
TPLP 24 (4): 586–605, 2025. c© The Author(s), 2025. Published by Cambridge University

Press. This is an Open Access article, distributed under the terms of the Creative Commons

Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted

re-use, distribution and reproduction, provided the original article is properly cited.

doi:10.1017/S147106842400036X

586

On Lower Bounding Minimal Model Count

MOHIMENUL KABIR
School of Computing, National University of Singapore, Singapore

(e-mail: mahibuet045@gmail.com)

KULDEEP S MEEL
Department of Computer Science, University of Toronto, Canada

(e-mail: meel@cs.toronto.edu)

submitted 18 August 2024; accepted 13 September 2024

Abstract

Minimal models of a Boolean formula play a pivotal role in various reasoning tasks. While
previous research has primarily focused on qualitative analysis over minimal models; our study
concentrates on the quantitative aspect, specifically counting of minimal models. Exact counting
of minimal models is strictly harder than #P, prompting our investigation into establishing a
lower bound for their quantity, which is often useful in related applications. In this paper, we
introduce two novel techniques for counting minimal models, leveraging the expressive power of
answer set programming: the first technique employs methods from knowledge compilation, while
the second one draws on recent advancements in hashing-based approximate model counting.
Through empirical evaluations, we demonstrate that our methods significantly improve the
lower bound estimates of the number of minimal models, surpassing the performance of existing
minimal model reasoning systems in terms of runtime.

KEYWORDS: minimal model, propositional circumscription, model counting, ASP

1 Introduction

Given a propositional formula F , a model σ |= F is minimal if ∀σ′ ⊂ σ, it holds that

σ′ �|= F (Angiulli et al. 2014). Minimal model reasoning is fundamental to several tasks in

artificial intelligence, including circumscription (McCarthy 1980; Lifschitz 1985), default

logic (Reiter 1980), diagnosis (De Kleer et al. 1992), and deductive databases under the

generalized closed-world assumption (Minker 1982). Although not new, minimal model

reasoning has been the subject of several studies (Eiter and Gottlob 1993; Ben-Eliyahu

and Dechter 1996; Kirousis and Kolaitis 2003; Ben-Eliyahu 2005), covering tasks such

as minimal model finding (finding a single minimal model), minimal model checking

(deciding whether a model is minimal), and minimal model entailment and member-

ship (deciding whether a literal belongs to all minimal models or some minimal models,

respectively) (Ben-Eliyahu and Palopoli 1997).

https://doi.org/10.1017/S147106842400036X Published online by Cambridge University Press

https://doi.org/10.1017/S147106842400036X
https://orcid.org/0000-0001-7551-0337
mailto:mahibuet045@gmail.com
mailto:meel@cs.toronto.edu
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S147106842400036X&domain=pdf
https://doi.org/10.1017/S147106842400036X

On lower bounding minimal model count 587

Complexity analysis has established that minimal model reasoning is intractable,

tractable only for specific subclasses of CNF (Conjunctive Normal Form) formulas.

Typically, finding one minimal model for positive CNF formulas1 is in PNP[O(log n)]-hard

(Cadoli 1992b). Additionally, checking whether a model is minimal is co-NP-complete

(Cadoli 1992a), whereas queries related to entailment and membership are positioned at

the second level of the polynomial hierarchy (Eiter and Gottlob 1993).

This study delves into a nuanced reasoning task on minimal models, extending beyond

the simplistic binary version of decision-based queries. Our focus shifts towards quan-

titative reasoning with respect to minimal models. Specifically, we aim to count the

number of minimal models for a given propositional formula. While enumerating a

single minimal model is insufficient in many applications, counting the number of min-

imal models provides a useful metric for related measures (Hunter et al. 2008; Thimm

2016). Apart from specific structures of Boolean formulas, exact minimal model count-

ing is #co-NP-complete (Kirousis and Kolaitis 2003), established through subtractive

reductions .

Although minimal models can theoretically be counted by iteratively employing mini-

mal model finding oracles, this approach is practical only for a relatively small number

of minimal models and becomes impractical as their number increases. Advanced model

counting techniques have scaled to a vast number of models through sophisticated knowl-

edge compilation methods (Darwiche 2004; Thurley 2006), which involve transforming an

input formula into a specific representation that enables efficient model counting based

on the size of this new representation. However, applying knowledge compilation to mini-

mal model counting presents unique challenges, which is elaborated in Section 4. Beyond

knowledge compilation, approximate model counting has emerged as a successful strat-

egy for estimating the number of models with probabilistic guarantees (Chakraborty et

al. 2013). In particular, the hashing-based technique, which partitions the search space

into smaller, roughly equal partitions using randomly generated XOR constraints (Gomes

et al. 2021), has attracted significant attention. The model count can be estimated by

enumerating the models within one randomly partition (Chakraborty et al. 2013).

Our empirical study reveals that both approaches to minimal model counting face

scalability issues in practical scenarios. Furthermore, knowing a lower bound of the model

count is still useful in many applications and is often computed in the model counting

literature (Gomes et al. 2007). Some applications require the enumeration of all minimal

models (Jannach et al. 2016; Bozzano et al. 2022), but complete enumeration becomes

infeasible for a large number of minimal models. Here, the lower bound of the number

of minimal models provides a useful criterion for assessing the feasibility of enumerating

all minimal models. Knowing this lower bound of the model count is often beneficial to

estimate the size of the search space, which enables more specific targeting within the

search space (Fichte et al. 2022). Consequently, our research shifts focus from counting

all minimal models to determining a lower bound for their number.

The primary contribution of this paper is the development of methods to estimate a

lower bound for the number of minimal models of a given propositional formula. This

is achieved by integrating knowledge compilation and hashing-based techniques with

1 A CNF formula is positive if each clause has at least one positive literal. Every positive CNF formula
has at least one minimal model.

https://doi.org/10.1017/S147106842400036X Published online by Cambridge University Press

https://doi.org/10.1017/S147106842400036X

M. Kabir and K. S. Meel588

minimal model reasoning, thus facilitating the estimation of lower bounds. At the core,

the proposed methods conceptualize minimal models of a formula as answer sets of an

ASP program; Answer Set Programming (ASP) is a declarative programing paradigm for

knowledge representation and reasoning (Marek and Truszczyński 1999). Additionally,

our proposed methods depend on the efficiency of well-engineered ASP systems. Our

approach utilizing knowledge compilation effectively counts the number of minimal mod-

els or provides a lower bound. Besides, our hashing-based method offers a lower bound

with a probabilistic guarantee. We apply our minimal model counting method to the

domain of itemset mining, showcasing its utility. The effectiveness of our proposed meth-

ods has been empirically validated on datasets from model counting competitions and

itemset mining. To assess the performance of our proposed methods, we introduce a

new metric that considers both the quality of the lower bound and the computational

time; our methods achieve the best score compared to existing minimal model reasoning

systems.

The paper is organized as follows: Section 2 presents the background knowledge neces-

sary to understand the main contributions of the paper; Section 4 outlines our proposed

techniques for estimating the lower bound on the number of minimal models; Section

5 demonstrates the experimental evaluation of our proposed techniques; and Section 6

concludes our work with some indications of future research directions.

