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Shock waves are of great interest in many fields of science and engineering, but the
mechanisms of their formation, maintenance and dissipation are still not well understood.
While all transport processes existing in a shock wave contribute to its compression and
irreversibility, they are not of equal importance. To figure out the roles of viscosity and
heat conduction in shock transition, the existence of smooth shock solutions and the
counter-intuitive entropy overshoot phenomenon (the specific entropy is not monotonically
increasing and exhibits a peak inside the shock front) are theoretically and numerically
investigated, with emphasis on the effects of viscosity and heat conduction. Instead of
higher-order hydrodynamics, the Navier–Stokes formalism is employed for its stability
and simplicity. Supplemented with nonlinear thermodynamically consistent constitutive
relations, the Navier–Stokes equations are adequate to demonstrate the general nature
of shock profiles. It is found that heat conduction cannot sustain strong shocks without
the presence of viscosity, while viscosity can maintain smooth shock transition at all
strengths, regardless of heat conduction. Hence, the critical role in shock compression
is played by viscosity rather than heat conduction. Nevertheless, the dispensability of heat
conduction would not compromise its essential role in the emergence of an entropy peak.
It is the entropy flux resulting from heat conduction that neutralises the positive entropy
production and thus prevents the decreasing entropy from violating the second law of
thermodynamics. This mechanism of entropy overshoot has not been addressed previously
in the literature and is revealed using the entropy balance equation.
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1. Introduction

Shock waves are ubiquitous in science and engineering. They are not only physically
interesting in kinetic theory (Struchtrup 2005; Boudet, Amarouchene & Kellay 2008;
Kosuge, Kuo & Aoki 2019), fluid dynamics (Cramer & Crickenberger 1991; Young &
Guha 1991; Rendón & Crighton 2003), non-equilibrium thermodynamics (Ruggeri 1996;
Taniguchi et al. 2014), plasma physics (Jaffrin & Probstein 1964; Domínguez-Vázquez
& Fernandez-Feria 2019) and astrophysics (Levinson & Bromberg 2008; Mostafavi &
Zank 2018), but also of practical value in aerospace engineering (Shanmugasundaram &
Murty 1980; Chikitkin et al. 2015), nuclear engineering (Bondorf, Ivanov & Zimanyi 1981;
Danielewicz 1984), optical engineering (Timokhin et al. 2020) and so forth.

As the most violent process in gas dynamics, a shock wave has a quite small thickness.
It is usually treated as a surface of discontinuity, through which the flow parameters
experience an abrupt jump, and the entropy increases irreversibly. Instead of being
the classical solution of the governing differential equations in the rigorous sense, the
discontinuity is just a generalised solution of the conservation laws. Despite this fact, it
is still somewhat paradoxical that the entropy increase of a shock wave is allowed by the
isentropic Euler system, in which no mechanism of dissipation is present. The inevitable
jump of flow parameters and the irreversibility of shock compression clearly indicate
the breakdown of the adiabatic Euler equations and the presence of dissipative transport
processes.

Although the research of shock waves has a history of more than a century (Johnson
& Chéret 1998; Salas 2007), the mechanisms of their formation, maintenance and
dissipation, especially the roles of multiple transport phenomena in shock compression,
are still not well understood. It is generally acknowledged that dissipative processes play
a fundamental role in the transition process of shock waves, but their contributions are
far from equal, and less is known about their effects on shock waves, hence the need for
further investigation.

To figure out what happens inside shock waves, the so-called shock structure problem
arose. It is to provide quantitative descriptions of the thin transition layer of shock waves,
which is important to many scientific and engineering issues (Shanmugasundaram &
Murty 1980; Bondorf et al. 1981; Danielewicz 1984; Chikitkin et al. 2015; Timokhin et al.
2020). The shock structure problem is quite complicated as it always involves multiple
transport processes, including at least viscosity and heat conduction. For shocks in reacting
gases and plasmas, e.g. detonation waves and hydromagnetic shock waves, the problem
is made even more complicated by molecular diffusion, chemical reactions and electric
currents. For simplicity, in this work we will concentrate on the basic case, in which only
viscosity and heat conduction are taken into account. Additionally, the issue of this paper
can be simplified and approached by considering the one-dimensional steady flow of a
stationary normal shock, because the vanishingly small thickness eliminates the influence
of unsteady effects and curved fronts on the internal structure of shock waves.

To the authors’ knowledge, there are dozens of developed theories and thousands of
papers dealing with the shock structure problem. An exhaustive review of this subject is
nearly impossible, and one can expect only to grasp some of the most important points
from those established approaches. Hence, we will focus on the most significant and the
most relevant.

Like many other problems of fluid mechanics, there are three ways to deal with the
shock structure problem – the experimental, the theoretical and the computational. On the
experimental side, the extremely small thickness of shock fronts poses a major difficulty
to the observation of the flow inside shock waves. The hot-wire technique is only valid
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for shocks with a large thickness, i.e. weak shocks. At the same time, the transition layer
is too thin to be observed in detail with optical methods as its typical thickness is of the
order of several mean free paths (10−7 m), close to the wavelength of visible light. In
consequence, the lack of experimental data once seriously hindered the understanding of
the mesoscopic shock structure, and it was not until the 1960s that the electron beam
technique made the practical measurement of flow parameters possible (see Alsmeyer
(1976) and Pham-Van-Diep, Erwin & Muntz (1989) and the references therein).

The theoretical research on shock structure began with the pioneering work of Rankine
(1870), in which he first realised the importance of dissipation in shock waves and believed
that heat conduction is necessary for shocks to sustain themselves. He also discovered
an analytical solution for the profile of steady shocks in heat-conducting inviscid gases.
Rayleigh (1910) subsequently found the deficiencies in Rankine’s study and pointed out
that viscosity is also responsible for the permanency of shocks. Almost simultaneously,
Taylor (1910) derived a perturbative solution for weak shocks (with both viscosity and
heat conduction present), as well as the thickness.

The structure of shock waves of arbitrary strength was first exhibited in a landmark
paper by Becker (1922), where the Navier–Stokes equations are employed to give an
analytical solution. Although this implicit solution is only applicable to a special Prandtl
number of 3/4, it is still of great significance because 3/4 is a good approximation to
the actual value of most gases. However, due to the utilisation of constant viscosity and
thermal conductivity, the thickness of strong shocks predicted by Becker is vanishingly
small, even making the Navier–Stokes equations inappropriate. To fix it, Thomas (1944)
briefly improved Becker’s investigation by assuming a hard-sphere gas to allow for the
temperature dependence of the viscosity and thermal conductivity, which can increase
the calculated thickness. Morduchow & Libby (1949) further extended the investigation to
cases in which the transport coefficients are power functions of temperature. Subsequently,
Hayes (1958) provided a comprehensive summary of the analytical solutions available at
the time and derived some new ones. In the following decades, plenty of studies have been
devoted to seeking more analytical solutions, and many have been deduced under all kinds
of assumptions, including approximate solutions for arbitrary Prandtl numbers (Khidr &
Mahmoud 1985), solutions at large and small Prandtl numbers (Johnson 2013), solutions
for hard-sphere and Maxwellian gases (Myong 2014), solutions for soft-sphere (Uribe
& Velasco 2019) and van der Waals (Patel & Singh 2019) gases, closed-form (explicit)
solutions (Johnson 2014), unsteady (time-dependent) solutions (Iannelli 2013) and so
forth. In particular, if the scope of discussion is not limited to macroscopic continuum
hydrodynamics, the famous works of Mott-Smith (1951) and Muckenfuss (1962), which
gave approximate bimodal solutions for the velocity distribution function in strong shocks,
should also be mentioned.

