(𝜙𝜙′) (𝑔) 𝑑𝑔 = 𝑚(𝑔0) 𝑓 (𝑔

−1
0 ).

This justifies the identity (3.10) and completes the proof of the lemma. �

Lemma 3.10 allows us to adapt the proof of Lemma 3.5 from the unimodular case.

Proof of Lemma 3.5, general case. We take 𝜙, 𝜓 ∈ C𝑐 (G) as in the proof in the unimodular case, and
set 𝑚(𝑔) =

∫
𝜙(𝑔ℎ)𝜓(ℎ)𝑑ℎ. By Lemma 3.10, we can define completely bounded maps

𝐽𝑝 : 𝐿𝑝 (LG) 
 𝑥 ↦→ 𝜙
1
𝑝 𝑥𝜓

1
𝑝 ∈ 𝑆𝑝 (𝐿2 (𝑉), 𝐿2 (𝑊)),

which intertwine Fourier and Schur multipliers. Now, if 𝑥 ∈ 𝐿𝑝 (𝑀𝑛 ⊗ LG) is Fourier supported in U
and 𝑦 ∈ 𝐿𝑞 (𝑀𝑛 ⊗ LG) – for q being the dual exponent of p – we get

tr(𝑥𝑦∗) = tr
(
𝑇𝑚 (𝑥)𝑦

∗
)
= Tr
(
𝐽𝑝 (𝑥)𝐽𝑞 (𝑦)

∗
)

≤ ‖𝐽𝑝 (𝑥)‖𝑆𝑝 ‖𝐽𝑞 (𝑦)‖𝑆𝑞 ≤ ‖𝐽𝑞 ‖cb‖𝑦‖𝐿𝑞 (LG) ‖𝐽𝑝 (𝑥)‖𝑆𝑝 .

The first line is because𝑚 = 1 on U and x is Fourier supported in U, and by (3.10). The last line is Hölder’s
inequality. Taking suprema over y in the unit ball of 𝐿𝑞 (LG) gives ‖𝑥‖𝐿𝑝 (LG) ≤ ‖𝐽𝑞 ‖cb‖𝐽𝑝 (𝑥)‖𝑆𝑝 . �

3.4. The group SL2(R)

Consider the symbol

𝑚0

[ (𝑎 𝑏
𝑐 𝑑

) ]
=

1
2

(
1 + sgn(𝑎𝑐 + 𝑏𝑑)

)
.

This was identified in [19] as the canonical Hilbert transform (Riesz projection would be more accurate
though) in SL2(Z). Its complete 𝐿𝑝-boundedness follows for 1 < 𝑝 < ∞ from a Cotlar-type identity.
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The same problem in SL2(R) was left open in [19, Problem A]. Now this is solved by condition (4) in
Theorem 3.3, which disproves cb-𝐿𝑝-boundedness for any 𝑝 ≠ 2. However, according to Corollary B2,
the map

𝑚(𝑔) = 𝑚
[ (𝑎 𝑏

𝑐 𝑑

) ]
:=

1
2
(
1 + sgn(𝑐)

)
= 𝑚0(𝑔𝑔

t)

does define, locally at every point of its boundary, a completely bounded Fourier 𝐿𝑝-multiplier for
every 1 < 𝑝 < ∞. But, is it globally 𝐿𝑝-bounded? Is it completely 𝐿𝑝-bounded as well? We leave these
problems open for future attempts.

3.5. Stratified Lie groups

A Lie algebra 𝔤 is called graded when there exists a finite family of subspaces W1, W2, . . . , W𝑁 of the
Lie algebra satisfying conditions below:

𝔤 =
𝑁⊕
𝑗=1

W 𝑗 and [W 𝑗 , W𝑘 ] ⊂ W 𝑗+𝑘 .

A simply connected Lie group G is called stratified when its Lie algebra 𝔤 is graded and the first
stratum W1 generates 𝔤 as an algebra. Stratified Lie groups are nilpotent and include, among many other
examples, Heisenberg groups. According to Corollary B2, idempotent multipliers are of the form 𝑅 ◦ 𝜑,
for the classical Riesz projection 𝑅 = 1

2 (𝑖𝐻 + id) and some continuous homomorphism 𝜑 : G → R.
A quick look at Theorem 3.3 shows that 𝜑 corresponds on the Lie algebra with the projection onto
any 1-dimensional subspace of the first stratum, since codimension 1 Lie subalgebras are exactly those
codimension 1 subspaces leaving out a vector in the first stratum.
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