2 Preliminaries

Before going to the technical description, we present some background about propo-

sitional satisfiability, answer set programing, itemset mining from data mining, and a

relationship between minimal models and minimal generations in transaction records.

2.1 Propositional satisfiability

In propositional satisfiability, we define the domain {0, 1}, which is equivalently

{false, true} and a propositional variable or atom v takes a value from the domain. A

literal � is either a variable v (positive literal) or its negation ¬v (negative literal). A

clause C is a disjunction of literals, denoted as C =
∨

i �i. A Boolean formula F , in

Conjunctive Normal Form (CNF), is a conjunction of clauses, represented as F =
∧

j Cj .

We use the notation Var(F) to denote the set of variables within F .

An assignment τ over X is a function τ :X→{0, 1}, where X ⊆Var(F). For an atom

v ∈X, we define τ(¬v) = 1− τ(v). The assignment τ over Var(F) is a model of F if τ

evaluates F to be true. Given X ⊆Var(F) and an assignment τ , we use the notation τ↓X
to denote the projection of τ onto variable set X ⊆Var(F). Given a CNF formula F (as a

set of clauses) and an assignment τ :X→{0, 1}, where X ⊆Var(F), the unit propagation

of τ on F , denoted F |τ , is recursively defined as follows:

F |τ =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 if F ≡ 1

F ′|τ if ∃C ∈ F s.t. F ′ = F \ {C},�∈C and τ(�) = 1

F ′|τ ∪ {C ′} if ∃C ∈ F s.t. F ′ = F \ {C},�∈C,C ′ =C \ {�}
and (τ(�) = 0 or {¬�} ∈ F)

https://doi.org/10.1017/S147106842400036X Published online by Cambridge University Press

https://doi.org/10.1017/S147106842400036X

On lower bounding minimal model count 589

We often consider an assignment τ as a set of literals it assigns and Var(τ) denotes the

set of variables assigned by τ . For two assignments τ1 and τ2, τ1 satisfies τ2, denoted as

τ1 |= τ2, if τ1↓Var(τ2) = τ2. Otherwise, τ1 does not satisfy τ2, denoted as τ1 �|= τ2.

An XOR constraint over Var(F) is a Boolean “XOR” (⊕) applied to the variables

Var(F). A random XOR constraint over variables {x1, . . . , xk} is expressed as a1 · x1 ⊕
. . . ak · xk ⊕ b, where all ai and b follow the Bernoulli distribution with a probability of

1/2. An XOR constraint xi1 ⊕ . . . xik ⊕ 1 (or xi1 ⊕ . . . xik ⊕ 0 resp.) is evaluated as true

if an even (or odd resp.) number of variables from {xi1 , . . . , xik} are assigned to true.

To define minimal models of a propositional formula F , we introduce an ordering

operator over models. For two given models τ1 and τ2, τ1 is considered smaller than

τ2, denoted as τ1 ≤ τ2, if and only if for each x∈Var(F), τ1(x)≤ τ2(x). We define τ1
as strictly smaller than τ2, denoted as τ1 < τ2, if τ1 ≤ τ2 and τ1 �= τ2. A model τ is a

minimal model of F if and only if τ is a model of F and no model of F is strictly smaller

than τ . We use the notation MinModels(F) to denote minimal models of F and for a

set X ⊆Var(F), MinModels(F)↓X denotes the minimal models of F projected onto the

variable set X. The minimal model counting problem seeks to determine the cardinality

of MinModels(F), denoted |MinModels(F)|.
In this paper, we sometimes represent minimal models by listing the variables assigned

as true. For example, suppose Var(F) = {a, b, c} and under minimal model τ = {a, b},
τ(a) = τ(b) = true and τ(c) = false. The notation ¬τ denotes the negation of assignment

τ ; in fact, ¬τ is a clause or disjunction of literals (e.g., when τ = {a, b}, ¬τ =¬a∨¬b).
Throughout the paper, we use the notations τ and σ to denote an arbitrary assignment

and a minimal model of F , respectively. For each model σ ∈MinModels(F), each of the

variables assigned to true is justified ; more specifically, for every literal �∈ σ, there exists
a clause c∈ F such that σ \ {�} �|= c. Otherwise, σ \ {�} (smaller than σ) is a model of F .

2.2 Answer set programming

An answer set program P consists of a set of rules, each rule is structured as follows:

Rule r: a1 ∨ . . . ak← b1, . . . , bm, not c1, . . . , not cn (1)

where, a1, . . . , ak, b1, . . . , bm, c1, . . . , cn are propositional variables or atoms, and k, m, n

are non-negative integers. The notations Rules(P) and atoms(P) denote the rules and

atoms within the program P . In rule r, the operator “not” denotes default negation

(Clark 1978). For each rule r (Eq. (1)), we adopt the following notations: the atom

set {a1, . . . , ak} constitutes the head of r, denoted by Head(r), the set {b1, . . . , bm} is

referred to as the positive body atoms of r, denoted by Body(r)+, and the set {c1, . . . , cn}
is referred to as the negative body atoms of r, denoted by Body(r)−. A rule r called

a constraint when Head(r) = ∅. A program P is called a disjunctive logic program if

∃r ∈ Rules(P) such that |Head(r)| ≥ 2 (Ben-Eliyahu and Dechter 1994).

In ASP, an interpretation M over atoms(P) specifies which atoms are assigned

true; that is, an atom a is true under M if and only if a∈M (or false when a �∈M
resp.). An interpretation M satisfies a rule r, denoted by M |= r, if and only if

(Head(r)∪Body(r)−)∩M �= ∅ or Body(r)+ \M �= ∅. An interpretationM is amodel of P ,

denoted by M |= P , when ∀r∈Rules(P)M |= r. The Gelfond-Lifschitz reduct of a program

https://doi.org/10.1017/S147106842400036X Published online by Cambridge University Press

https://doi.org/10.1017/S147106842400036X

M. Kabir and K. S. Meel590

P , with respect to an interpretation M , is defined as PM = {Head(r)←Body(r)+|r ∈
Rules(P),Body(r)− ∩M = ∅} (Gelfond and Lifschitz 1991). An interpretation M is an

answer set of P if M |= P and no M ′ ⊂M exists such that M ′ |= PM . We denote the

answer sets of program P using the notation AS(P).

2.3 From minimal models to answer sets

Consider a Boolean formula, F =
∧

i Ci, where each clause is of the form: Ci = �0 ∨ . . . �k ∨
¬�k+1 ∨ . . .¬�m. We can transform each clause Ci into a rule r of the form: �0 ∨ . . .∨
�k← �k+1, . . . , �m. Given a formula F , let us denote this transformation by the notation

DLP(F). Each minimal model of F corresponds uniquely to an answer set of DLP(F).