On the computational side, numerical techniques are becoming ubiquitous in solving
the problems of fluid dynamics. With the development of computational science, the
shock structure problem has benefited a lot, especially from the numerical methods of
molecular dynamics (Valentini &Schwartzentruber 2009), direct simulation Monte Carlo
(DSMC) (Bird 1970, 1994), direct simulation of the Boltzmann equation (Ohwada 1993;
Kosuge, Aoki & Takata 2001), simplified models of the Boltzmann equation such as the
Bhatnagar–Gross–Krook (BGK) model (Liepmann, Narasimha & Chahine 1962; Xu &
Tang 2004), the discrete velocity model/method (DVM) (Broadwell 1964; Gatignol 1975;
Inamuro & Sturtevant 1990; Malkov et al. 2015), the classical and modified Navier–Stokes
equations (Holian et al. 1993; Greenshields & Reese 2007; Uribe & Velasco 2018),
the higher-order hydrodynamic equations represented by the Burnett equations (Reese
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et al. 1995; Agarwal, Yun & Balakrishnan 2001; García-Colín, Velasco & Uribe 2008;
Bobylev et al. 2011; Zhao et al. 2014; Jadhav, Gavasane & Agrawal 2021), Grad’s moment
equations and variants (Torrilhon & Struchtrup 2004; Torrilhon 2016; Cai & Wang 2020;
Cai 2021), generalised hydrodynamics (Al-Ghoul & Eu 1997, 2001a,b), the nonlinear
coupled constitutive relations (Jiang et al. 2019) and extended thermodynamics (Ruggeri
1996; Taniguchi et al. 2014), as well as their hybrid approaches, such as Boltzmann–MC
(numerical calculation of the Boltzmann equation with collision integral evaluated by
the Monte Carlo method) (Hicks, Yen & Reilly 1972), DVMC (DVM with Monte
Carlo evaluations of the collision integral) (Kowalczyk et al. 2008; Morris, Varghese &
Goldstein 2011), BGK–DSMC (combination of the BGK scheme and the DSMC method)
(Fei & Jenny 2021; Fei, Hu & Jenny 2022) and BGK–Burnett (the Burnett equations
derived from the BGK model, with entropy consistency improved) (Balakrishnan 1999,
2004).

Based on the solution methods developed for the shock structure problem, the present
study is dedicated to figuring out the roles of viscosity and heat conduction in the
mechanism of shock transition and increasing the basic understanding of the physics
of shock waves. The rest of the paper is organised as follows. In § 2, the mathematical
formulation of the shock structure problem, i.e. the governing equations and boundary
conditions, is described. In § 3, the principal role in the formation and maintenance
of a shock wave is discussed by conducting an analysis on the existence of smooth
shock solutions for Prandtl numbers from zero to infinity. In § 4, the counter-intuitive
entropy overshoot phenomenon inside shock fronts is introduced, and the necessity of
heat conduction to it is demonstrated. Finally, § 5 gives a summary and a discussion of the
main findings, as well as the directions for future work.

2. Basic equations

The basic equations governing the one-dimensional motion of gases, i.e. the conservation
equations of mass, momentum and energy for continuum gas, can be given as

∂ρ

∂t
+ ∂(ρV)

∂x
= 0, (2.1)

∂(ρV)

∂t
+ ∂

∂x
(ρV2 + p + τ) = 0, (2.2)

∂

∂t

[
ρ

(
u + V2

2

)]
+ ∂

∂x
(ρVht + τV + q) = 0, (2.3)

where t, x, ρ, V, p, u, ht, τ and q represent time, position, density, velocity, pressure,
specific internal energy, specific total enthalpy, longitudinal viscous stress and heat flux,
respectively. Note that, in order to follow the convention of kinetic theory, the sign of τ

used here is opposite to that used in the field of fluid mechanics.
To avoid complicating the problem with unnecessary details, constitutive relations

τ = −4
3
μ

∂V
∂x

, (2.4)

and

q = −κ
∂T
∂x

, (2.5)

are employed for the viscous stress and heat flux, regardless of higher-order terms. Here, T,
μ and κ are temperature, dynamic viscosity and thermal conductivity, respectively. Note
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that μ and κ are not necessarily constant; any nonlinear constitutive term can be included
in them if needed. Equations (2.1)–(2.5) make up the one-dimensional Navier–Stokes
equations.

Considering the one-dimensional flow of a steady normal shock with the coordinate
system fixed on the wavefront, dropping the ∂/∂t terms from (2.1)–(2.3) and integrating
the resulting ordinary differential equations with respect to x, one has

ρV = Jm, (2.6)

ρV2 + p + τ = JP, (2.7)

ρVht + τV + q = JE, (2.8)

where Jm, JP and JE are the constants of integration, as well as the fluxes of mass,
momentum and energy. Because τ and q tend to zero at x = ±∞, from (2.6)–(2.8) we
have

Jm = ρ1V1 = ρ2V2, (2.9)

JP = ρ1V2
1 + p1 = ρ2V2

2 + p2, (2.10)

JE = ρ1V1ht,1 = ρ2V2ht,2, (2.11)

in which the subscripts ‘1’ and ‘2’ denote the states of the gas far upstream (x = −∞) and
far downstream (x = +∞) of the shock front, respectively.

Combining equations (2.4)–(2.8) with the equation of state for ideal gases

p = ρRT, (2.12)

(R is the gas constant) and eliminating τ , q, p and ρ from them, we obtain

dV
dx

= 3
4μ

[
Jm

(
V + RT

V

)
− JP

]
, (2.13)

and
dT
dx

= 1
κ

[
Jm

(
u − V2

2

)
+ JPV − JE

]
, (2.14)

after rearrangement. Here, one should note that u is a function of T. This system is
obviously autonomous as x does not appear explicitly in the equations. Therefore, if V(x)
and T(x) are a solution of the system, V(x + C) and T(x + C), where C is an arbitrary
constant, also satisfy (2.13) and (2.14), i.e. the solution is not unique. As a result, the origin
point can be specified at any position as required. In this paper, the position of x = 0 is set
at the point where V = (V1 + V2)/2 unless otherwise noted.

