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Abstract

Under mild assumptions, we show that the exact convergence rate in total variation is
also exact in weaker Wasserstein distances for the Metropolis–Hastings independence
sampler. We develop a new upper and lower bound on the worst-case Wasserstein dis-
tance when initialized from points. For an arbitrary point initialization, we show that
the convergence rate is the same and matches the convergence rate in total variation.
We derive exact convergence expressions for more general Wasserstein distances when
initialization is at a specific point. Using optimization, we construct a novel centered
independent proposal to develop exact convergence rates in Bayesian quantile regres-
sion and many generalized linear model settings. We show that the exact convergence
rate can be upper bounded in Bayesian binary response regression (e.g. logistic and
probit) when the sample size and dimension grow together.
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1. Introduction

Applications in modern statistics often require generating Monte Carlo samples from
a distribution defined on �⊆R

d using a version of the Metropolis–Hastings algorithm
[4, 16, 30]. Popular versions of Metropolis–Hastings include, among many others, random
walk Metropolis–Hastings (RWM), the Metropolis-adjusted Langevin algorithm (MALA), the
Metropolis–Hastings independence (MHI) sampler, and Hamiltonian Monte Carlo.

Convergence analyses of general state space Metropolis–Hastings algorithms have tradi-
tionally focused on studying their convergence rates in total variation distances [31, 44, 48].
These convergence rates have received significant attention, at least in part, because they pro-
vide a key sufficient condition for the existence of central limit theorems [22] and the validity
of methods for assessing the reliability of the simulation effort [43, 49]. However, convergence
analyses of Metropolis–Hastings Markov chains typically result in qualitative convergence
rates [15, 18, 21, 29, 42]. Exact convergence rates in total variation in the general state space
setting have been nonexistent until recently and these are for MHI samplers [46, 52]. Moreover,
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exact convergence rates in total variation for MHI samplers have been studied only in trivial
examples. This leaves practitioners with little guidance on the true convergence behavior and
reliability of MHI samplers in practical applications, especially in high dimensions.

At the same time, there has been significant recent interest in the convergence properties
of Monte Carlo Markov chains in high-dimensional settings [8, 11, 15, 20, 37, 41, 53] and
traditional approaches can have limitations in this regime [38]. This has led to an interest in
considering the convergence of Monte Carlo Markov chains using Wasserstein distances [13,
15, 19, 28, 39, 40] which may scale to large problem sizes where other approaches have had
difficulties [7, 15, 40]. Convergence analyses in Wasserstein distances also result in benefits
similar to those obtained using total variation such as central limit theorems and concentration
inequalities for time averages of the Markov chain [15, 19, 23, 26].

We study exact convergence rates of the MHI sampler in L1-Wasserstein distances, which
we refer to as just Wasserstein distances. There has been previous successful convergence
analysis of Metropolis–Hastings algorithms using specific Wasserstein distances [7, 15]. We
develop exact convergence rates which are universal across many different metrics used in
Wasserstein distances for the MHI sampler, simultaneously. Under mild assumptions, we show
that the exact convergence rate in total variation [52] is also exact for Wasserstein distances
weaker than total variation for every initialization. We provide a new upper and lower bound
on the worst-case Wasserstein distance when initialized from points. Under mild assumptions,
similar to the ones used for the result in total variation [52], we show that the convergence
rate at any point initialization is the same as the worst-case convergence rate. When the algo-
rithm is started at a specific point, we give exact convergence expressions across more general
Wasserstein distances, possibly stronger than total variation.

Our theoretical results on the exact convergence rate extend the results in total variation
[52] to Wasserstein distances. However, only a trivial example was studied in total variation
[52]. We provide a practically relevant application of our theoretical results by developing
exact convergence expressions using normal–inverse-gamma proposals in the Bayesian quan-
tile regression setting. Previously, qualitative convergence results for a Gibbs sampler were
developed [25].

Compared to methods used to approximate integrals such as importance sampling, MHI
samplers can generate samples from the target distribution, which is often of interest for prac-
titioners. MHI samplers can also be computationally efficient at each iteration, in contrast to
more sophisticated Markov chain Monte Carlo algorithms, but can require many iterations to
accept a proposed sample. Connections between the MHI sampler and rejection sampling are
also well known [27, 48]. Exact convergence rates for MHI samplers may also provide insight
into the convergence rates of more popular Metropolis–Hastings algorithms such as the MALA
and RWM algorithms [5].

Motivated by the general theoretical work, we consider using a centered Gaussian proposal
and derive exact convergence expressions in Wasserstein distances for a large class of target
distributions. The centered Gaussian proposal matches the maximal point of the proposal den-
sity with that of the target density. By centering an independent proposal, we directly imbue
the Markov chain with a strong attraction to a set where the target distribution has high prob-
ability. This centered Gaussian proposal is similar to using a Laplace approximation [35, 45,
48], but differs in its covariance matrix. We study this MHI in several Bayesian generalized
linear models and derive exact convergence expressions in general Wasserstein distances.

Our techniques are based on a well-known condition [29, 48, 52], but the novelty in
our analysis is a carefully constructed proposal to develop exact convergence rates across
Wasserstein distances. We then consider scaling properties of the exact convergence rate to
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large dimensions and sample sizes in high-dimensional Bayesian binary response regression
(e.g. logistic and probit regression) with Gaussian priors. Data augmentation algorithms have
been developed for these models [1, 36], but the required matrix inversions at each itera-
tion can be computationally intensive. We derive an explicit asymptotic upper bound on the
convergence rate of our centered MHI sampler for general Wasserstein distances, indepen-
dent of the dimension d and sample size n, when they increase in such a way that the ratio
d/n → γ ∈ (0,+∞). In this case, we show informative convergence rates for practitioners for
the MHI sampler which can scale to large problem sizes when the convergence analysis is
exact.

To the best of our knowledge, this work is the first to successfully address the convergence
complexity of Metropolis–Hastings in general Wasserstein distances when both the sample
size and the dimension increase. Previously, under the conditions of a central limit theorem,
the convergence complexity in total variation of RWM on a compact set was studied [2]. In
contrast, our convergence complexity results do not rely on the underlying space being com-
pact. The dimension dependence of the mixing time has been studied in specific Wasserstein
distances and total variation for Metropolis-Hastings algorithms such as MALA and RWM
for certain log-concave target distributions [9, 10]. We take into account the sample size, and
upper bound the convergence rate to provide further theoretical guarantees for time averages
of the Markov chain [22, 23].

Some related quantitative convergence complexity bounds look at the spectral gap, implying
a convergence rate in total variation from a specific distribution initialization. For example, the
convergence rate of a random walk algorithm for logistic regression in one dimension has
been studied in terms of the sample size [20]. Other related results concern the convergence
properties of some high-dimensional Gibbs samplers [33, 34] or the convergence properties of
Gibbs samplers when the dimension or the sample size increase individually [11, 40, 41].

The remainder is organized as follows. In Section 2, we define the Metropolis–Hastings
independence sampler and the Wasserstein distance. In Section 3, we develop exact conver-
gence rates in the Wasserstein distance for the MHI sampler and apply this theory to Bayesian
quantile regression. In Section 5, we study a centered Gaussian proposal to obtain exact con-
vergence expressions and apply this to many popular Bayesian generalized linear models used
in statistics. We also develop high-dimensional convergence complexity results for Bayesian
binary response regression in the large-dimension and large-sample-size regime. Section 6
contains some final remarks. Some technical details and proofs are deferred to the appendices.