2.4 Approximate lower bound

We denote the probability of an event e using the notation Pr[e]. For a Boolean formula

F , let c represents a lower bound estimate for the number of minimal models of F . We

assert that c is a lower bound for the number of minimal models with a confidence δ,

when Pr[c≤ |MinModels(F)|]≥ 1− δ.

2.5 Minimal generator in Itemset mining

We define transactions over a finite set of items, denoted by I. A transaction ti is an

ordered pair of (i, Ii), where i is the unique identifier of the transaction and Ii ⊆I
represents the set of items involved in the transaction. A transaction database is a

collection of transactions, where each uniquely identified by the identifier i, correspond-

ing to the transaction ti. A transaction (i, Ii) supports an itemset J ⊆I if J ⊆ Ii.

The cover of an itemset J within a database D, denoted as C(J, D), is defined as:

C(J, D) = {i|(i, Ii)∈D and J ⊆ Ii}. Given an itemset I and transaction database D, the

itemset I is a minimal generator of D if, for every itemset J where J ⊂ I, it holds that

C(I, D)⊂C(J, D).

2.6 Encoding minimal generators as minimal models

Given a transaction database D, we encode a Boolean formula MG(D) such that minimal

models ofMG(D) correspond one-to-one with the minimal generators ofD. This encoding

introduces two types of variables: (i) for each item a∈ I, we introduce a variable pa to

denote that a is present in a minimal generator (ii) for each transaction ti, we introduce a

variable qi to denote the presence of the itemset in the transaction ti. Given a transaction

database D= {ti|i= 1, . . . n}, consisting of the union of transactions ti, consider the

following Boolean formula:

MG(D) =

n∧
i=1

(¬qi→
∨

a∈I\Ii
pa) (2)

https://doi.org/10.1017/S147106842400036X Published online by Cambridge University Press

https://doi.org/10.1017/S147106842400036X

On lower bounding minimal model count 591

Lemma 1.

Given a transaction database D, σ is a minimal model of MG(D) if and only if the

corresponding itemset Iσ = {a|pa ∈ σ} is a minimal generator of D.

The encoding ofMG(D) bears similarities to the encoding detailed in (Jabbour et al. 2017;

Salhi 2019). However, our encoding achieves compactness by incorporating a one-sided

implication, which enhances the efficiency of the representation.

3 Related Works

Given its significance in numerous reasoning tasks, minimal model reasoning has garnered

considerable attention from the scientific community.

Minimal models of a Boolean formula F can be computed using an iterative approach

with a SAT solver (Li et al. 2021). The fundamental principle is as follows: for any model

α∈MinModels(F), no model of F can exist that is strictly smaller than α; thus, F ∧¬α
yields no model. Conversely, if F ∧¬α returns a model, it is strictly smaller than α.

Minimal models can be efficiently determined using unsatisfiable core-based MaxSAT

algorithms (Alviano 2017). This technique leverages the unsatisfiable core analysis com-

monly used in MaxSAT solvers and operates within an incremental solver to enumerate

minimal models sorted by their size. In parallel, another line of research focuses on the

enumeration of minimal models by applying cardinality constraints to calculate models

of bounded size (Liffiton and Sakallah 2008; Faber et al. 2016). Notably, Faber et al. 2016

employed an algorithm that utilized an external solver for the enumeration of cardinality-

minimal models of a given formula. Upon finding a minimal model, a blocking clause is

integrated into the input formula, ensuring that these models are not revisited by the

external solver.

There exists a close relationship between minimal models of propositional formula and

answer sets of ASP program (Ben-Eliyahu and Dechter 1994). Beyond solving disjunctive

logic programs (ref. Section 2), minimal models can also be effectively computed using

specialized techniques within the context of ASP, such as domain heuristics (Gebser et

al. 2013) and preference relations (Brewka et al. 2015).

Due to the intractability of minimal model finding, research has branched into explor-

ing specific subclasses of positive CNF formulas where minimal models can be efficiently

identified within polynomial time (Ben-Eliyahu and Dechter 1996; Angiulli et al. 2014).

Notably, a Horn formula possesses a singular minimal model, which can be derived in

linear time using unit propagation (Ben-Eliyahu and Dechter 1996). Ben-Eliyahu and

Palopoli 1997 developed an elimination algorithm designed to find and verify mini-

mal models for head-cycle-free formulas. Angiulli et al. 2022 introduced the Generalized

Elimination Algorithm (GEA), capable of identifying minimal models across any pos-

itive formula when paired with a suitably chosen eliminating operator. The efficiency

of the GEA hinges on the complexity of the specific eliminating operator used. With

an appropriate eliminating operator, the GEA can determine minimal models of head-

elementary-set-free CNF formulas in polynomial time. Notably, this category is a broader

superclass of the head-cycle-free subclass.

https://doi.org/10.1017/S147106842400036X Published online by Cambridge University Press

https://doi.org/10.1017/S147106842400036X

M. Kabir and K. S. Meel592

Graph-theoretic properties have been effectively utilized in the reasoning about min-

imal models. Specifically, Angiulli et al. 2022 demonstrated that minimal models of

positive CNF formulas can be decomposed based on the structure of their dependency

graph. Furthermore, they introduced an algorithm that leverages model decomposition,

utilizing the underlying dependency graph to facilitate the discovery of minimal mod-

els. This approach underscores the utility of graph-theoretic concepts in enhancing the

efficiency and understanding of minimal model reasoning.

To the best of our knowledge, the literature on minimal model counting is relatively

sparse. The complexity of counting minimal models for specific structures of Boolean

formulas, such as Horn, dual Horn, bijunctive, and affine, has been established as #P

(Durand and Hermann 2008). This complexity is notably lower than the general case

complexity, which is #co-NP-complete (Kirousis and Kolaitis 2003).

4 Estimating the Number of Minimal Models

In this section, we introduce methods for determining a lower bound for the number

of minimal models of a Boolean formula. We detail two specific approaches aimed at

estimating this number. The first method is based on the decomposition of the input

formula, whereas the second method utilizes a hashing-based approach of approximate

model counting.

4.1 Formula decomposition and minimal model counting

Considering a Boolean formula F = F1 ∧ F2, we define the components F1 and F2 as

disjoint if no variable of F is mentioned by both components F1 and F2 (i.e., Var(F1)∩
Var(F2) = ∅). Under this condition, the models of F can be independently derived from

the models of F1 and F2 and the vice versa. Thus, if F1 and F2 are disjoint in the formula

F = F1 ∧ F2, the total number of models of F is the product of the number of models of

F1 and F2. This principle underpins the decomposition frequently applied in knowledge

compilation (Lagniez and Marquis 2017).

Building on the concept of the knowledge compilation techniques, we introduce a strat-

egy centered on formula decomposition to count minimal models. Unlike methods that

count models for each disjoint component, we enumerate minimal models of F projected

onto the variables of disjoint components. Our approach incorporates a level of enumera-

tion that stops upon enumerating a specific count of minimal models, thereby providing

a lower bound estimate of the total number of minimal models. Our method utilizes a

straightforward “Cut” mechanism to facilitate formula decomposition.