The structure of shock waves is fully described by the system of (2.13) and (2.14) and is
subject to asymptotic boundary conditions{

V(−∞) = V1
T(−∞) = T1

,

{
V(+∞) = V2
T(+∞) = T2

. (2.15a,b)

It is generally acknowledged that the Navier–Stokes equations with constant transport
coefficients do not describe strong shocks very well in the quantitative sense. Linear
constitutive relations predict a vanishingly small thickness for strong shocks because μ

and κ are significantly underestimated at high temperatures. In addition to that, the bulk
viscosity, which manifests itself sharply in strong non-equilibrium flows of polyatomic
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gases, does not show up explicitly. However, employing the Navier–Stokes equations
would not compromise this work for three reasons:

(i) Nonlinear constitutive relations can be considered in variable transport coefficients
(e.g. temperature-dependent transport coefficients). By treating μ and κ as black
boxes, any complex constitutive relations, including the viscous stress and heat flux
from the high-order hydrodynamics, can be taken into account through equivalent
transport coefficients without changing the form of the Navier–Stokes equations.

(ii) The qualitative features of shock waves are well described by the Navier–Stokes
equations, whether improved or not.

(iii) The quantitative aspects of strong shocks can be well described by the Navier–Stokes
equations if appropriate modifications are made (e.g. Holian et al. 1993,
Greenshields & Reese 2007).

3. Critical role of viscosity

In this section, to figure out the roles of viscosity and heat conduction in the formation and
maintenance of shock waves, theoretical and numerical techniques are used to investigate
the influence of each transport phenomenon on the existence of smooth shock solutions.
Through comparing the cases of viscous (μ > 0, κ = 0), heat-conducting (κ > 0, μ = 0)

and general (μ > 0, κ > 0) shocks, it is found that the critical role in shock compression
is played by viscosity.

Despite the fact that viscosity and heat conduction in gases are both the consequences
of molecular collisions and are thus closely related, it still matters to look into the case
when they are independent of each other because they are usually described separately in
fluid mechanics, which contains no presupposed relation between viscosity and thermal
conductivity.

It should be noted that the currently used theoretical model and numerical method allow
for non-constant specific heats and variable Prandtl number, as no requirements other
than the obvious basics, i.e. positive specific heats and non-negative transport coefficients,
are assumed. However, in the following calculations, constant specific heats and constant
Prandtl numbers are used for simplicity and ease of presentation, without loss of generality.
Variable specific heats and non-constant Prandtl number quantitatively affect the solution,
leading to slight changes in the distribution of flow variables and the shock thickness,
but in general, do not change the qualitative features of the shock structure, such as
the smoothness and monotonicity of shock profiles. The only substantive effect of the
variability of thermophysical properties on this research is that the post-shock parameters
can no longer be derived from the Rankine–Hugoniot jump conditions in the usual way
but rather be calculated iteratively, which makes the initial values for numerical integration
more cumbersome to obtain.

3.1. Existence of viscous shock solutions
For viscous shocks, a relation between V and T can be obtained by rearranging (2.14) into

u(T) − V2

2
+ JPmV − JEm = κ

Jm

dT
dx

= 0, (3.1)
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where JPm ≡ JP/Jm, and JEm ≡ JE/Jm. If the specific heat cv of the gas is constant, letting
u(T) = cvT , (3.1) can be rewritten as

T = 1
cv

(
V2

2
− JPmV + JEm

)
. (3.2)

The substitution of (3.2) into (2.13) finally gives

dV
dx

= 3
4μ

[
γ + 1

2
JmV + (γ − 1)

JE

V
− γ JP

]
, (3.3)

where γ is the specific heat ratio.
The velocity distribution in a viscous shock can be obtained by numerically integrating

equation (3.3) with the fourth-order Runge–Kutta method, and then the temperature
distribution can be algebraically calculated from (3.2). Similar to the temperature, other
variables can also be calculated without involving an integration. For example, the values
of density and pressure can be obtained by substituting those of velocity and temperature
into (2.6) and (2.12). Utilising the foregoing method, the structure of viscous shocks over
a wide range of Mach numbers (Ma1) is successfully calculated, and the results of four
representative shocks, from extremely weak to extremely strong, are shown in figure 1.

In this figure, the flow variables have been normalised, and the position x is
non-dimensionalised with the mean free path of the molecules in the incident gas (λ1).
The hard-sphere model leads to a mean free path (Shen 2005)

λ = 8
5

μ

ρ

√
2

πRT
. (3.4)

In the rest of this paper, the mean free path is calculated using (3.4) unless otherwise
specified.

It can be seen from figure 1 that viscous shock solutions exist for Mach numbers from
1.05 up to at least 50. In fact, if the specific heat ratio remains unchanged during the
compression, analytical solutions for viscous shocks can be derived from an integral
of (3.3) over velocity under certain conditions, e.g. assuming a constant viscosity or a
temperature-dependent viscosity directly proportional to T1/2 (hard-sphere molecules) or
T (Maxwellian molecules), and these solutions are applicable to shocks of any strength
(Rayleigh 1910; Taylor 1910; Becker 1922; Hayes 1958; Johnson 2013). Comparing the
general case to special cases with a known analytical solution, it is not difficult to see that
a different value for viscosity only results in the change in velocity gradient and shock wave
thickness without substantive effects on the qualitative nature of the solution. Therefore,
both numerical and analytical evidence indicate the existence of smooth solutions for
viscous shocks of arbitrary strength, although an analytical solution may not always be
found.

3.2. Existence of heat-conducting shock solutions
Similar to the case of viscous shocks, an algebraic equation about V and T can be obtained
for heat-conducting shocks by rearranging (2.13) into

V2 − JPmV + RT = 4μV
3Jm

dV
dx

= 0, (3.5)

which determines a parabola in the V–T plane. Equation (3.5) has two roots for V

V =
(

JPm ±
√

J2
Pm − 4RT

)
/2. (3.6)
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Figure 1. Smooth profiles for viscous shocks at (a) Ma1 = 1.05, (b) Ma1 = 1.5, (c) Ma1 = 5 and (d) Ma1 =
50. The properties of hard-sphere monatomic gases (γ = 5/3, μ ∝ T1/2) are assumed in the calculation.
No distinction is visible between the velocity distributions of our numerical result (thick lines) and Hayes’
analytical solution (squares) (Hayes 1958).

The substitution of (3.6) into (2.14) finally gives

dT
dx

= Jm

κ

[
u(T) + RT

2
+ JPm

4
(JPm ±

√
J2

Pm − 4RT) − JEm

]
. (3.7)

To determine which root should be used in the integration, further investigation is needed.
When μ = 0(τ = 0), (2.7) is reduced to

ρV2 + p = JP. (3.8)

Equations (2.6) and (3.8), are exactly the governing equations of the Rayleigh flow. This
suggests that the heat-conducting shock is actually a kind of Rayleigh flow, but the heat
addition comes from internal streamwise heat conduction, instead of an external heat
source.