2. MHI samplers and Wasserstein distances

As they will be considered here, MHI samplers simulate a Markov chain with invariant
distribution � supported on a nonempty set �⊆R

d using a proposal distribution Q which, to
avoid trivialities, is assumed throughout to be different than �. We also assume throughout
that � has Lebesgue density π with support �, and Q has Lebesgue density q with support �.
Define

a(θ, θ ′) =
⎧⎨
⎩min

{
π (θ ′)q(θ )

π (θ )q(θ ′)
, 1

}
if π (θ )q(θ ′)> 0,

1 if π (θ )q(θ ′) = 0.

We consider MHI samplers initialized at a point θ0 ∈�. MHI proceeds as follows: for t ∈
{1, 2, . . .}, given θt−1, draw θ ′

t ∼ Q(·) and Ut ∼ Unif(0, 1) independently so that

θt =
{
θ ′

t if Ut ≤ a(θt−1, θ
′
t ),

θt−1 otherwise.
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If δθ denotes the Dirac measure at the point θ , the MHI Markov kernel P is defined for θ ∈R
d

and B ⊆R
d by

P(θ, B) =
∫

B
a(θ, θ ′)q(θ ′) dθ ′ + δθ (B)

(
1 −

∫
a(θ, θ ′)q(θ ′) dθ ′

)
.

For θ ∈R
d, define the Markov kernel at iteration time t ≥ 2 recursively by

Pt(θ, B) =
∫

P(θ, dθ ′)Pt−1(θ ′, B).

Let C(Pt(θ, ·), �) be the set of all joint probability measures with marginals Pt(θ, ·), and �
and ρ be a lower semicontinuous metric. The L1-Wasserstein distance [24, 50, 51], which we
will call simply the Wasserstein distance, is

Wρ(Pt(θ, ·), �) = inf
ξ∈C(Pt(θ,·),�)

∫
ρ(θ ′, ω) dξ (θ ′, ω).

Notice that when the metric ρ is ρ(θ, ω) = Iθ �=ω, then the Wasserstein distance is the total
variation distance. More generally, for a lower semicontinuous function V ≥ 1, ρ(θ, ω) =
[V(θ ) + V(ω)]Iθ �=ω defines a weighted total variation distance. Another example is ρ(θ, ω) =
min{‖θ −ω‖ , 1}, which is always less than the Hamming metric used in total variation. More
general Lp-Wasserstein distances with p ≥ 2 are not studied in this work.

Wasserstein distances control the bias of integrals of Pt(θ, ·) over all ρ-Lipschitz func-
tions, whereas total variation controls the bias for bounded, measurable functions. Often in
applications, various types of Lipschitz functions are of interest. Consider, for example, func-
tions such as the identity function and Winsorized functions such as g(ω) = (−R) ∨ (R ∧ω)
where R ∈ (0,+∞), which reduce sensitivity to extreme values. An alternative motivation for
using Wasserstein distances is that convergence analysis in certain Wasserstein distances may
improve the scaling to high dimensions [15, 39, 40]. Serious problems can arise with exist-
ing convergence analysis in total variation [48] in high dimensions even for seemingly trivial
examples such as the one below.

Example 1. Consider a standard d−dimensional Gaussian target distribution�≡ N(0, Id) and
Gaussian proposal Q ≡ N(0, σ 2Id) with σ 2 ∈ (1,∞). With ρTV(θ ′, ω′) = Iθ ′ �=ω′ , current results
on convergence analysis [48] show that, for every θ ∈R

d, the ratio of the proposal and target
densities infθ {q(θ )/π (θ )} ≥ σ−d and WρTV(Pt(θ, ·), �) ≤ (1 − σ−d)t. In particular, σ−d ≈ 0
in high dimensions.

At a specific initialization, we may look for a smaller convergence rate which may scale to
high dimensions in a Wasserstein distance weaker than total variation. We will not only develop
an exact convergence analysis which controls the bias for Lipschitz functions, but, roughly
speaking, we also discover that the convergence rate in Example 1 is exact for Wasserstein
distances and the same for every initialization. Nevertheless, we show that convergence rates
can scale to large problem sizes using a novel proposal and exact convergence analysis.

3. Exact convergence rates for MHI samplers

When the ratio of the proposal and target densities is bounded below by a positive num-
ber, i.e. ε∗ = infθ∈�{q(θ )/π (θ )}> 0, the MHI sampler is uniformly ergodic in total variation
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with convergence rate upper bounded by 1 − ε∗ [48, Corollary 4]. Unlike in accept–reject
sampling, ε∗ does not need to be known explicitly or computed in order to implement MHI.
However, this requirement was shown to be necessary for uniform ergodicity in total variation
[29, Theorem 2.1]. More recently, it was shown that the convergence rate cannot be improved
[52, Theorem 1]. We show this to be the case even in weaker Wasserstein distances where
the lower bound does not follow trivially from that of the total variation lower bound [52,
Theorem 1].

Theorem 1. Suppose ρ(·, ·) ≤ 1. Then

sup
θ∈�

Wρ(Pt(θ, ·), �) ≤ (1 − ε∗)t sup
θ∈�

∫
ρ(·, θ ) d�.

If, in addition, q is lower semicontinuous on �, π is upper semicontinuous on �, and � can
be expressed as a countable union of compact sets, then

(1 − ε∗)t inf
θ∈�

∫
ρ(·, θ ) d�≤ sup

θ∈�
Wρ(Pt(θ, ·), �) ≤ (1 − ε∗)t sup

θ∈�

∫
ρ(·, θ ) d�.

Proof. The proof is provided in Appendix A. �

The semicontinuity assumption is not required when working with the total variation dis-
tance [52, Theorem 1], but it is a mild assumption that holds in many practical applications. The
upper bound constant can improve upon upper bounds in total variation [48] if, for example, ρ
is continuous and � is compact. If ε∗ = 0, Theorem 1 also gives the lower bound

inf
θ∈�

∫
ρ(·, θ ) d�≤ sup

θ∈�
Wρ(Pt(θ, ·), �),

which shows that MHI cannot converge uniformly from any starting point for many
Wasserstein distances. Thus, under mild assumptions, Theorem 1 gives a complete charac-
terization of the worst-case convergence of the MHI sampler in many Wasserstein distances.

Exact convergence expressions are available when the Markov chain is initialized at θ∗ =
argmin{q(θ )/π (θ ) : θ ∈�} using techniques from [52].

Proposition 1. Suppose there exists a solution θ∗ = argmin{q(θ )/π (θ ) : θ ∈�}. Then

Wρ(Pt(θ∗, ·), �) = (1 − q(θ∗)/π (θ∗))t
∫
ρ(θ, θ∗) d�(θ ).

Proof. Define εθ∗ = q(θ∗)/π (θ∗) = ε∗. Under our assumptions, Pt(θ∗, ·) can be represented
as a convex combination of the target distribution and the Dirac measure at the point θ∗ [52,
Remark 1, Theorem 2], that is,

Pt(θ∗, ·) = (1 − (1 − εθ∗ )t)�+ (1 − εθ∗ )tδθ∗ .

Let ψ :�→R be a function such that
∫
�

|ψ | d�<∞. We have the identity∫
�

ψ dPt(θ∗, ·) = (1 − (1 − εθ∗ )t)
∫
�

ψ d�+ (1 − εθ∗ )tψ(θ∗).