4.1.1 Formula decomposition by “Cut”

A “cut” C within a formula F is identified as a subset of Var(F) such that for every

assignment τ ∈ 2C , F |τ effectively decomposes into disjoint components (Lagniez and

Marquis 2017). This concept is often used in context of model counting (Korhonen and

Järvisalo 2021). It is important to note that models of F |τ can be directly expanded into

models of F .

https://doi.org/10.1017/S147106842400036X Published online by Cambridge University Press

https://doi.org/10.1017/S147106842400036X

On lower bounding minimal model count 593

4.1.2 Challenges in knowledge compilation for counting minimal models

When it comes to counting minimal models, the straightforward application of unit prop-

agation and the conventional decomposition approach are not viable (Kabir 2024). More

specifically, simple unit propagation does not preserve minimal models. Additionally, the

count of minimal models cannot be simply calculated by multiplying the counts of min-

imal models of its disjoint components. An example provided below demonstrates these

inconsistencies.

Example 1.

Consider a formula F = {a∨ b∨ c,¬a∨¬b∨ d,¬a∨¬b∨ e}.

(i) With the assignment τ1 = {e}. Then {a} becomes a minimal model of F |τ1 .
However, the extended assignment τ1 ∪ {a} is not a minimal model of F .

(ii) Considering a cut C = {a, b} and the partial assignment τ2 = {a, b}, then F |τ2 is

decomposed into two components, each containing the unit clauses {d} and {e},
respectively. Despite this, the combined assignment τ2 ∪ {d, e}= {a, b, d, e} is not

a minimal model of F , as a strictly smaller assignment {a, d, e} also satisfies F .

Traditional methods such as unit propagation and formula decomposition cannot be

straightforwardly applied to minimal model counting. Importantly, every atom in a min-

imal model must be justified. In Example 1, (i) the variable e is assigned truth values

without justification, leading to an incorrect minimal model when the assignment is

extended with the minimal model of F |{e}. (ii) The formula is decomposed without

justifying the variables a and b, resulting in incorrect minimal model when combining

assignments from the other two components of F |{a,b}. Therefore, for accurate mini-

mal model counting, operations such as unit propagation and formula decomposition

must be applied only to assignments that are justified. Consequently, a knowledge com-

piler for minimal model counting must frequently verify the justification of assignments.

It is worth noting that verifying the justification of an assignment is computationally

intractable.

4.1.3 Minimal model counting using justified assignment

We introduce the concept of a justified assignment τ�, based on a given assignment

τ . Within the minimal model semantics, any assignment of false is inherently justified.

Therefore, we define justified assignment τ� as follows: τ� = τ↓{v∈Var(F)|τ(v)=0}.
By applying unit propagation of τ�, instead of τ , every minimal model derived from

F |τ� can be seamlessly extended into a minimal model of F . While F |τ effectively decom-

pose into multiple disjoint components, the use of a justified assignment τ� does not

necessarily lead to effectively F |τ� decomposing into disjoint components.

A basic approach to counting minimal models involves enumerating all minimal models.

When a formula is decomposed into multiple disjoint components, the number of minimal

models can be determined by conducting a projected enumeration over these disjoint

variable sets and subsequently multiplying the counts of projected minimal models. The

following corollary outlines how projected enumeration can be employed across disjoint

variable sets to accurately count the number of minimal models.

https://doi.org/10.1017/S147106842400036X Published online by Cambridge University Press

https://doi.org/10.1017/S147106842400036X

M. Kabir and K. S. Meel594

Algorithm 1. Proj-Enum(F, C)

1: cnt← 0, B←∅
2: while ∃σ ∈MinModelswithBlocking(F,B) do
3: τ ← σ↓C , d← 1
4: for Each comp∈ Components(F |τ�) do
5: d= d× |ProjMinModels(F, τ,Var(comp))|
6: cnt← cnt+ d
7: B.add(τ)
8: return cnt

Lemma 2.

Let F be decomposed into disjoint components F1, . . . , Fk, with each component Fi

having a variable set Vi =Var(Fi), for i∈ [1, k]. Suppose V =Var(F) =
⋃

i Vi. Then,

|MinModels(F)|=
∏k

i=1 |MinModels(F)↓Vi
|.

4.1.4 Algorithm: counting minimal models by projected enumeration

We introduce an enumeration-based algorithm, called Proj-Enum, that leverages justi-

fied assignments and projected enumeration to accurately count the number of minimal

models of a Boolean formula F . The algorithm takes in as input a Boolean formula

F and a set of variables C, referred to as a “cut” in our context. To understand how

the algorithm works, we introduce two new concepts: MinModelswithBlocking(F,B) and
ProjMinModels(F, τ, X). MinModelswithBlocking(F,B) finds σ ∈MinModels(F) such that

∀τ ∈B, σ �|= τ ; here, B is a set of blocking clauses and each blocking clause is an assignment

τ . ProjMinModels(F, τ, X) enumerates the set {σ↓X |σ ∈MinModels(F), σ |= τ}, where τ

serves as the conditioning factor and X serves as the projection set. The algorithm iter-

atively processes minimal models of F (Line 2), starting with an initially empty set of

blocking clauses (B= ∅). Upon identifying a minimal model σ, the algorithm projects

σ onto C, denoting the projected set as τ . Subsequently, Algorithm 1 enumerates all

minimal models σ ∈MinModels(F) that satisfy σ |= τ .

To address the inefficiency associated with brute-force enumeration, the algorithm

utilizes the concept of justified assignment and projected enumeration (Line 5). Lemma 2

establishes that the number of minimal models can be counted through multiplication.

The notation Components(F) (Line 4) denotes all disjoint components of the formula F . It

is important to note that if F |τ� does not decompose into more than one component, then

the projection variable set X defaults to Var(F), which leads to brute-force enumeration

of non-projected minimal models. Finally, the algorithm adds τ to B (Line 7) to prevent

the re-enumeration of the same minimal models.

4.1.5 Implementation details of Proj-Enum.

We implemented Proj-Enum using Python. To find minimal models using

MinModelswithBlocking(F,B), the algorithm invokes an ASP solver on DLP(F) (invoked

https://doi.org/10.1017/S147106842400036X Published online by Cambridge University Press

https://doi.org/10.1017/S147106842400036X

On lower bounding minimal model count 595

clingo as the underlying ASP solver). Each assignment τ ∈B is incorporated as a con-

straint (Alviano et al. 2022), which ensures that minimal models of F are preserved

((Kabir et al. 2022), see Corollary. 2). To compute ProjMinModels(F, τ, X), Algorithm 1

employs an ASP solver on DLP(F), using X as the projection set. Additionally, it incor-

porates each literal from τ as a facet into DLP(F) (Alrabbaa et al. 2018) to ensure that

the condition τ is satisfied. We noted that the function ProjMinModels(F, τ, X) requires

more time to enumerate all minimal models. To leverage the benefits of decomposition,

we enumerate upto a specific threshold number of minimal models (set the threshold

to 106 in our experiment) invoking ProjMinModels(F, τ, X). Consequently, our proto-

type either accurately counts the total number of minimal models or provides a lower

bound. Employing a tree decomposition technique (Hamann and Strasser 2018), we cal-

culated a cut of the formula that effectively decompose the input formula into several

components.