The system of (2.6), (2.12), (3.8) and the equation for specific entropy (s), establishes
a unique relation between any two variables of p, ρ, V, T and s, such as (3.5) for V and
T. Hence the process line of a heat-conducting shock, namely, the Rayleigh line, can be
drawn in the phase plane of any two variables, as illustrated in figure 2.

It can be clearly seen from figure 2 that there is an extreme point for T, where T reaches
its maximum value. We shall call this point the ‘critical point’. The temperature rises
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Critical point

(a) (b)

T
Tcr

T
Tcr

Critical point

Rayleigh line

Cooling

Heating

Rayleigh line

sscr

Two roots

Vcr V

Figure 2. Rayleigh lines in the (a) V–T and (b) s–T planes. The arrows indicate the direction of compression.

before the phase point reaches it and drops after the phase point passes it. Referring to
(3.5) and letting dT/dV = 0, one has Vcr = JPm/2, Tcr = J2

Pm/(4R) and

Macr = Vcr√
γ RTcr

= 1√
γ

, (3.9)

where the subscript ‘cr’ stands for ‘critical’. Obviously, the critical Mach number is
smaller than 1. For a shock wave, because Ma monotonically decreases from Ma1(> 1) to
Ma2(< 1), the phase point will not pass the critical point when Ma2 > Macr and will pass
the critical point when Ma2 < Macr.

As shown in figure 2(a), the critical point divides the solution curve into two parts. On
the right part, where V > Vcr or Ma > Macr, the sign ‘+’ is used in (3.6) and (3.7); on
the left part, where V < Vcr or Ma < Macr, the sign ‘−’ is used in (3.6) and (3.7). Thus,
for integrations from point 1 to point 2, (3.7) is further detailed as

dT
dx

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Jm

κ

[
u(T) + RT

2
+ JPm

4
(JPm +

√
J2

Pm − 4RT) − JEm

]
before T reaches Tcr,

Jm

κ

[
u(T) + RT

2
+ JPm

4
(JPm −

√
J2

Pm − 4RT) − JEm

]
after T reaches Tcr.

(3.10)
To calculate the profiles of heat-conducting shocks, the fourth-order Runge–Kutta

method with adaptive step size is used to numerically integrate (3.10) with respect to x.
After the temperature distribution is obtained, the velocity distribution can be calculated
from (3.6).

Unlike viscous shocks, heat-conducting shocks have two different types of continuous
structures, i.e. the subcritical and the supercritical types, as shown in figure 3. They can
be numerically constructed with the foregoing procedure. It should be noted that the
profile shown in figure 3(b) cannot be calculated in the usual way. The supercritical shock
structure can be obtained only by performing the integration separately at both sides of
the critical point. This is because the temperature gradient given by (3.10) is positive, but
the temperature has to drop after reaching its maximum value at the critical point (see
figure 2), leading to a decrease in both T and x then. Hence, it is necessary to change the
integral direction at the critical point. Not to mention that the temperature gradient follows
different expressions on the two sides of the critical point.
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Figure 3. Continuous structures for (a) subcritical and (b) supercritical heat-conducting shocks. The profiles
are generated at (a) Ma1 = 1.05 and (b) Ma1 = 5 in a hard-sphere monatomic gas (γ = 5/3, κ ∝ T1/2). For
case Ma1 = 1.05, no distinction is visible between the numerical velocity profile (thick blue line) and Hayes’
analytical solution (blue squares) (Hayes 1958). The thin black dashed line denotes the line of x = xcr , and the
arrows indicate the direction in which the gas is compressed. While the subcritical shock is smooth and allowed
by fluid dynamics, the supercritical shock is not smooth and thus unphysical.

Here, the mean free path used for non-dimensionalising x is given by

λ = 32
75

κ

ρ

√
2

πR3T
, (3.11)

which is equivalent to (3.4) for monatomic gases.
Although the supercritical shock is mathematically reasonable, it is clearly unphysical

because the decrease in x, the unbounded velocity gradient at the critical point and the
non-smoothness of the temperature profile are all impossible. At the same time, the
subcritical shock is permitted by the physical laws of fluid dynamics as its qualitative
feature is no different from that of a real shock. The key difference between these two
shock types is whether the critical point lies within the shock region, as illustrated in
figure 4.

When a heat-conducting shock is sufficiently strong (figure 4b), the phase point will
pass the critical point, leading to a decrease in temperature, which is not allowed in shock
compression. Thus, a strong heat-conducting shock with continuous profiles is impossible,
and the temperature drop region can be avoided without violating the conservation laws
only if a discontinuity occurs before T reaches T2, as shown in figures 5(a) and 5(b).
In particular, if the discontinuity occurs right at the position where T first reaches T2,
and the temperature remains unchanged at this position, it is called a ‘shock within the
shock’ (Hayes 1958), ‘isothermal jump’ (Zel’dovich & Raizer 2002) or ‘isothermal shock’
(Johnson 2013). To be specific, the temperature reaches its final value before the velocity
does, and then V directly jumps to V2, as illustrated in figures 5(c) and 5(d). In order to
distinguish between the discontinuity and the whole wave, we adopt the terminology used
in Zel’dovich & Raizer (2002): the whole wave is called an ‘isothermal shock’, while
the discontinuity within it is called an ‘isothermal jump’. However, the isothermal shock
solution is also unphysical due to the discontinuity.

As mentioned above, the phase point will not pass the critical point when Ma2 > 1/
√

γ ,
so Ma2 > 1/

√
γ is also the condition necessary for the existence of heat-conducting shock
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1

Figure 4. Process lines for (a) subcritical and (b) supercritical heat-conducting shocks in the V–T plane, as a
part of the Rayleigh line. The temperature drop region appears when the critical point is contained in the shock
region.
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Figure 5. Structures and process lines of heat-conducting shocks with a jump: the (a) structure and (b) process
line with a general jump; the (c) structure and (d) process line with an isothermal jump. All jumps are
represented by dashed lines.
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solutions. If γ is constant, this condition can also be written as

Ma1 <

√
3 − 1/γ

3 − γ
. (3.12)

For γ = 5/3 and γ = 7/5, the critical free-stream Mach numbers are approximately
1.3416 and 1.1952, respectively. This value is so small for Ma1 that the shock of critical
strength cannot be regarded as strong, not even of medium strength. In consequence, the
solution region for heat-conducting shocks is quite narrow.

3.3. Existence of general shock solutions
In §§ 3.1 and 3.2, the existence of smooth shock solutions is discussed for cases in which
only viscosity or heat conduction is taken into account. In this subsection, the same
research is conducted on shock waves with both viscosity and heat conduction present.