Since the only coupling between �∗ and the Dirac measure δθ∗ is the independent coupling
[14], the Wasserstein distance takes the simple form Wρ(δθ∗ , �) = ∫

ρ(θ, θ∗) d�(θ ).
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Since q is not exactly π , εθ∗ ∈ (0, 1). Let Mb(Rd) be the set of bounded measurable functions
on R

d and, for real-valued functions ϕ, let ‖ϕ‖Lip(ρ) = supx,y,x �=y{|ϕ(x) − ϕ(y)|/ρ(x, y)} denote
the Lipschitz norm with respect to the distance ρ. Applying the Kantorovich–Rubinstein
theorem [50, Theorem 1.14],

Wρ(Pt(θ∗, ·), �) = sup
ϕ∈Mb(Rd)
‖ϕ‖Lip(ρ)≤1

∫
�

ϕ d(Pt(θ∗, ·) −�)

= sup
ϕ∈Mb(Rd)
‖ϕ‖Lip(ρ)≤1

{
(1 − εθ∗ )t

∫
�

ϕ d(δθ∗ −�)

}

= (1 − εθ∗ )t sup
ϕ∈Mb(Rd)
‖ϕ‖Lip(ρ)≤1

∫
�

ϕ d (δθ∗ −�)

= (1 − εθ∗ )tWρ(δθ∗ , �) = (1 − εθ∗ )t
∫
�

ρ(θ, θ∗) d�(θ ). �

3.1. Application: Bayesian quantile regression

Fix r ∈ (0, 1) and suppose, for i = 1, . . . , n, that εi are independent and identically dis-
tributed (i.i.d.) with density pr(ε) = r(1 − r)( exp((1 − r)ε)Iε<0 + exp(−rε)Iε≥0). Let v0, s0 ∈
(0,∞) and C ∈R

d×d be symmetric positive-definite. We parameterize the inverse gamma
distribution so that if σ ∼ IG(v, s) for some v, c ∈ (0,∞), then it has a density proportional
to σ−v−1 exp(−s/σ ). Assume the Bayesian quantile regression model for i ∈ 1, . . . , n where
Xi ∈R

d is fixed and

σ ∼ IG(v0, s0), β | σ ∼ Nd(0, σC), Yi = β�Xi + σεi.

Let �(· | X, Y) denote the posterior and π (· | X, Y) denote the density for this Bayesian model
with normalizing constant Z�(·|X,Y).

Upper bounds on the convergence rate were previously investigated for Gibbs samplers
[25] in this setting. We will study the MHI sampler with a normal–inverse-gamma proposal
constructed as follows. Define the convex function by �r(u) = u(r − Iu<0) and sn,r : Rd →R

by sn,r(β) =∑n
i=1 �r(Yi − β�Xi) + β�C−1β/2. Since sn,r is strongly convex, let β∗ ∈R

d be
the unique minimum of the function sn,r. Now the MHI proposal is given by

σ ∼ IG(n + v0, s0 + sn,r(β∗)), β | σ ∼ Nd(β∗, σC).

Let � : (0,∞) →R be the usual Gamma function and define

εβ∗ = Z�(·|X,Y)(2π )−d/2 det(C)−1/2(s0 + sn,r(β∗))n+v0�(n + v0)−1.

The following gives an exact convergence rate of this algorithm which completely character-
izes its convergence from a specific initialization.

Theorem 2. For any σ0 ∈ (0,∞),

Wρ(Pt((β∗, σ0), ·), �(· | X, Y)) = (1 − εβ∗ )t
∫
ρ((β, σ ), (β∗, σ0)) d�(β, σ | X, Y).
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Proof. We may define the function f : Rd × (0,∞) →R by

f (β, σ ) = s0 + sn,r(β)

σ
+ (n + v0 + 1 + d/2) log(σ )

and write the posterior density as π (β, σ | X, Y) = Z−1
�(·|X,Y) exp(−f (β, σ )). Since the func-

tion β �→ sn,r(β) − β�C−1β/2 is a convex function on R
d, by Lemma 4, for every β ∈R

d,
sn,r(β) ≥ sn,r(β∗) + 1

2 (β − β∗)�C−1(β − β∗). For any (β, σ ) ∈R
d × (0,∞), we then have the

lower bound

f (β, σ ) = s0 + sn,r(β)

σ
+ (n + v0 + 1 + d/2) log(σ )

≥ s0 + sn,r(β∗)

σ
+ (n + v0 + 1 + d/2) log(σ ) + 1

2σ
(β − β∗)�C−1(β − β∗).

This implies that

f (β, σ ) − 1

2σ
(β − β∗)�C−1(β − β∗) − s0 + sn,r(β∗)

σ
− (n + v0 + 1 + d/2) log(σ ) ≥ 0.

Let q denote the proposal’s normal–inverse-gamma density. For any σ0 ∈ (0,∞) and for every
(β, σ ) ∈R

d × (0,∞), we have shown that

q(β, σ )

π (β, σ )
≥ Z�(·|X,Y)(2π )−d/2 det(C)−1/2(s0 + sn,r(β∗))n+v0�(n + v0)−1 = q(β∗, σ0)

π (β∗, σ0)
.

An application of Proposition 1 completes the proof. �

Note that εβ∗ is difficult to compute since it depends on the normalizing constant, but we
give an example later where upper bounding the convergence rate is possible in Bayesian
logistic and probit regression.

4. The convergence rate at arbitrary initializations

The previous section studies the worst-case convergence rate and the convergence rate at
an individual point for the MHI sampler. We can study the convergence rate at every point,
as was done for total variation [52]. The technique needed to prove this relies on the exact
representation of the MHI sampler [46, Theorem 1], but new techniques are needed to show this
in the Wasserstein distance. Similar to the convergence rate in total variation [52], we define
the Wasserstein convergence rate for a point θ ∈� as rρ(θ ) = limt→∞ Wρ(Pt(θ, ·), �)1/t.

When the distance metric is min{‖·‖ , 1} where ‖·‖ can be any norm, Theorem 3 shows we
can obtain the convergence rate at every point under mild conditions. We require π and q to be
locally ‖·‖-Lipschitz continuous and bounded, which is stronger than only locally Lipschitz
as in total variation [52]. However, this additional condition is satisfied in many practical
applications in statistics. Theorem 3 also lower bounds the convergence rate for Wasserstein
Lp-distances, and the rate of convergence for these distances cannot be improved.

Theorem 3. If π , q are locally ‖·‖-Lipschitz continuous and bounded on R
d and there exists

a solution θ∗ = argmin{q(θ )/π (θ ) : θ ∈�}, then, for any θ ∈�, the Wasserstein convergence
rate is the same with rmin{‖·‖,1}(θ ) = 1 − q(θ∗)/π (θ∗).

https://doi.org/10.1017/jpr.2023.21 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2023.21


40 A. BROWN AND G. L. JONES

Proof. If the initialization is at θ∗, then the result follows from Proposition 1. Fix a point
θ0 ∈� such that θ0 �= θ∗. Using Lemma 1, we have an upper bound on the convergence rate
by

lim sup
t→∞

Wmin{‖·‖,1}(Pt(θ0, ·), �)1/t ≤ 1 − q(θ∗)/π (θ∗).