4.2 Hashing-based minimal model counting

The number of minimal models can be approximated using a hashing-based model count-

ing technique, which adds constraints that restrict the search space. Specifically, this

method applies uniform and random XOR constraints to a formula F , focusing the

search on a smaller subspace (Gomes et al. 2021). A particular XOR-based model counter

demonstrates that if t trials are conducted where s random and uniform XOR constraints

are added each time, and the constrained formula of F is satisfiable in all t cases, then F

has at least 2s−α models with high confidence, where α is the precision slack (Gomes et al.

2006a). Each XOR constraint incorporates variables from Var(F). Our approach to min-

imal model counting fundamentally derives from the strategy of introducing random and

uniform XOR constraints to the formula. In the domain of approximate model counting

and sampling, the XOR constraints consist of variables from a subset of Var(F), denoted

as X within our algorithm, which is widely known as independent support (Chakraborty

et al. 2016; Soos and Meel 2022).

Algorithm 2 outlines a hashing-based algorithm, named HashCount, for determining the

lower bound of minimal models of a Boolean formula F . This algorithm takes in a Boolean

formula F , an independent support X , and a confidence parameter δ. During its execu-

tion, the algorithm generates total |X | − 1 random and uniform XOR constraints, denoted

as Qi, where i ranges from 1 to |X | − 1. To better explain the operation of the algorithm,

we introduce a notation: MinModels(Fm) represents the minimal models of F satisfy-

ing first m XOR constraints, Q1, . . . , Qm. Upon generating random and uniform XOR

constraints, the algorithm finds the value of m such that |MinModels(Fm)|> 0 (mean-

ing that ∃σ ∈MinModels(F), σ |=Q1 ∧ . . .∧Qm), while |MinModels(Fm+1)|= 0 (meaning

that � ∃σ ∈MinModels(F), σ |=Q1 ∧ . . .∧Qm+1) by iterating a loop (Line 6). The loop

terminates either when a Timeout occurs or when it successfully identifies the value of

m. If the Timeout happens, the algorithm assigns the maximum observed value of m

(denoted as m̂) to m�, ensuring that |MinModels(F m̂)| ≥ 1 (Line 7), which is sufficient to

offer lower bounds. Finally, Algorithm 2 returns 2m
�−α as the probabilistic lower bound

of |MinModels(F)|.

https://doi.org/10.1017/S147106842400036X Published online by Cambridge University Press

https://doi.org/10.1017/S147106842400036X

M. Kabir and K. S. Meel596

Algorithm 2. HashCount(F,X , δ)

1: α←− log2 (δ) + 1

2: generate |X | − 1 random constraints, namely Q1, . . . , Q|X|−1

3: hasMinModels[0]← 1, hasMinModels[|X |]← 0, loIndex← 0, hiIndex← |X |, m← 1
4: m̂←⊥,m�←⊥
5: for i← 1 to |X | − 1 do hasMinModels[i]←⊥
6: while true do
7: if Timeout then m�← m̂ break
8: if ∃σ ∈MinModels(Fm) then
9: m̂←Max(m̂, m)
10: if hasMinModels[m+ 1] = 0 then m�←m break
11: for i← 1 to m do hasMinModels[i]← 1
12: loIndex←m
13: if 2×m< |X | then m← 2×m

14: else m← (hiIndex+m)
2

15: else
16: if hasMinModels[m− 1] = 1 then m�←m− 1 break
17: for i←m to |X | − 1 do hasMinModels[i]← 0
18: hiIndex←m

19: m← (loIndex+m)
2

20: return 2m
�−α

Algorithm 3. MinLB(F, δ)

1: if � ∃σ ∈MinModels(F) then return 0
2: if |Cut(F)| ≤ 50 then return Proj-Enum(F, Cut(F))
3: else return HashCount(F, IndependentSupport(F), δ)

4.2.1 Implementation details of HashCount

The effectiveness of an XOR-based model counter is dependent on the performance of

a theory+XOR solver (Soos et al. 2020). In our approach, we begin by transforming a

given formula F into a disjunctive logic program DLP(F) and introduce random and

uniform XOR constraints into DLP(F) to effectively partition the minimal models of

F . To verify the presence of any models in the XOR-constrained ASP program, we

leverage the ASP+XOR solver capabilities provided by ApproxASP (Kabir et al. 2022).

To compute an independent support for HashCount, we implemented a prototype inspired

by Arjun (Soos and Meel 2022), which checks answer sets of a disjunctive logic program

in accordance with Padoa’s theorem (Padoa 1901).

4.3 Putting it all together

We designed a hybrid solver MinLB, presented in Algorithm 3, that selects either

Proj-Enum or HashCount depending on the decomposability of the input formula. The core

https://doi.org/10.1017/S147106842400036X Published online by Cambridge University Press

https://doi.org/10.1017/S147106842400036X

On lower bounding minimal model count 597

principle of MinLB is that Proj-Enum effectively leverages decomposition and projected

enumeration on easily decomposable formulas. We use the size of the cut (|Cut(F)|) as a
proxy to measure the decomposability. Thus, if |Cut(F)| is small, then MinLB employs

Proj-Enum on F (Line 2); otherwise, it employs HashCount (Line 3).

Theorem 1.

Pr[MinLB(F, δ)≤ |MinModels(F)|]≥ 1− δ

5 Experimental Results

5.1 Benchmarks and baselines

Our benchmark set is collected from two different domains: (i) model counting bench-

marks from recent competitions (Fichte et al. 2021) and (ii) minimal generators

benchmark from itemset mining dataset CP4IM.2 We used existing systems for minimal

model reasoning as baselines. These included various approaches such as (i) repeated

invocations of the SAT solver MiniSAT (Li et al. 2021), (ii) the application of MaxSAT

techniques (Alviano 2017), (iii) domain-specific heuristics (Gebser et al. 2013), and (iv)

solving DLP(F) with ASP solvers, all systems primarily count via enumeration. These

systems either return the number of minimal models by enumerating all of them or a

lower bound of the number of minimal models in cases where they run out of time or

memory. We cannot count minimal models by #SAT-based ASP counters (Kabir et al.

2024) because of their incapablity of handling disjunctive logic programs. Experimentally,

we observed that, for enumerating all minimal models, the technique solving disjunc-

tive ASP programs using clingo (Gebser et al. 2012) surpassed the other techniques.

Therefore, we have exclusively reported the performance of clingo in our experimental

analysis. Additionally, we evaluated ApproxASP (Kabir et al. 2022), which offers (ε, δ)-

guarantees in counting minimal models. We attempted an exact minimal model counting

tool using a subtractive approach — subtracting the non-minimal model count from the

total model count–we denote the implementation using the notation #MinModels in fur-

ther analysis. In our experiment, we ran HashCount with a confidence δ value of 0.2 and

ApproxASP with confidence δ = 0.2 and tolerance ε= 0.8. The prototype is available at:

https://github.com/meelgroup/MinLB.