In the case of the Prandtl number equals the special value 3/4, Becker (1922) noticed
that the energy equation (2.8) can be reduced to

h(T) + V2

2
= JEm, (3.13)

which evidently indicates an invariant total enthalpy. Just like (3.1) and (3.5), (3.13)
provides an algebraic relation between V and T that makes a series of analytical solutions
possible when the specific heats are constant. The simplest one, first discovered by Becker
(1922), was subsequently extended by other researchers, as introduced in § 1. These
solutions are valid for arbitrary shock strength and can be found in many papers and
textbooks (e.g. Hayes 1958; Zel’dovich & Raizer 2002; Johnson 2013). However, no
algebraic relation between V and T is found for a more general Prandtl number (Pr > 0
and Pr /= 3/4). The coexistence of two transport phenomena adds much difficulty to the
theoretical analysis of general cases, so numerical experiments, rather than mathematical
demonstration, are conducted.

The numerical methods for calculating the internal structure of general shocks are
briefly introduced in Appendices A and B. It is shown in Appendix A that the most
commonly used shooting method (Elizarova, Khokhlov & Montero 2007; Chikitkin et al.
2015) does not work very well in this problem. However, with the backward marching
method described in Appendix B, parametric calculations are conducted for shocks over
a wide range of Ma1 (1.05∼50) and Pr (0.1∼10), and their profiles are successfully
constructed. The representative results of a hard-sphere monatomic gas (γ = 5/3, Pr =
2/3, μ&κ ∝ T1/2) are shown in figure 6.

Here, one should note that the utilisation of the backward marching method is not
necessary. Many other well-established numerical methods, such as the finite difference
method, are competent to simulate shock fronts, but they are not as efficient and robust as
the backward marching method in dealing with the shock structure problem (the backward
marching method is unconditionally convergent and insensitive to numerical errors; also,
it involves no iteration; more details can be seen in Appendix B), even though none
of them are computationally expensive in calculating shock profiles. It should also be
noted that the result for Ma1 = 50, i.e. figure 6(d), may not sufficiently reflect the actual
physical process, as rapid ionisation may occur in extremely strong shocks, turning the
gas into a plasma, which falls outside the scope of this paper and is far beyond the
capability of the currently used model. Nevertheless, the need for test case Ma1 = 50
would not be compromised because its introduction is for the primary purpose of checking
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Figure 6. Smooth shock profiles for a hard-sphere monatomic gas in the cases of (a) Ma1 = 1.05, (b)
Ma1 = 1.5, (c) Ma1 = 5 and (d) Ma1 = 50, calculated with the backward marching method.

the existence of smooth solutions under the most extreme conditions and incidentally
providing a stringent examination of the theory rather than describing the physical process
as accurately as possible, which is beneficial but not necessary.

After successfully carrying out a significant number of calculations for shocks from
extremely weak to extremely strong and in gases from nearly inviscid (Pr → 0) to nearly
adiabatic (Pr → +∞), we assert that, within the framework of the Navier–Stokes–Fourier
formalism, smooth shock structures can always be formed in gases with neither viscosity
nor heat conduction vanishing. Although no rigorous mathematical proof is provided, it is
easy to numerically verify this conclusion in the most extreme cases.

3.4. Roles of viscosity and heat conduction in shock compression
In this section, utilising the solution methods developed for the shock structure problem,
the existence of smooth shock solutions is theoretically and numerically investigated. It is
found that:

(i) When viscosity is present, smooth solutions exist for shocks of arbitrary strength,
whether heat conduction is present or not.
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μ = 0 μ > 0

κ = 0 Do not exist Exist for arbitrary shock strength
κ > 0 Exist for shocks below a critical strength Exist for arbitrary shock strength

Table 1. Existence of smooth shock solutions.

(ii) When viscosity is absent and heat conduction is present, smooth solutions only exist
for shocks below a fairly small critical strength.

Except for the situations mentioned above, the only case left is the case of the adiabatic
Euler equations, in which both viscosity and heat conduction vanish, and continuous shock
solutions are known to be impossible. Table 1 lists all four cases, presenting the result more
clearly.

From table 1, it is not difficult to see that heat conduction cannot support the formation
of strong shocks by itself while viscosity can, and therefore viscosity is necessary and
sufficient for shock waves, but heat conduction is not. This conclusion can be interpreted
from the perspective of the conservation equations of momentum and energy ((2.7)
and (2.8)). While the viscous term shows itself as a source term in both equations,
the heat flux term only appears in the energy equation. Physically, a shock wave is
an irreversible process that converts mechanical energy into thermal energy, in which
both compression and dissipation are essential. Although heat conduction can result in
irreversible compression as viscosity does, their mechanisms of action are vastly different.
The normal viscous force directly compresses the gas in a mechanical way and converts
the kinetic energy of macroscopic motion into thermal energy (kinetic energy of random
molecular motion) irreversibly by scattering the momentum of the incoming flow. Heat
conduction, on the other hand, only indirectly compresses the gas through the concerted
action of geometric constraints and the expansion caused by heating. Not to mention that
its irreversibility originates from the decline in the quality of thermal energy, instead of
the direct dissipation of mechanical energy. In summary, it is viscosity rather than heat
conduction that plays the key role in shock compression.

4. Minor role of heat conduction

In § 3, it is shown that the principal role in shock formation is played by viscosity, and heat
conduction is dispensable. However, we also find that heat conduction plays an essential
role in the mechanism of the entropy overshoot phenomenon within shock waves. This
anomalous phenomenon, as well as the necessity of heat conduction for its emergence,
will be introduced in this section.

4.1. Entropy overshoot in shock waves
There are a few curious facts about the internal flow of shock waves, the most noticeable
of which are the non-constant total enthalpy (Shoev, Timokhin & Bondar 2020) and
non-monotonic entropy profile (Morduchow & Libby 1949; Serrin & Whang 1961;
Chamberlain 1965; Margolin 2017; Margolin, Reisner & Jordan 2017). While the deviation
of total enthalpy inside a shock front is easy to understand (the τV + q term in (2.8)
does not vanish in most cases), the entropy behaviour has baffled researchers for decades.
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Figure 7. Distributions of normalised entropy inside shock waves at different Mach numbers. The profiles are
generated in a hard-sphere monatomic gas (γ = 5/3, Pr = 2/3, μ&κ ∝ T1/2) with the backward marching
method.

Figure 7 shows the entropy profiles of shock waves in a specific gas for various Mach
numbers. It can be seen that the entropy exhibits a peak inside the front instead of
increasing monotonically as expected.

There is no doubt that the second law of thermodynamics must be satisfied in the whole
process of shock compression, but it appears to be violated by the decreasing entropy
downstream of the extreme point. This counter-intuitive behaviour of entropy is usually
called the ‘entropy overshoot’ phenomenon.