It remains to lower bound the limit inferior.
Denote the standard p-norms for vectors x ∈R

d by ‖x‖p = (∑
i |xi|p

)1/p. For h ∈ (0, 1],
define the function ϕh(θ ) = (2h)−d exp(−h−1 ‖θ − θ∗‖1 ). This is the probability density func-
tion for a Laplace distribution and ϕh is 2−dh−d−1 ‖·‖1-Lipschitz, and so 2dhd+1ϕh(θ ) =
h exp(−h−1 ‖θ − θ∗‖1 ) is nonnegative, ‖·‖1-Lipschitz with constant 1 and bounded by 1. In
particular, it is readily shown that 2dhd+1ϕh(θ ) is min{1, ‖·‖1}-Lipschitz. Using Kantorovich–
Rubinstein duality [50, Theorem 1.14], we have the lower bound

Wmin{‖·‖1,1}(Pt(θ0, ·), �) ≥ 2dhd+1
[ ∫

ϕh d�−
∫
ϕh dPt(θ0, ·)

]
. (1)

We will develop some approximation properties of ϕh. Since θ0 �= θ∗, it is readily shown that
limh↓0 ϕh(θ0) = 0. Using a change of variables and since we have assumed supθ π (θ )<∞,∣∣∣∣

∫
ϕh(θ ′)π (θ ′) dθ ′ − π (θ∗)

∣∣∣∣≤
∫

‖θ ′‖2≤t
|π (θ∗ + hθ ′) − π (θ∗)|2−d exp(− ∥∥θ ′∥∥

1 ) dθ ′ (2)

+ 2 sup
θ

π (θ )
∫

‖θ ′‖2>t
2−d exp(− ∥∥θ ′∥∥

1 ) dθ ′. (3)

If Y1, . . . , Yd are i.i.d. Laplace, then we have the tail bound

P( ‖Y‖2 ≥ t) ≤ P

(
max

i
|Yi| ≥ t√

d

)
≤

d∑
i=1

P

(
|Yi| ≥ t√

d

)
≤ d exp

(
− t√

d

)
.

Since norms are equivalent on R
d, π and q are locally Lipschitz with respect to any norm.

Choosing h = h0/t2 for some h0 ∈ (0, 1), since π is locally ‖·‖2-Lipschitz, we can find a
universal constant L ∈ (0,∞) such that, for any

∥∥θ ′∥∥
2 ≤ t, |π (θ∗ + hθ ′) − π (θ∗)| ≤ h0L/t.

Applying these upper bounds to (2) and (3), for large enough t we have∣∣∣∣
∫
ϕh(θ ′)π (θ ′) dθ ′ − π (θ∗)

∣∣∣∣≤ 2h0L

t
. (4)

A similar argument with the assumptions on q yields, for large enough t,∣∣∣∣
∫
ϕh(θ ′)q(θ ′) dθ ′ − q(θ∗)

∣∣∣∣≤ 2h0L

t
. (5)

It remains to lower bound (1). We will use the exact representation of the independence sam-
pler [46, Theorem 1, Lemma 3]. Define the importance sampling weight by w(θ ) = π (θ )/q(θ )
and its maximum w∗ = w(θ∗) = π (θ∗)/q(θ∗). For w ∈ (0,∞), define

λ(w) =
∫

w(θ ′)≤w

[
1 − w(θ ′)

w

]
q(θ ′) dθ ′, Tt(w) =

∫ ∞

w

tλt−1(v)

v2
dv,
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and, using the exact representation of the independence sampler [46, Theorem 1, Lemma 3],
for measurable sets B ⊆R

d,

Pt(θ0, B) =
∫

B
Tt(max{w(θ0),w(θ ′)})π (θ ′) dθ ′ + λt(w(θ0))δθ0 (B).

The proof of existing results [52, Theorem 4] shows that

Tt(w) ≤ 1 + (1 − 1/w∗)t
[

t

w∗ − 1

(
w∗

w
− 1

)
− 1

]
.

We now use the exact representation of the independence sampler to lower bound (1). We
have λt(w(θ0)) ≤ (1 − 1/w∗)t, so we then have the upper bound∫
ϕh dPt(θ0, ·) −

∫
ϕh d�≤ −(1 − 1/w∗)t

∫
ϕh d�+ λt(w(θ0))ϕh(θ0)

+ (1 − 1/w∗)t t

w∗ − 1

∫ [
w∗

max{w(θ0),w(θ ′)} − 1

]
ϕh(θ ′)π (θ ′) dθ ′

≤ (1 − 1/w∗)t
[
ϕh(θ0) −

∫
ϕh d�

]

+ (1 − 1/w∗)t t

w∗ − 1

[
w∗
∫
ϕh(θ ′)q(θ ′) dθ ′ −

∫
ϕh(θ ′)π (θ ′) dθ ′

]
.

Using this upper bound with the approximations (4) and (5) yields∫
ϕh dPt(θ0, ·) −

∫
ϕh d�≤ (1 − 1/w∗)t

[
ϕh(θ0) − π (θ∗) + 2h0L

t

]

+ (1 − 1/w∗)t t

w∗ − 1

[
w∗q(θ∗) − π (θ∗) + (w∗ + 1)

2h0L

t

]

≤ (1 − 1/w∗)t
[
ϕh(θ0) − π (θ∗) + 2h0L

t
+ w∗ + 1

w∗ − 1
2h0L

]
.

Therefore, we can choose a small enough h0 ∈ (0, 1) independently of t such that we have the
upper bound ∫

ϕh dPt(θ0, ·) −
∫
ϕh d�≤ −π (θ∗)

4
(1 − 1/w∗)t.

Applying these bounds to (1) and using that we have chosen h = h0/t2, we have the lower
bound

Wmin{‖·‖1,1}(Pt(θ0, ·), �) ≥ 2dhd+1
[ ∫

ϕh d�−
∫
ϕh dPt(θ0, ·)

]
≥ 2d−2hd+1π (θ∗)(1 − 1/w∗)t

≥ 2d−2
(

h0

t2

)d+1

π (θ∗)(1 − 1/w∗)t.

Taking the limit,

lim inf
t→∞ Wmin{‖·‖1,1}(Pt(θ0, ·), �)1/t ≥ 1 − 1/w∗ = 1 − q(θ∗)/π (θ∗).

Since all norms are equivalent on R
d, this can be extended to any norm ‖·‖. �
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5. MHI samplers with centered Gaussian proposals

We look to apply the exact convergence expression from Proposition 1 to practical appli-
cations since the convergence rate is the same at every initialization under mild assumptions.
Recently, centered drift functions have been used to improve convergence analyses of some
Monte Carlo Markov chains [11, 37, 40]. Our focus is instead on centering the proposal dis-
tribution, that is, matching the optimal points of the proposal and target densities similar to
Laplace approximations.

We shall see in the next section that by centering a Gaussian proposal, we may satisfy the
assumptions of Proposition 1 for a general class of target distributions with θ∗ being the opti-
mum of the target’s density. While we focus on Gaussian proposals, the technique of centering
proposals is in fact more general.

We will assume the target distribution� is a probability distribution supported on R
d. With

f : Rd →R and normalizing constant Z�, define the density π by π (θ ) = Z−1
� exp(−f (θ )). Let

θ∗ be the unique maximum of π , α ∈ (0,+∞), and C ∈R
d×d be a symmetric, positive-definite

matrix. Let the proposal distribution Q with density q correspond to a d-dimensional Gaussian
distribution, Nd(θ∗, α−1C). In this case, the ratio of the proposal density and target density is

εθ∗ = (2π )−d/2αd/2 det(C)−1/2Z� exp(f (θ∗)).

Proposition 2. If θ∗ exists and, for any θ ∈R
d, f (θ ) ≥ f (θ∗) + α(θ − θ∗)�C−1(θ − θ∗)/2, then

Wρ(Pt(θ∗, ·), �) = (1 − εθ∗ )t
∫
ρ(θ, θ∗) d�(θ ).