5.2 Environmental settings

All experiments were conducted on a high-performance computing cluster equipped with

nodes featuring AMD EPYC 7713 CPUs, each with 128 real cores. Throughout the exper-

iment, the runtime and memory limits were set to 5000 seconds and 16GB, respectively,

for all considered tools.

5.3 Evaluation metric

The goal of our experimental analysis is to evaluate various minimal model counting tools

based on their runtime and the quality of their lower bounds. It is essential to employ a

2 https://dtai.cs.kuleuven.be/CP4IM/datasets/

https://doi.org/10.1017/S147106842400036X Published online by Cambridge University Press

https://doi.org/10.1017/S147106842400036X

M. Kabir and K. S. Meel598

Table 1. The Time Quality Penalty scores of MinLB and other tools on
model counting benchmark

clingo ApproxASP #MinModels MinLB (our prototype)

6491 6379 7743 5599

The lower bound returned by Proj-Enum The lower bound returned by HashCount

(a) (b)

Fig 1. The lower bound of Proj-Enum and HashCount vis-a-vis the lower bound returned by
clingo on minimal model counting benchmark. The axes are in log scale.

metric that encompasses both runtime performance and the quality of the lower bound.

Consequently, following the TAP score (Agrawal et al. 2021; Kabir and Meel 2023), we

have introduced a metric, called the Time Quality Penalty (TQP) score, which is defined

for each tool and instance as follows:

TQP(t, C) =

{
2×T , if no lower bound is returned

t+ T × 1+log (Cmin+1)
1+log (C+1) , otherwise

In the metric, T represents the timeout for the experiment, t denotes the runtime of the

tool, C is the lower bound returned by the tool, and Cmin is the minimum lower bound

returned by any of the tools under consideration for the instance. The TQP score is based

on the following principle: lower runtime and higher lower bound yield a better score.

5.4 Performance on model counting competition benchmark

We present the TQP scores ofMinLB alongside other tools in Table 1. This table indicates

that MinLB achieves the lowest TQP scores. Among existing minimal model enumera-

tors, clingo demonstrates the best performance in terms of TQP score. Additionally, in

Figure 1, we graphically compare the lower bounds returned by Proj-Enum and HashCount

https://doi.org/10.1017/S147106842400036X Published online by Cambridge University Press

https://doi.org/10.1017/S147106842400036X

On lower bounding minimal model count 599

Table 2. The Time Quality Penalty scores of MinLB and other tools on
minimal generator benchmark

clingo ApproxASP #MinModels MinLB (our prototype)

6944 5713 9705 5043

The lower bound returned by Proj-Enum The lower bound returned by HashCount

(a) (b)

Fig 2. The lower bound returned by Proj-Enum and HashCount vis-a-vis the lower bound given
by clingo on minimal generators benchmark. The axes are in log scale.

against those returned by clingo. Here, a point (x, y) indicates that, for an instance, the

lower bounds returned by our prototypes and clingo are 2x and 2y, respectively. For

an instance, if the corresponding point resides below the diagonal line, it indicates that

Proj-Enum (HashCount, resp.) returns a better lower bound than clingo. These plots

clearly illustrate that Proj-Enum and HashCount return better lower bounds compared to

other existing minimal model enumerators.

5.5 Performance on minimal generator benchmark

Table 2 showcases the TQP scores of MinLB alongside other tools on the minimal gen-

erator benchmark. Notably, HashCount achieves the most favorable TQP scores on the

benchmark. Additionally, Figure 2 graphically compares the lower bounds returned by

Proj-Enum and HashCount against those computed by clingo.

For a visual representation of the lower bounds returned by our HashCount and

Proj-Enum, we illustrate them graphically in Figure 3. In the plot, a point (x, y) signifies

that a tool returns a lower bound of at most 2y for x instances. The plot demonstrates

that the lower bounds returned by Proj-Enum and HashCount surpass those of existing

systems.

https://doi.org/10.1017/S147106842400036X Published online by Cambridge University Press

https://doi.org/10.1017/S147106842400036X

M. Kabir and K. S. Meel600

Model counting benchmark Minimal generators benchmark

(a) (b)

Fig 3. The lower bounds returned by Proj-Enum, HashCount, and existing minimal model
counting tools. The y-axis show the log of the number of models.

5.6 Another performance metric

To facilitate the comparison of lower bounds returned by two tools, we have introduced

another metric for comparative analysis. If tools A and B yield lower bounds CA and

CB respectively, their relative quality is defined in the following manner:

rAB =
1+ log (CA + 1)

1 + log (CB + 1)
(3)

If rAB > 1, then the lower bound returned by tool A is superior to that of tool B.

5.6.1 In-depth study on Proj-Enum and HashCount

The performance of Proj-Enum and HashCount contingent upon the size of the cut and

independent support, respectively. In this analysis, we explore the strengths and weak-

nesses of Proj-Enum and HashCount by measuring their relative quality, as defined in

Equation (3), across various sizes of cuts and independent supports, respectively. This

comparative analysis is visually represented in Figure 4, where clingo serves as the

reference baseline.

In the graphical representations, each point (x, y) corresponds to an instance where

for the size of cut (independent support resp.) is x and the prototype Proj-Enum

(HashCount resp.) achieves a relative quality of y. A relative quality exceeding 1 indi-

cates that the lower bound returned by Proj-Enum or HashCount surpasses that of clingo.

These plots reveal that Proj-Enum tends to perform well with smaller cut sizes, while

HashCount demonstrates better performance across a range from small to medium sizes

of independent support.

6 Conclusion

This paper introduces two innovative methods for computing a lower bound on the num-

ber of minimal models. Our first method, Proj-Enum, leverages knowledge compilation

https://doi.org/10.1017/S147106842400036X Published online by Cambridge University Press

https://doi.org/10.1017/S147106842400036X

On lower bounding minimal model count 601

The relative quality of Proj-Enum with
varying cut size.

The relative quality of HashCount with
varying independent support size.

(a) (b)

Fig 4. The relative quality of Proj-Enum and HashCount vis-a-vis different cut and independent
support size, where clingo is used as the reference baseline. The horizontal line is across r= 1.

techniques to provide improved lower bounds for easily decomposable formulas. The sec-

ond method, HashCount, utilizes recent advancements in ASP+XOR reasoning systems

and demonstrates performance that varies with the size of the independent support. Our

proposed methods exploit the expressive power of ASP semantics and robustness of well-

engineered ASP systems. Looking forward, our research will focus on counting projected

minimal models. We also plan to explore the counting of minimal correction subsets ,

which are closely related to minimal models.

Acknowledgement

This work was supported in part by National Research Foundation Singapore under

its NRF Fellowship Programme [NRF-NRFFAI1-2019-0004], Ministry of Education

Singapore Tier 2 grant MOE-T2EP20121-0011, and Ministry of Education Singapore

Tier 1 Grant [R-252-000-B59-114]. The computational work for this article was performed

on resources of the National Supercomputing Centre, Singapore (https://www.nscc.sg).