4.2. Necessity of heat conduction
Since the non-monotonicity of the entropy profile was noticed by Morduchow &
Libby (1949), much effort has been spent on explaining it. Serrin & Whang (1961)
theoretically proved the negativity of ds/dx towards the rear of the wave (x → +∞),
confirming that the specific entropy must be decreasing over the final portion of the
shock transition. The necessity of heat conduction to the entropy overshoot phenomenon
is also implied in the paper, although no complete proof is provided. Chamberlain
(1965) gave a constant-area-streamtube explanation for the decrease in entropy that, while
somewhat curious and unable to get to the real issue (i.e. how exactly the second law of
thermodynamics is satisfied since it appears to be violated), is nonetheless a beneficial
attempt to address the physical mechanisms. However, the principle behind the entropy
overshoot phenomenon, i.e. what bridges the gap between positive entropy production
and negative entropy change and how to explain the counter-intuitive nature of the
phenomenon, remains unclear. In this subsection, we will demonstrate how the second
law of thermodynamics is satisfied, and a detailed analysis regarding the role of heat
conduction in the mechanism of entropy overshoot will be provided. It is shown that all
the anomalies can be attributed to the entropy flux caused by heat conduction.
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The full three-dimensional local entropy balance equation in Eulerian form for an
infinitesimal control volume can be written as (de Groot & Mazur 1984)

∂(ρs)
∂t

= −∇ · (J S + ρsV ) + σ, (4.1)

where V and J S are the vectors of velocity and entropy flux, and σ denotes the time rate of
entropy generation per unit volume (also known as the local entropy generation/production
rate). The entropy flux J S consists of two components which result from heat conduction
and diffusion. In single-component gases, only the entropy flux caused by heat conduction
remains, i.e. J S = q/T , where q is the heat flux vector.

For the one-dimensional steady flow inside a shock front, (4.1) can be reduced to

ρV
ds
dx

= −dJS

dx
+ σ, (4.2)

in which V and JS are the magnitudes of velocity and entropy flux in the only one
dimension x. Due to the presence of term −dJS/dx, non-negative σ does not necessarily
lead to non-negative ds/dx, and only the former is ensured by the second law of
thermodynamics. Hence, it is possible that the decreasing entropy downstream of the
extreme point does not contradict the second law of thermodynamics. But to make it
happen, the positivity of dJS/dx, which relies on heat conduction, is essential. To satisfy
ourselves of this, the entropy profiles of shock waves at various Prandtl numbers are
plotted for comparison in figure 8. It is shown that the amplitude of entropy overshoot
decreases with the increase of Prandtl number (larger Prandtl number indicates relatively
less heat conduction). In particular, the overshoot vanishes when heat conduction is absent
(Pr = +∞) and reaches its maximum when only heat conduction remains (Pr = 0).
Therefore, heat conduction is necessary for the non-monotonicity of the entropy profile
and promotes the entropy overshoot in shock waves. In addition to the subject of the
present paper, this conclusion is also important to artificial-viscosity-type shock capturing
schemes utilised in computational fluid dynamics, as the unphysical effective Prandtl
number resulting from artificial viscosity can lead to serious errors in the flow field, and
incorrect estimation of entropy overshoot is just one of the epiphenomena. In view of this,
a discussion on the topic should be beneficial, and the central point we are trying to get
across is that the problem lies primarily, if not entirely, in the model itself rather than the
discretisation process.

On a sparse mesh with a minimum size much larger than the actual shock thickness,
artificial viscosity is usually employed to stabilise the front by smearing it with a much
greater value than that of the molecular viscosity. It significantly enhances the local
dissipation capability and compensates for lowered gradients, thereby capturing the shock.
However, a few difficulties, such as the well-known overheating problem (Noh 1987; Rider
2000), may arise in the region where artificial viscosity takes effect, and one among them
related to this study is the lesser-known entropy preserving problem. It is not difficult to
see from figure 8 that a large effective Prandtl number resulting from artificial viscosity
suppresses the entropy overshoot inside shock waves, leading to a lower peak and incorrect
distribution of specific entropy, as indicated in Tonicello, Lodato & Vervisch (2020). The
entropy preserving problem, although less impactful than the excess wall heating problem,
deserves more attention. These problems, not to say errors but rather anomalies, are
inherent in the physical nature of the artificial viscosity method. By and large, they can
be ascribed to the inappropriate allocation of dissipation to which Noh (1987) provides an
evident solution – adding an artificial heat flux term to the energy equation. The simplest
way to determine the artificial thermal conductivity is to calculate it with the artificial
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Figure 8. Entropy profiles of shock waves in gases with different Prandtl numbers. The results are calculated
under the condition of Ma1 = 1.25 and γ = 5/3. The transport coefficients are assumed to be directly
proportional to T1/2, and the mean free path is taken as the arithmetic average of the values calculated with μ

(using (3.4)) and κ (using (3.11)).

viscosity and the physical Prandtl number, which preserves as much physics as possible
while minimising the increase in computational cost (Cook 2013; Tonicello et al. 2020).
The introduction of artificial heat conduction has been physically justified (Noh 1987;
Bae & Lahey 1999; Cook 2013; Li, Tian & Wang 2017; Tonicello et al. 2020): enhanced
conductivity promptly disperses the heat overly generated by viscous dissipation and
restores the balance between viscosity and heat conduction. In particular, it significantly
improves the physical consistency of artificial-viscosity-type shock capturing schemes in
terms of entropy preservation (Tonicello et al. 2020). To summarise, the physical value of
Prandtl number represents a reasonable balance between viscosity and heat conduction,
deviation from which may lead to unexpected anomalies.

It is difficult to determine the exact location where the entropy starts to decrease
(i.e. the position of ds/dx = 0) as no analytical solution for general cases has been
found. But a condition that narrows the possible region for entropy drop can be obtained
through decomposing the entropy generation. Every transport process contributes to the
irreversibility of shock waves. For the problem discussed in this study we have σ =
σh + σv , where σh and σv are the local entropy generation rates due to heat conduction
and viscous dissipation, and each of them must be non-negative according to the second
law of thermodynamics.

Considering that the theory of non-equilibrium thermodynamics gives σh = q∇(1/T)

and noting JS = q/T , (4.2) can be rearranged into

ρV
ds
dx

= − 1
T

dq
dx

+ σv. (4.3)

Because σv > 0, a positive and sufficiently large dq/dx, which indicates heat-releasing
infinitesimal control volumes, is crucial to the negativity of ds/dx, and thus the entropy
drop region is fully contained in the exothermic region. In particular, if the thermal
conductivity of gases increases with rising temperature, the exothermic region, as well as
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Figure 9. Distributions of temperature, temperature gradient, heat flux and entropy in a shock wave (Ma1 =
5). The thermal conductivity and temperature are in positive correlation as the properties of hard-sphere
monatomic gases (γ = 5/3, Pr = 2/3, μ&κ ∝ T1/2) are assumed in the calculation. It is quite clear that the
extreme point of the heat flux curve is downstream of the temperature inflexion point (also the extreme point
of the temperature gradient curve) and upstream of the maximum entropy point, i.e. the exothermic region is
included in the convex temperature region and contains the entropy drop region.

the entropy drop region, are both the proper subsets of the region in which the temperature
curve is convex (d2T/dx2 < 0), as illustrated in figure 9.