Proof. Since the proposal density has been centered at the point θ∗, it then satisfies q(θ∗) =
(2π )−d/2αd/2 det(C)−1/2. For every θ ∈R

d, we have the lower bound

q(θ )

π (θ )
= (2π )−d/2αd/2 det(C)−1/2Z� exp

(
f (θ ) − α

2
(θ − θ∗)�C−1(θ − θ∗)

)

≥ (2π )−d/2αd/2 det(C)−1/2Z� exp(f (θ∗)) = q(θ∗)

π (θ∗)
.

Since both densities are positive and the proposal is independent of the previous itera-
tion, we have shown that the conditions for Proposition 1 are satisfied and an application of
Proposition 1 with the proposal and target distribution Q and � as we have defined them in
this section completes the proof. �

The assumption in Proposition 2 is sometimes referred to as a quadratic growth condition at
θ∗. This condition does not require convexity of f , but is satisfied and the point θ∗ is guaranteed
to exist if the function f satisfies a strong convexity property. A function h : Rd →R is strongly
convex with parameterμ if there is aμ ∈ (0,+∞) such that h(·) −μ ‖·‖2 /2 is convex [17, 32].
The norm in this definition is often taken to be the Euclidean norm, but we will use the norm
induced by the matrix C−1. We consider using a Gaussian proposal centered at a point θ0 which
is not necessarily the optimum of the target density. Let gf (θ0) ∈R

d be a subgradient of f at θ0
[32]. For a point θ0 ∈R

d, we consider the proposal corresponding to a d-dimensional Gaussian
distribution, Nd(θ0 − α−1Cgf (θ0), α

−1C). When f is differentiable, this construction of the pro-
posal uses the gradient of f in a similar way to MALA. The ratio of the proposal and target
density evaluated at θ0 is εθ0 = (2π )−d/2 det(α−1C)−1/2Z� exp(f (θ0) − gf (θ0)

�Cgf (θ0)/(2α)).
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Choosing θ0 ≡ θ∗ maximizes the convergence rate and yields the centered Gaussian proposal,
but we also have an exact convergence expression in other cases.

Proposition 3. If the function θ �→ f (θ ) − αθ�C−1θ/2 is convex for all points on R
d, then

Wρ(Pt(θ0, ·), �) = (1 − εθ0 )t
∫
ρ(θ, θ0) d�(θ ).

Proof. Since the function f (θ ) − αθ�C−1θ/2 is convex for all points on R
d, for each

θ ∈R
d,

f (θ ) ≥ f (θ0) + gf (θ0)
�(θ − θ0) + α

2
(θ − θ0)�C−1(θ − θ0)

= f (θ0) − 1

2α
(Cgf (θ0))

�gf (θ0) + α

2
(θ − θ0 + α−1Cgf (θ0))

�C−1(θ − θ0 + α−1Cgf (θ0)).

This implies that, for every θ ∈R
d, the ratio of the proposal density q corresponding to the

distribution Nd(θ0 − α−1Cgf (θ0), α
−1C) and target density π satisfies

q(θ )

π (θ )
≥ q(θ0)

π (θ0)
= εθ0 .

An application of Proposition 1 completes the proof. �

5.1. Application: Bayesian generalized linear models

We consider Bayesian Poisson and negative-binomial regression for count response regres-
sion and Bayesian logistic and probit regression for binary response regression. Suppose
there are n discrete-valued responses Yi with features Xi ∈R

d, and a parameter β ∈R
d.

For Poisson regression, assume the Yi are conditionally independent with Yi | Xi, β ∼
Poisson( exp(β�Xi)). Similarly, for negative-binomial regression, if ξ ∈ (0,+∞), assume
Yi | Xi, β ∼ Negative-Binomial(ξ, (1 + exp(−β�Xi))−1). For binary response regression, if
S : R→ (0, 1), assume Yi | Xi, β ∼ Bernoulli(S(β�Xi)). For logistic regression, we will con-
sider S(x) = (1 + exp(x))−1, and for probit regression, we will consider S(x) to be the
cumulative distribution function of a standard Gaussian random variable.

Suppose β ∼ Nd(0, α−1C), where α ∈ (0,+∞) and C ∈R
d×d is a symmetric, positive-

definite matrix. Both α and C are assumed to be known. Define the vector Y = (Y1, . . . , Yn)�
and the matrix X = (X1, . . . , Xn)�. Let �(· | X, Y) denote the posterior with density π (· |
X, Y). If �n denotes the negative log-likelihood for each model, the posterior density is
characterized by

π (β | X, Y) = Z−1
�(·|X,Y)) exp

(
−�n(β) − α

2
β�C−1β

)
.

Observe that the function �n is convex in all four models we consider. Let β∗ denote the
unique maximum of π (· | X, Y). For the MHI algorithm, we use an Nd(β∗, α−1C) proposal
distribution, and Proposition 3 immediately yields the following for each posterior.

Corollary 1. Wρ(Pt(β∗, ·), �(· | X, Y)) = (1 − εβ∗ )t
∫
ρ(β, β∗) d�(β | X, Y), where εβ∗ =

exp(�n(β∗) + (α/2)β∗�C−1β∗)Z�(·|X,Y)((2π )d/2 det(α−1C)1/2)−1.
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5.2. Convergence complexity analysis in binary response regression

For the MHI algorithm, we continue to use a centered proposal Nd(β∗, α−1C) and first con-
sider a more general posterior density of the form π (β | X, Y) ∝ exp(−�n(β) − αβ�C−1β/2)
depending on data X, Y of size n. We also assume the limit of the trace of the covariance
matrix used in our prior to be finite, i.e. tr(C) → s0 ∈ (0,+∞) as d → +∞. Note that the trace
of the covariance being finite is a necessary condition for Gaussian distributions to exist in an
infinite-dimensional Hilbert space [3].

Theorem 4. Suppose that the following conditions hold for a sequence dn, n → ∞:

(i) The negative log-likelihood �n is a twice continuously differentiable convex function.

(ii) There is a universal constant H0 ∈ (0,+∞) such that the largest eigenvalue
of the Hessian of the negative log-likelihood H�n satisfies, for every β ∈R

d,
lim supdn,n→∞ λmax(H�n(β)) ≤ H0.

Then lim supdn,n→∞ Wρ(Pt(β∗, ·), �(· | X, Y)) ≤ M0(1 − exp(−H0s0/(2α)))t, where
M0 = lim supdn,n→∞

∫
ρ(β, β∗) d�(β | X, Y).

Proof. Define the function f : Rd →R by f (β) = �n(β) + αβ�C−1β/2, where �n is the neg-
ative log-likelihood loss function, and define ZQ = (2π )d/2 det(α−1C)1/2. We first lower bound
the quantity exp(f (β∗))Z�(·|X,Y)/ZQ. For ε ∈ (0, 1) and sufficiently large dn, n, we have, for any
β ∈R

d and any v ∈R
d, v�H�n (β)v ≤ (1 + ε)H0 ‖v‖2

2. This implies that, for any β ∈R
d and any

v ∈R
d, the Hessian of f , denoted by Hf , satisfies v�Hf (β)v ≤ v�((1 + ε)H0Id + αC−1)v. Since

the function �n is twice continuously differentiable, f is also twice continuously differentiable.
Since both the gradient ∇f and Hessian Hf are continuous and ∇f (β∗) = 0, we use a Taylor
expansion to obtain the upper bound

f (β) = f (β∗) +
∫ 1

0

∫ t

0
(β − β∗)�Hf (β∗ + s(β − β∗))(β − β∗) ds dt

≤ f (β∗) + 1
2 (β − β∗)�((1 + ε)H0Id + αC−1)(β − β∗).