Kabir was visiting the University of Toronto during the research.

References

Agrawal, D., Pote, Y. and Meel, K. S. 2021. Partition function estimation: A quantitative
study. In IJCAI, 4276–4285.

Alrabbaa, C., Rudolph, S. and Schweizer, L. 2018. Faceted answer-set navigation, In
RuleML+RR. Springer, 211–225

Alviano, M. 2017. Model enumeration in propositional circumscription via unsatisfiable core
analysis. Theory and Practice of Logic Programming 17, 5-6, 708–725.

https://doi.org/10.1017/S147106842400036X Published online by Cambridge University Press

https://doi.org/10.1017/S147106842400036X

M. Kabir and K. S. Meel602

Alviano, M., Dodaro, C., Fiorentino, S., Previti, A. and Ricca, F.2022. Enumeration of
minimal models and MUSes in WASP. In LPNMR. Springer, 29–42

Angiulli, F., Ben-Eliyahu, R., Fassetti, F. and Palopoli, L. 2014. On the tractability of
minimal model computation for some CNF theories. Artificial Intelligence 210, 56–77.

Angiulli, F., Ben-Eliyahu, R., Fassetti, F. AND Palapoli, L. 2022. Graph-based construc-
tion of minimal models. Artificial Intelligence 313, 103754.

Ben-Eliyahu, R. 2005. An incremental algorithm for generating all minimal models. Artificial
Intelligence 169, 1, 1–22.

Ben-Eliyahu, R. and Dechter, R. 1994. Propositional semantics for disjunctive logic
programs. Annals of Mathematics and Artificial Intelligence. 12, 1-2, 53–87.

Ben-ELIYAHU, R. and Dechter, R. 1996. On computing minimal models. Annals of
Mathematics and Artificial Intelligence 18, 1, 3–27.

Ben-ELIYAHU, R. and Palopoli, L. 1997. Reasoning with minimal models: Efficient
algorithms and applications. Artificial Intelligence 96, 2, 421–449.

Bozzano, M., Cimatti, A., Griggio, A., Jonas, M. and Kimberley, G. 2022. Analysis of
cyclic fault propagation via ASP. In LPNMR. Springer, 470–483

Brewka, G., Delgrande, J., Romero, J. and Schaub, T. 2015. Asprin: Customizing answer
set preferences without a headache. In AAAI, vol. 29.

Cadoli, M. 1992a. The complexity of model checking for circumscriptive formulae. Information
Processing Letters 44, 3, 113–118.

Cadoli, M. 1992b. On the complexity of model finding for nonmonotonic propositional logics,
In Italian Conference on Theoretical Computer Science, 1992, 125–139.

Chakraborty, S., Meel, K. S. and Vardi, M. Y. 2013. A scalable approximate model counter.
In CP. Springer, 200–216

Chakraborty, S., Meel, K. S. and Vardi, M. Y. 2016. Algorithmic improvements in approx-
imate counting for probabilistic inference: from linear to logarithmic SAT calls. In IJCAI,
3569–3576

Clark, K. L.1978. Negation as failure. In Logic and Data Bases, 293–322

Darwiche, A. 2004. New advances in compiling CNF to decomposable negation normal form.
In ECAI. Citeseer, 328–332

De kleer, J., Mackworth, A. K. and Reiter, R. 1992. Characterizing diagnoses and systems.
Artificial Intelligence 56, 2-3, 197–222.

Durand, A. and Hermann, M. 2008. On the counting complexity of propositional circumscrip-
tion. Information Processing Letters 106, 4, 164–170.

Eiter, T. and Gottlob, G. 1993. Propositional circumscription and extended closed-world
reasoning are

∏P
2-complete. Theoretical Computer Science 114, 2, 231–245.

Faber, W., Vallati, M., Cerutti, F. and Giacomin, M. 2016. Solving set optimization
problems by cardinality optimization with an application to argumentation.

Fichte, J. K., Gaggl, S. A. and Rusovac, D. 2022. Rushing and strolling among answer
sets–navigation made easy. In AAAI, vol. 36, 5651–5659

Fichte, J. K., Hecher, M. and Hamiti, F. 2021. The model counting competition 2020. ACM
Journal of Experimental Algorithmics 26, 1–26.

Gebser, M., Kaufmann, B. and Schaub, T. 2012. Conflict-driven answer set solving: From
theory to practice. Artificial Intelligence 187-188, 52–89.

Gebser, M., Kaufmann, B., Romero, J., Otero, R., Schaub, T. and Wanko, P. 2013.
Domain-specific heuristics in answer set programming. In AAAI, vol. 27, 350–356.

Gelfond, M. and Lifschitz, V. 1991. Classical negation in logic programs and disjunctive
databases. New Generation Computing 9, 3-4, 365–385.

https://doi.org/10.1017/S147106842400036X Published online by Cambridge University Press

https://doi.org/10.1017/S147106842400036X

On lower bounding minimal model count 603

Gomes, C. P., Hoffmann,J., Sabharwal, A. and Selman, B. 2007. From sampling to model
counting. In IJCAI, vol. 2007, 2293–2299

Gomes, C. P., A., Sabharwal and Selman, B. 2006a. Model counting: A new strategy for
obtaining good bounds. In AAAI, vol. 10, 1597538–1597548

Gomes, C. P., Sabharwal, A. and Selman, B. 2006b. Near-uniform sampling of combinatorial
spaces using XOR constraints. NIPS 19, 670–676.

Gomes, C. P., Sabharwal, A. and Selman, B. 2021. Model counting. In Handbook of
Satisfiability. IOS Press, 993–1014.

Hamann, M. and Strasser, B. 2018. Graph bisection with pareto optimization. ACM Journal
of Experimental Algorithmics 23, 1–34.

Hunter, A. and Konieczny, S. 2008. Measuring inconsistency through minimal inconsistent
sets. KR 8, 42, 358–366.

Jabbour, S., Sais, L. and Salhi, Y. 2017. Mining Top-k motifs with a SAT-based framework.
Artificial Intelligence 244, 30–47.

Jannach, D., Schmitz, T. and Shchekotykhin, K. 2016. Parallel model-based diagnosis on
multi-core computers. Journal of Artificial Intelligence Research 55, 835–887.

Kabir, M. 2024. Minimal model counting via knowledge compilation. arXiv preprint arXiv:
2409.10170.

Kabir, M., Chakraborty, S. and Meel, K. S. 2024.Exact ASP counting with compact
encodings. In AAAI, vol. 38, 10571–10580

Kabir, M., Everado, F. O., Shukla, A. K., Hecher, M., Fichte, J. K. and Meel, K. S.
2022. ApproxASP–a scalable approximate answer set counter. In AAAI, vol. 36, 5755–5764

Kabir, M. and Meel, K. S. 2023. A fast and accurate ASP counting based network reliability
estimator. In LPAR, 270–287

Kirousis, L. M. and Kolaitis, P. G. 2003. The complexity of minimal satisfiability problems.
Information and Computation 187, 1, 20–39.