5. Summary and discussion

Both viscosity and heat conduction contribute to the compression and dissipation of shock
waves, but their importance is far from equal. To reveal their roles in the mechanism of
shock waves, the problem of shock structure is revisited and further investigated, with
special concentration on the existence of smooth shock solutions, as well as the entropy
overshoot phenomenon. Based on the present analysis, the following conclusions can be
drawn:

(i) Heat conduction is unable to sustain strong shocks (Ma1 >
√

(3 − 1/γ )/(3 − γ ))

without the assistance of viscosity. In contrast, viscosity is adequate for maintaining
smooth profiles at all strengths, even when heat conduction is absent.

(ii) The critical role in shock waves is played by viscosity rather than heat conduction,
especially in strong shocks. This distinction can be attributed to their different
mechanisms of action. While viscous stress directly compresses the gas and converts
mechanical energy into thermal energy by scattering directed motion into random
motion, heat conduction only indirectly compresses the gas through heating and
generates irreversibility by reducing the quality of thermal energy instead of the
direct dissipation of mechanical energy.

(iii) Instead of monotonically increasing, the specific entropy has a maximum within the
transition layer of shock waves and overshoots its final value.

(iv) Although heat conduction is dispensable in shock formation, it is essential to
the entropy overshoot phenomenon inside the wavefront because the entropy flux
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resulting from it neutralises the positive production of entropy, thus preventing the
entropy drop region from violating the second law of thermodynamics and allowing
the emergence of an entropy peak.

To summarise, viscosity plays the principal role in shock transition, and heat conduction
is dispensable. But to make an entropy overshoot occur, heat conduction is crucial. Here,
one should be reminded that, although not fully explained, conclusions (i) and (iii) have
been partially confirmed in the literature (Morduchow & Libby 1949; Hayes 1958; Serrin
& Whang 1961; Chamberlain 1965; Zel’dovich & Raizer 2002). In this paper, they are
re-emphasised out of systematicity and completeness. By looking into the existence of
smooth solutions and the entropy overshoot phenomenon inside shock waves, as well as
providing detailed explanations, i.e. conclusions (ii) and (iv), the present study makes a
complete physical image regarding the roles of viscosity and heat conduction and their
mechanisms of action in shock waves clearer than ever.

In addition to the above, a computational procedure for constructing shock profiles is
developed to conduct numerical experiments, and it is proven to be reliable and efficient
(see Appendix B for details). The new method is able to solve the shock structure problem
in the framework of macroscopic continuum hydrodynamics as long as the constitutive
relations are thermodynamically consistent.

It should be noted that the conclusions of this paper are not only applicable to the
classical Navier–Stokes equations, as no extra limitations apart from the obvious basics
(μ ≥ 0 and κ ≥ 0, which are ensured by the second law of thermodynamics) are assumed
for μ and κ , and any complex constitutive relations can be taken into account by replacing
the transport coefficients with equivalent ones. In other words, the restriction of constant
transport coefficients is abandoned, while the ‘linear’ form of constitutive relations is
preserved. Although a different expression for μ or κ affects the quantitative details (such
as the shock thickness and the profiles’ shape) of the shock flow, it would not change the
qualitative aspects inherent in the system. For example, the bulk viscosity of polyatomic
gases, which manifests itself sharply at high temperatures and significantly influences the
structure of strong shocks, can be considered in an equivalent/apparent viscosity without
changing the ‘linear’ form of viscous stress (2.4). Similarly, the radiative heat transfer in
opaque gases can be represented by heat conduction with an equivalent/apparent thermal
conductivity directly proportional to T3 (Zel’dovich & Raizer 2002; Johnson 2013). In
these cases, our conclusions still hold.

This research only considers the two transport phenomena of viscosity and heat
conduction. For shocks in multi-component reactive gases such as detonation waves,
molecular diffusion and chemical reactions may significantly affect the shock structure,
and the roles of these processes in the mechanism of shock transition need further
investigation. Another limitation of this work is that only one temperature is considered.
Multiple temperatures not only exist in polyatomic (Taniguchi et al. 2016; Alekseev &
Kustova 2021) or multi-component gases (Madjarević, Ruggeri & Simić 2014) but also
reside in single-component monatomic gases (Malkov et al. 2015). Taking the example
of a polyatomic gas, due to asynchronous excitation of different degrees of freedom,
different internal energy modes may have distinct temperatures, and the relaxations
between them are of finite rates. Only by introducing multi-temperature models or
using a more fundamental hydrodynamic theory can the behaviours of gases in shock
waves related to multiple temperatures, such as the temperature overshoot phenomenon
(Madjarević et al. 2014; Malkov et al. 2015; Taniguchi et al. 2016; Alekseev & Kustova
2021), be correctly described. Hence, how the relaxations between different temperatures
affect shock structure and heat conduction therein, especially the influence of the
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multi-temperature effect on the role of each transport process in shock compression,
deserves further exploration. Besides the above two points, how dissipative processes and
finite shock thickness reshape the flow field of multi-dimensional shock systems (e.g. the
viscous effect in Mach reflection of shock waves Shoev et al. 2023) is also of interest.
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Appendix A. Failure of the shooting method

The internal flow of shock waves is described by a set of hydrodynamic equations
((2.6)–(2.8)) that satisfy asymptotic boundary conditions (2.15). It is usually converted
into an initial value problem and solved iteratively by the traditional shooting method, as
introduced in the literature (Elizarova et al. 2007; Chikitkin et al. 2015). Yet this method
does not work very well in the shock structure problem. In our verification calculations,
no matter how accurate the initial values are, flow variables always depart from their
post-shock values when x → +∞, as illustrated in figure 10. High sensitivity indicates
the existence of instability, so further investigation into the dynamics of the shock system
is required.

To find out what leads to the failure of the shooting method, the direction field (or slope
field) approach is employed to provide an intuitive observation of the system’s dynamics.
This approach is quite useful as it establishes a flow pattern for solutions of the differential
equations, which reveals qualitative aspects of the system. Based on the direction field
determined by (2.13) and (2.14), the phase portrait (phase-plane diagram) of a shock wave
with both viscosity and heat conduction present is drawn and shown in figure 11.