We then have a lower bound on the normalizing constant of the target posterior,

Z�(·|X,Y) =
∫
Rd

exp(−f (β)) dβ ≥ exp(−f (β∗))(2π )d/2

det((1 + ε)H0Id + αC−1)1/2
.

This in turn yields a lower bound on the ratio

Z�(·|X,Y)

ZQ
exp(f (β∗)) ≥ det(αC−1)1/2

det((1 + ε)H0Id + αC−1)1/2
.

The matrix C is symmetric and positive-definite, so its eigenvalues exist and are positive. Let
(λi(C))d

i=1 be the eigenvalues of C. It is readily verified that the eigenvalues of the matrix
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(1 + ε)H0)Id + αC−1 exist and are ((1 + ε)H0 + α/λi(C))d
i=1. Then

det(αC−1)

det((1 + ε)H0Id + αC−1)
=

∏d
i=1 α/λi(C)∏d

i=1 ((1 + ε)H0 + α/λi(C))

=
d∏

i=1

α/λi(C)

(1 + ε)H0 + α/λi(C)

=
d∏

i=1

1

(1/α)(1 + ε)H0λi(C) + 1

= exp

(
−

d∑
i=1

log

(
1

α
(1 + ε)H0λi(C) + 1

))
. (6)

We have the basic inequality log(x + 1) ≤ x for any x ∈ [0,+∞). Since the eigenvalues of
C are positive and H0 is nonnegative, we have the upper bound

d∑
i=1

log

(
1

α
(1 + ε)H0λi(C) + 1

)
≤ 1

α
(1 + ε)H0

d∑
i=1

λi(C)

This yields a lower bound on (6). Define the doubly-indexed sequence (ad,n) by

ad,n = 1

2α
(1 + ε)H0

d∑
i=1

λi(C).

We have then shown that

Z�(·|X,Y)

ZQ
exp(f (β∗)) ≥ exp(−ad,n).

By our assumption, tr(C) → s0 as d → ∞. That is to say, limd→+∞
∑d

i=1 λi(C) = s0. This
implies, by using continuity,

lim
dn,n→∞ (1 − exp(−an,d))t = (1 − exp(−(1 + ε)H0s0/(2α)))t.

By Corollary 1, we have the upper bound on the Wasserstein distance for each dn and
each n:

Wρ(Pt(β∗, ·), �(· | X, Y)) =
(

1 − exp(f (β∗))
Z�(·|X,Y)

ZQ

)t ∫
Rd
ρ(β, β∗) d�(β | X, Y)

≤ (1 − exp(−an,d))t
∫
Rd
ρ(β, β∗) d�(β | X, Y).
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Suppose that lim supdn,n→∞
∫
Rd ρ(β, β∗) d�(β | X, Y)<∞. Using properties of the limit

superior,

lim sup
dn,n→∞

Wρ(Pt(β∗, ·),�(· | X, Y))

≤ lim sup
dn,n→∞

(1 − exp(−an,d))t lim sup
dn,n→∞

∫
Rd
ρ(β, β∗) d�(β | X, Y)

= lim
d,n→∞
d/n→γ

(1 − exp(−an,d))t lim sup
dn,n→∞

∫
Rd
ρ(β, β∗) d�(β | X, Y)

= (1 − exp(−(1 + ε)H0s0/(2α)))t lim sup
dn,n→∞

∫
Rd
ρ(β, β∗) d�(β | X, Y).

This holds for every ε ∈ (0, 1), so taking the limit completes the proof in this case. The other
case, when lim supdn,n→∞

∫
Rd ρ(β, β∗) d�(β | X, Y) = +∞, is trivial. �

Our goal now is to obtain an upper bound on the rate of convergence established in
Corollary 1 in high dimensions for binary response regression. In this context, it is natu-
ral to treat the (Yi, Xi)n

i=1 as stochastic; each time the sample size increases, the additional
observation is randomly generated. Specifically, we assume that (Yi, Xi)n

i=1 are independent
with Yi | Xi, β ∼ Bernoulli(S(β�Xi)) and Xi ∼ Nd(0, σ 2n−1Id) with σ 2 ∈ (0,+∞). This scal-
ing ensures the variance of the columns of the random matrix of features X is of fixed order;
it is often used to ensure nondegeneracy in large-system limits of d, n [12]. Similar scaling
assumptions on the data are used for high-dimensional maximum-likelihood theory in logistic
regression [47].

Corollary 2. Suppose the following conditions hold:

(i) The negative log-likelihood �n is a twice continuously differentiable convex function.

(ii) There is a universal constant r0 ∈ (0,+∞) such that the largest eigenvalue of the
Hessian of the negative log-likelihood H�n satisfies, for every β ∈R

d, λmax(H�n(β)) ≤
r0λmax(X�X).

Let a0 = r0(1 + γ 1/2)2σ 2s0/(2α). If d, n → +∞ in such a way that d/n → γ ∈ (0,+∞),
then, almost surely, lim supd/n→γ Wρ(Pt(β∗, ·), �(· | X, Y)) ≤ M0(1 − exp(−a0))t, where
M0 = lim supd/n→γ

∫
ρ(β, β∗) d�(β | X, Y).

Proof. Under our assumption, we may write the matrix X = n−1/2G, where G is a matrix
with i.i.d. Gaussian entries with mean 0 and variance σ 2. Denote the largest eigenvalue of the
matrix X�X by λmax(X�X). Therefore, as d, n → ∞ in such a way that d/n → γ ∈ (0,+∞),

λmax(X�X) = λmax

(
1

n
G�G

)
= 1

n
sup

v∈Rd,‖v‖2=1

∥∥∥G�Gv
∥∥∥

2
→ (1 + γ 1/2)2σ 2

almost surely [12, Theorem 1]. We have, for any β ∈R
d and any v ∈R

d, v�H�n (β)v ≤
r0λmax(X�X) ‖v‖2

2. The proof follows from Theorem 4. �

Corollary 2 applies to both Bayesian logistic and probit regression. For logistic regres-
sion, �n is a twice continuously differentiable convex function and we may choose r0 = 4−1.
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FIGURE 1. The limiting decrease in the Wasserstein distance using different values of γ , the limiting
ratio of the dimension and sample size, versus the number of iterations.

Similarly, for probit regression, �n is also a twice continuously differentiable convex function
and we may choose r0 = 1 [6].

In Figure 1 we plot (1 − exp(−a0))t, the limiting decrease in the Wasserstein distance
according to our upper bound, with varying values of the limiting ratio γ and the other remain-
ing values in a0 fixed. We observe that as this ratio increases, the number of iterations needed
to approximately converge may still increase rather rapidly.

6. Final remarks

We have studied the exact convergence behavior of the MHI sampler across general
Wasserstein distances. We showed upper and lower bounds on the worst-case convergence
rate for Wasserstein distances weaker than the total variation distance. We showed that the
exact convergence rate at every initialization for Wasserstein distances weaker than the total
variation distance is the same and matches that of the total variation convergence rate [52].
When starting at a certain point, we gave exact convergence expressions. By centering an
independent proposal, we directly imbue the Markov chain with a strong attraction to a set
where the target distribution has high probability. We showed this technique can provide uni-
form control over acceptance probability yielding exact convergence rates in Bayesian quantile
regression. The centered MHI sampler turns out to have many applications for posteriors that
arise in Bayesian generalized linear models where more sophisticated proposals are often used.
With additional assumptions on the data and prior, we also showed that this exact convergence
rate may be upper bounded when sampling high-dimensional posteriors in Bayesian binary
response regression.