Korhonen, T. and Jarvisalo, M. 2021. Integrating tree decompositions into decision heuristics
of propositional model counters. In CP, 8–1

Lagniez, J.-M. and Marquis, P. 2017. An improved decision-DNNF compiler. In IJCAI. vol.
17, 667–673

Li, Z., Yisong, W., Zhongtao, X. and Renyan, F. 2021. Computing propositional minimal
models: MiniSAT-based approaches. Journal of Computer Research and Development 58, 11,
2515–2523.

Liffiton, M. H. and Sakallah, K. A. 2008. Algorithms for computing minimal unsatisfiable
subsets of constraints. Journal of Automated Reasoning 40, 1–33.

Lifschitz, V. 1985. Computing circumscription. In IJCAI. vol. 85, 121–127

Marek, V. W. and Truszczynski, M. 1999. Stable models and an alternative logic program-
ming paradigm. In The logic Programming Paradigm: A 25-Year Perspective, 375–398

Mccarthy, J. 1980. Circumscription–a form of non-monotonic reasoning. Artificial Intelligence
13, 1-2, 27, 39.

Minker, J. 1982. On indefinite databases and the closed world assumption. In CADE. Springer,
292–308

Padoa, A. 1901. Essai d’une théorie algébrique des nombres entiers, précédé d’une introduc-
tion logique à une théorie déductive quelconque. Bibliothèque Du Congrès International De
Philosophie 3, 309–365

Reiter, R. 1980. A logic for default reasoning. Artificial Intelligence 13, 1-2, 81–132.

Salhi, Y. 2019. On enumerating all the minimal models for particular CNF formula classes. In
ICAART, vol. 2, 403–410

https://doi.org/10.1017/S147106842400036X Published online by Cambridge University Press

https://doi.org/10.1017/S147106842400036X

M. Kabir and K. S. Meel604

Soos, M., S., Gocht and Meel, K. S. 2020. Tinted, detached, and lazy CNF-XOR solving and
its applications to counting and sampling. In CAV. Springer, 463–484

Soos, M. and Meel, K. S. 2022. Arjun: An efficient independent support computation technique
and its applications to counting and sampling. In ICCAD, 1–9

Thimm, M. 2016. On the expressivity of inconsistency measures. Artificial Intelligence 234,
120–151.

Thurley, M. 2006. SharpSAT–counting models with advanced component caching and implicit
BCP. In SAT. Springer, 424–429

Appendix

The missing proofs are available in the extended version of the paper: https://arxiv.org/abs/
2407.09744.

Analysis of Proj-Enum

Lemma 3.
For Boolean formula F and a cut C, the minimal models of F can be computed as follows:
MinModels(F) =

⋃
τ∈2C ProjMinModels(F, τ,Var(F)).

Proof.
Lemma 2 demonstrates that minimal models can be computed through component decom-
positions. By taking the union over τ ∈ 2C , we iterate over all possible assignments of C.
Consequently, Proj-Enum algorithm computes all minimal models of F by conditioning over
all possible assignments over C. Therefore, the algorithm is correct.

Analysis of HashCount

We adopt the following notation: s� = log2 |MinModels(F)|. Each minimal model σ of F is an
assignment over Var(F), and according to the definition of random XOR constraint (Gomes et
al. 2006b), σ satisifies a random XOR constraint with probability of 1/2. Due to uniformity
and randomness of XOR constraints, each minimal model of F satisfies m random and uniform
XOR constraints with probability of 1/2m. In our theoretical analysis, we apply the Markov

inequality: if Y is a non-negative random variable, then Pr[Y ≥ a]≤ E[Y]
a

, where a> 0.

Lemma 4.

For arbitrary s, Pr[|MinModels(F s)≥ 1|]≤ 2s
�

2s
.

Proof.
For each σ ∈MinModels(F), we define a random variable Yσ ∈ {0, 1} and Yσ = 1 indicates that
σ satisifies the first s XOR constraints Q1, . . . , Qs, otherwise, Yσ = 0. The random variable
Y is the summation, Y =

∑
σ∈MinModels(F) Yσ. The expected value of Y can be calculated as

E(Y) =
∑

σ∈MinModels(F) E(Yσ).

Due to the nature of random and uniform XOR constraints, each minimal model σ ∈
MinModels(F) satisfies all s XOR constraints with probability 1

2s
. It follows that the expected

value E(Yσ) =
1
2s
, and the expected value of Y is E(Y) = |MinModels(F)|

2s
= 2s

�

2s
. According to the

Markov inequality: Pr[|MinModels(F s)≥ 1|]≤ 2s
�

2s
.

Lemma 5.
Given a formula F and confidence δ, if HashCount(F, δ) returns 2s−α, then Pr[2s−α ≤
|MinModels(F)|]≥ 1− δ

Proof.
Given a input Boolean formula F and for each m∈ [1, |X | − 1], we denote the following two
events: Im denotes the event that Algorithm 2 invokesMinModels(Fm) and Em denotes the event
that |MinModels(Fm)| ≥ 1. The algorithm HashCount(F, δ) returns an incorrect bound when

https://doi.org/10.1017/S147106842400036X Published online by Cambridge University Press

https://doi.org/10.1017/S147106842400036X

On lower bounding minimal model count 605

s− α> s� and let use the notation Error to denote that HashCount(F, δ) returns an incorrect

bound or HashCount(F, δ)> 2s
�

. The upper bound of Pr[Error] can be calculated as follows:

Pr[Error] = Pr[HashCount(F, δ)returns2s−αand s > s� + α]

≤
∑

s>s�+α

Pr[Is ∩Es]≤
∑

s>s�+α

Pr[Es]

≤
∑

s>s�+α

Pr[|MinModels(F s)| ≥ 1]≤
∑

s>s�+α

2s
�

2s
According to Lemma 4

≤ 1

2α
× 2≤ 21−α ≤ 2log2 δ ≤ δ

Thus, Pr[HashCount(F, δ) returns 2s−α and s≤ s� + α]≥ 1− δ.

https://doi.org/10.1017/S147106842400036X Published online by Cambridge University Press

https://doi.org/10.1017/S147106842400036X

	Introduction
	Preliminaries
	Propositional satisfiability
	Answer set programming
	From minimal models to answer sets
	Approximate lower bound
	Minimal generator in Itemset mining
	Encoding minimal generators as minimal models

	Related Works
	Estimating the Number of Minimal Models
	Formula decomposition and minimal model counting
	Formula decomposition by "201C`Cut"201D`
	Challenges in knowledge compilation for counting minimal models
	Minimal model counting using justified assignment
	Algorithm: counting minimal models by projected enumeration
	Implementation details of

	Hashing-based minimal model counting
	Implementation details of

	Putting it all together

	Experimental Results
	Benchmarks and baselines
	Environmental settings
	Evaluation metric
	Performance on model counting competition benchmark
	Performance on minimal generator benchmark
	Another performance metric
	In-depth study on and

	Conclusion
	References
	
	Analysis of
	Analysis of