From figure 11 we see that points 1 and 2 are both singular points, with point 1 being
an unstable node and point 2 being a saddle point. To solve the shock structure problem
is actually to find the integral curve S, which is a heteroclinic orbit starting from point 1
and ending at point 2. However, if we follow the arrow direction to perform an integration
from the pre-shock state to the post-shock state, it is not difficult to see that the phase
point will approach point 2 first but then move away quickly unless the initial value point
is precisely on curve S. In an actual calculation, even if the initial value point is strictly
located on curve S, the inevitable round-off error will cause the integral curve to deviate
from the target trajectory and be directed out of area L. The nature of point 2 as a saddle
point is the direct reason for the divergence of forward marching calculations.
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Figure 10. Example of a Mach 2 shock in a monatomic gas calculated with the shooting method. The initial
value point is specified as the origin point.
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Figure 11. Phase portrait of a shock wave in the V–T plane. Point 1 is the pre-shock point; point 2 is the
post-shock point. Curve S is the target trajectory that connects points 1 and 2. Dashed line M is the solution
curve of heat-conducting shock; dashed line N is the solution curve of viscous shock; L denotes the area
bounded by curves M and N. The arrows indicate the direction in which the phase point moves as x increases.

Appendix B. Backward marching method

Given the importance of integral direction, now let us consider the feasibility of a
backward marching strategy. It is clearly shown in figure 11 that, if we follow curve S
to perform a numerical integration from point 2 to point 1, the integral curve will always
reach point 1, regardless of the initial value error and round-off error. Thus a backward
marching calculation is valid in principle. Yet this strategy is still troubled by a problem –
the determination of the initial value.
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Backward marching calculations always converge to the pre-shock point, which is of
great benefit but also makes it incompatible with the shooting method. As is well known,
the shooting method approaches the exact trajectory by updating the initial value. But
the unconditional convergence of a backward marching integration provides no feedback
for the iteration, invalidating the shooting method, hence the need for a new initial value
determination method.

Point 2 cannot be the initial value point, because the numerical integration cannot start
from x = +∞. But we can use the Euler scheme to determine an initial value point
(V0, T0) near it

T0 = T2 +
(

dT
dV

)
2
(V0 − V2), (B1)

where V0 is slightly greater than V2 and (dT/dV)2 is the slope of the solution curve at
point 2.

Divide both sides of (2.14) by that of (2.13), and the slope of the solution curve in the
V–T plane is thus obtained as

dT
dV

= f (V, T)

g(V, T)ζ(V, T)
, (B2)

in which

f (V, T) ≡ −V2

2
+ JPmV − JEm + u, (B3)

g(V, T) ≡ V2 − JPmV + RT, (B4)

ζ(V, T) ≡ 3κ

4μV
. (B5)

Note that u, μ and κ are functions of T.
However, the slopes at points 1 or 2 cannot be obtained in the usual way by substituting

the values of V and T into (B2)–(B5) as the two points make both f and g be zero. But we
can use L’Hôpital’s rule to evaluate the indeterminate form f /g.

Multiplying both sides of (B2) by ζ , considering the resulting equation in a limiting
process where the phase point (V, T) approaches point i(i = 1, 2) along the solution curve
(during the process T can be regarded as a function of V and vice versa) and applying
L’Hôpital’s rule to the limit of f /g, one has

(
ζ

dT
dV

)
i
= lim

V→Vi

f
g

= lim
V→Vi

fV + fT
dT
dV

gV + gT
dT
dV

, (B6)

where the subscripts ‘V’ and ‘T’ denote partial derivatives.
Equation (B6) can be rearranged into

Rζi

(
dT
dV

)2

i
+ (gV,iζi − cv,i)

(
dT
dV

)
i
− fV,i = 0, (B7)

which has distinct roots(
dT
dV

)
i
= Vi

2γiR

⎡
⎢⎣4

3
Pri + 1

Ma2
i

− γi ±

√√√√(4
3

Pri + 1
Ma2

i
− γi

)2

+ 16
3

(γi − 1)Pri

Ma2
i

⎤
⎥⎦ .

(B8)
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Figure 12. Comparison between Becker’s analytical solution (denoted by lines) and the numerical results
(denoted by symbols) calculated with the backward marching method. No distinction is visible between them.

It is not difficult to see that the two roots are real and of opposite signs.
Point 1 is an unstable node, with an infinite number of integral curves starting from it,

one pair of which share a positive slope; all other integral curves, including the solution
curve S, are tangent at point 1 with the same negative slope. Point 2 is a saddle point, with
one pair of integral curves starting from it and one pair ending at it; while the first pair
share a positive slope, the second pair with curve S included share a negative slope.

The backward marching technique and the new method for initial value determination
practically provide us with a computational procedure for simulating shock wave structure
with four major steps:

(i) Use the pre-shock parameters to calculate the post-shock parameters, particularly the
post-shock Mach number Ma2, post-shock velocity V2 and post-shock temperature
T2.

(ii) Substitute the post-shock parameters into the expression of the negative root in (B8)
to acquire the slope (dT/dV)2.

(iii) Set a value V0 which is slightly greater than V2 and substitute it with other required
parameters into (B1) to obtain T0.

(iv) Use (V0, T0) as the initial value point to numerically integrate the system of (2.13)
and (2.14), during which the step size is negative, and halt the calculation when
|V − V1| and |T − T1| are smaller than their tolerances.

Available methods for the numerical integration include but are not limited to the
Runge–Kutta method. With this procedure, the distributions of velocity and temperature
are acquired. Other variables can be obtained without joining in the integration. For
example, the density and pressure can be algebraically calculated by substituting the values
of V and T into (2.6) and (2.12). The numerical method introduced in this appendix, which
we shall designate as the ‘backward marching method’, allows non-constant transport
coefficients, such as temperature-dependent μ and κ for inverse power law models.
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Figure 13. Comparison between Becker’s exact solution and the numerical results of backward marching
calculations with large initial value error. The calculations quickly converge to the exact solution in
approximately two mean free paths. The numerical integrations are carried out from the downstream (right
side) to the upstream (left side) under the condition of μ&κ = const., Ma1 = 2, γ = 7/5 and Pr = 3/4.

To verify the backward marching method, it is employed to simulate the shock structure
of a special case. In this case, constant specific heats, constant transport coefficients
and the special value 3/4 of Prandtl number make an implicit solution (Becker 1922;
Hayes 1958; Zel’dovich & Raizer 2002; Johnson 2013) possible. The numerical results are
compared with this analytical solution in figure 12. It is shown that the difference between
them is vanishingly small.

To prove the stability of backward marching, attenuation of the numerical error induced
by inappropriate initial value is demonstrated by analysing the developments of velocity
and temperature with decreasing x and comparing them with Becker’s solution, as shown
in figure 13. In the calculations, the new method for initial value determination is
neglected, and large initial value errors are intentionally introduced. It can be seen that the
errors monotonically decrease as the integrations proceed upstream, and the distinction
between the numerical and exact solutions becomes visually negligible in approximately
only two mean free paths, hence the insensitivity of the new algorithm to initial value
error.

In summary, the backward marching method can calculate the flow inside shock waves
correctly and efficiently. It has the following advantages over the shooting method:

(i) The calculation is unconditionally convergent.
(ii) The calculation is insensitive to initial value error and round-off error, and these

inevitable errors decrease with the march of the numerical integration.
(iii) The computational cost is much lower as no iteration is involved.
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