Appendix A. Proof of Theorem 1

The proof will proceed by establishing the upper and lower bounds separately in Lemmas
1 and 2, respectively. This is done largely because the conditions for the upper bound are
weaker than those for the lower bound.
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The following definitions will be used in the proofs of Lemmas 1 and 2. First, for θ ∈�,
real-valued measurable functions f , and a Markov kernel K, we use the notation Ktf (θ ) =∫

f dKt(θ, ·) = ∫
f (θ ′)Kt(θ, dθ ′) and K0f (θ ) = f (θ ). Second, recall that, for functions ϕ : Rd →

R, ‖ϕ‖Lip(ρ) = supx,y,x �=y{|ϕ(x) − ϕ(y)|/ρ(x, y)}.
Lemma 1. Let ε∗ = infθ∈�{q(θ )/π (θ )}. Then

sup
θ∈�

Wρ(Pt(θ, ·), �) ≤ (1 − ε∗)t sup
θ∈�

∫
ρ(θ, ·) d�.

Proof. Let θ ∈� and let ϕ satisfy ‖ϕ‖Lip(ρ) ≤ 1. The existence of ε∗ implies the minoriza-
tion condition P(θ, ·) ≥ ε∗�(·) [48, Corollary 4] which, in turn, ensures the residual kernel
R(θ, ·) = [P(θ, ·) − ε∗�(·)]/(1 − ε∗) is a Markov kernel with invariant distribution �. It then
follows that ∫

ϕ dPt(θ, ·) −
∫
ϕ d�= (1 − ε∗)

[ ∫
Rϕ dPt−1(θ, ·) −

∫
ϕ d�

]

= (1 − ε∗)

[ ∫
Rϕ dPt−1(θ, ·) −

∫
Rϕ d�

]
...

= (1 − ε∗)t
[ ∫

ϕ dRt(θ, ·) −
∫
ϕ d�

]
.

Since ϕ is Lipschitz with respect to ρ, we then have∣∣∣∣
∫
ϕ dRt(θ, ·) −

∫
ϕd�

∣∣∣∣=
∣∣∣∣
∫ ∫

[ϕ(θ ′) − ϕ(ω)] d�(ω) dRt(θ, θ ′)
∣∣∣∣

≤
∫ ∫

ρ(θ ′, ω) d�(ω) dRt(θ, θ ′) ≤ sup
θ ′∈�

∫
ρ(θ ′, ·) d�.

Taking the supremum with respect to ϕ and using the Kantorovich–Rubinstein theorem [50,
Theorem 1.14],

sup
θ∈�

Wρ(Pt(θ, ·), �) = sup
θ∈�

sup
‖ϕ‖Lip(ρ)≤1

[ ∫
ϕ dPt(θ, ·) −

∫
ϕ d�

]

≤ (1 − ε∗)t sup
θ∈�

∫
ρ(θ, ·) d�. �

We now turn our attention to establishing the lower bound.

Lemma 2. Let ε∗ = infθ∈�{q(θ )/π (θ )}. Suppose q is lower semicontinuous and π is upper
semicontinuous on �. Suppose � can be expressed as a countable union of compact sets. If
ρ(·, ·) ≤ 1, then supθ∈�Wρ(Pt(θ, ·), �) ≥ (1 − ε∗)t infθ∈�

∫
ρ(·, θ ) d�.

Proof. Since� can be expressed as a countable union of compact sets, there is a sequence of
compact sets Bn ⊆ Bn+1 ⊆� increasing to�= ∪∞

n=1Bn. We can assume�(Bn)> 0, otherwise
we can take n large enough so this holds. Since π, q> 0 and π is upper semicontinuous on �,
then q/π is lower semicontinuous on �. By Lemma 3, infθ∈Bn{q(θ )/π (θ )} is monotonically
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nonincreasing to ε∗ = infθ∈�{q(θ )/π (θ )}. Since we have assumed lower semicontinuity, the
infθ∈K{q(θ )/π (θ )} is attained over any compact set K ⊆�. Then define the sequence

θ∗
n = argminθ∈Bn{q(θ )/π (θ )}. (7)

We can then define the sequence εθ∗
n

= infθ∈Bn{q(θ )/π (θ )} = q(θ∗
n )/π (θ∗

n ), and this is mono-
tonically nonincreasing to ε∗.

Define Pn to be the Metropolis–Hastings independence kernel with independent proposal Q
with density q, and target distribution �(· | Bn) with density π (· | Bn) = π (·)IBn(·)/�(Bn). By
construction, �(Bn)> 0 and this is well-defined. The key part of the proof is that if we start at
any θn ∈ Bn, this kernel Pn and the kernel P only disagree outside of Bn. For θn ∈ Bn, we have
π (θn)> 0, IBn (θn) = 1, and, since �≡ supp(q) by assumption, q(θn)> 0. Also, if y ∈ Bc

n ∩�,
then

min

{
π (y)IBn(y)q(θn)

π (θn)q(y)
, 1

}
= 0.

Let M1(Rd) be the set of measurable functions ϕ : Rd →R with supx∈Rd |ϕ(x)| ≤ 1. Therefore,
for any θn ∈ Bn and any function ϕ ∈ M1(Rd),∫

Rd
ϕ dPn(θn, ·) =

∫
Bn

ϕ(y) min

{
π (y)q(θn)

π (θn)q(y)
, 1

}
q(y) dy

+ ϕ(θn)

(
1 −

∫
Bn

min

{
π (y)q(θn)

π (θn)q(y)
, 1

}
q(y) dy

)
.

Let ε ∈ (0, 1 − ε∗). Since Q and � are probability measures, we may then choose nε
sufficiently large that, for all n ≥ nε, 2 max{�(Bc

n),Q(Bc
n)} ≤ ε/2. We then have

sup
θn∈Bn

sup
ϕ∈M1(Rd)

∣∣∣∣
∫
Rd
ϕ dPn(θn, ·) −

∫
Rd
ϕ dP(θn, ·)

∣∣∣∣
= sup
θn∈Bn

sup
ϕ∈M1(Rd)

∣∣∣∣
∫

Bc
n∩�

ϕ(y) min

{
π (y)q(θn)

π (θn)q(y)
, 1

}
q(y) dy

+ ϕ(θn)
∫

Bc
n∩�

min

{
π (y)q(θn)

π (θn)q(y)
, 1

}
q(y) dy

∣∣∣∣
≤ 2

∫
Bc

n

q(y) dy ≤ ε/2. (8)

Similarly,

sup
ϕ∈M1(Rd)

∣∣∣∣
∫
Rd
ϕ d�(· | Bn) −

∫
Rd
ϕ d�

∣∣∣∣
= sup
ϕ∈M1(Rd)

∣∣∣∣
∫
Rd
ϕ(1 −�(Bn)) d�(· | Bn) −

∫
Rd
ϕ d�(· | Bc

n)�(Bc
n)

∣∣∣∣
=�(Bc

n) sup
ϕ∈M1(Rd)

∣∣∣∣
∫
Rd
ϕ d�(· | Bn) −

∫
Rd
ϕ d�(· | Bc

n)

∣∣∣∣
≤ 2�(Bc

n) ≤ ε/2. (9)

https://doi.org/10.1017/jpr.2023.21 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2023.21


50 A. BROWN AND G. L. JONES

With θ∗
n as in (7), let ψn(·) = −ρ(·, θ∗

n ). Then, for any x, y ∈R
d,

|ψn(x) −ψn(y)| ≤ ρ(x, y) (10)

and ψn ∈ M1(Rd). Since � is invariant for the kernel P,∫
Rd
ψn dPt(θ∗

n , ·) −
∫
Rd
ψn d�=

∫
Rd

Pt−1ψn(·) dP(θ∗
n , ·) −

∫
Rd

Pt−1ψn(·) d�(·). (11)

Now, for any integer s with 1 ≤ s ≤ t, the function Psψn ∈ M1(Rd) since P is a Markov kernel.
Since θ∗

n ∈ Bn and π (θ∗
n )> 0, using (8), (9), and (11),

∫
Rd
ψn dPt(θ∗

n , ·) −
∫
Rd
ψn d�≥

∫
Rd

Pt−1ψn dPn(θ∗
n , ·) −

∫
Rd

Pt−1ψn d�(· | Bn) − ε. (12)

By the construction of θ∗
n in (7), we have

inf
θ∈Bn

{q(θ )/π (θ |Bn)} =�(Bn) inf
θ∈Bn

{q(θ )/π (θ )}
=�(Bn)q(θ∗

n )/π (θ∗
n ) = εθ∗

n
�(Bn) = q(θ∗

n )/π (θ∗
n | Bn).

For measurable A ⊂R
d [52, Remark 1, Theorem 2], we then have the identity

Pn(θ∗
n , A) = εθ∗

n
�(Bn)�(A | Bn) + (1 − εθ∗

n
�(Bn))δθ∗

n
(A).

Since Pt−1ψn is a bounded measurable function, this identity leads to the following one:

∫
Rd

Pt−1ψn(·) dPn(θ∗
n , ·) −

∫
Rd

Pt−1ψn(·) d�(· | Bn)

= (1 − εθ∗
n
�(Bn))

(
Pt−1ψn(θ∗

n ) −
∫
Rd

Pt−1ψn(·) d�(· | Bn)

)
. (13)

Using (12) in the first inequality, (13) in the second inequality, (9) in the third inequality, and
the invariance of � for the Markov kernel P in the last inequality,∫

Rd
Pt−1ψnP(θ∗

n , ·) −
∫
Rd

Pt−1ψn d�

≥
∫
Rd

Pt−1ψn dPn(θ∗
n , ·) −

∫
Rd

Pt−1ψn d�(· | Bn) − ε

≥ (1 − εθ∗
n
�(Bn))

(
Pt−1ψn(θ∗

n ) −
∫
Rd

Pt−1ψn d�(· | Bn)

)
− ε

≥ (1 − εθ∗
n
�(Bn))

(
Pt−1ψn(θ∗

n ) −
∫
Rd

Pt−1ψn d�

)
− 2ε

≥ (1 − εθ∗
n
�(Bn))

( ∫
Rd

Pt−2ψn dP(θ∗
n , ·) −

∫
Rd

Pt−2ψn d�

)
− 2ε.
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Applying this inequality recursively and using the definition of ψn,

∫
Rd
ψn dPt(θ∗

n , ·) −
∫
Rd
ψn d�

=
∫
Rd

Pt−1ψn dP(θ∗
n , ·) −

∫
Rd

Pt−1ψn d�

≥ (1 − εθ∗
n
�(Bn))t

(
ψn(θ∗

n ) −
∫
Rd
ψn d�

)
− 2ε

t−1∑
s=0

(1 − εθ∗
n
�(Bn))s

= (1 − εθ∗
n
�(Bn))t

∫
Rd
ρ(θ, θ∗

n ) d�− 2ε
t−1∑
s=0

(1 − εθ∗
n
�(Bn))s. (14)

Since �(Bn) → 1 and εθ∗
n

→ ε∗, we may take n large enough that |εθ∗
n
�(Bn) − ε∗| ≤ ε. For all

large enough n and since ε < 1 − ε∗, we lower bound (14) to get

∫
Rd
ψn dPt(θ∗

n , ·) −
∫
Rd
ψn d�≥ (1 − ε∗ − ε)t inf

θ∈�

∫
ρ(·, θ ) d�− 2ε

t−1∑
s=0

(1 − ε∗ + ε)s.

(15)
Combining (10) and (15), we lower bound the Wasserstein distance with

sup
θ∈�

Wρ(Pt(θ, ·), �) ≥Wρ(Pt(θ∗
n , ·), �)

≥ (1 − ε∗ − ε)t inf
θ∈�

∫
ρ(·, θ ) d�− 2ε

t−1∑
s=0

(1 − ε∗ + ε)s.

Since this holds for all small ε, the proof is complete by taking the limit as ε ↓ 0. �

Appendix B. Technical lemmas

Lemma 3. Let ε∗ = infθ∈�{q(θ )/π (θ )}. Suppose there is a sequence of compact sets Bn ⊆
Bn+1 ⊆� increasing to�= ∪∞

n=1Bn. Define εn = infθ∈Bn q(θ )/π (θ ). Then εn is monotonically
nonincreasing to its limit ε∗.

Proof. By the definition of infimum, εn ≥ εn+1 and εn ≥ ε∗. Hence, the sequence εn

converges. Let δ ∈ (0,∞). By the definition of the infimum, we can choose θδ ∈� with
π (θδ)> 0 such that q(θδ)/π (θδ) − δ ≤ ε∗. We can choose Bnδ such that θδ ∈ Bnδ . Then εnδ −
δ ≤ q(θδ)/π (θδ) − δ ≤ ε∗. It follows that, for any n ≥ nδ , |εn − ε∗| = εn − ε∗ ≤ εnδ − ε∗ ≤ δ.
Therefore, limn εn = ε∗. �

Lemma 4. Let C ∈R
d×d be a positive-definite, symmetric matrix, and let α ∈ (0,∞). Let

f : Rd →R and suppose θ �→ f (θ ) − αθ�C−1θ/2 is convex for all points on R
d. Then there

exists θ∗ = argminθ∈Rd f (θ ) and

f (θ ) ≥ f (θ∗) + α

2
(θ − θ∗)�C−1(θ − θ∗).
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Proof. Since the function f (θ ) − αθ�C−1θ/2 is convex for all points on R
d, it follows that,

for any λ ∈ [0, 1] and any (θ, θ ′) ∈R
d ×R

d,

f (λθ + (1 − λ)θ ′) ≤ λf (θ ) + (1 − λ)f (θ ′) − α

2
λ(1 − λ)(θ ′ − θ )�C−1(θ ′ − θ ).

Since C−1 is positive-definite, αλ(1 − λ)(θ ′ − θ )�C−1(θ ′ − θ )/2 is nonnegative and this
implies that f is a convex function. It can also be shown that lim‖θ‖→+∞ f (θ ) = +∞ and,
since f is lower semicontinuous, f attains its minimum θ∗ ∈R

d. The right directional derivative
f ′(θ∗;θ ) = limt↓0 t−1[f (θ∗ + tθ ) − f (θ∗)] exists for all points θ ∈R

d [32, Theorem 3.1.12]. For
λ ∈ (0, 1),

1

(1 − λ)

1

λ
[f (θ∗ + λ(θ − θ∗)) − f (θ∗)] − 1

(1 − λ)
(f (θ ) − f (θ∗)) ≤ −α

2
(θ − θ∗)�C−1(θ − θ∗).

Taking the limit with λ ↓ 0, we have

f ′(θ∗;θ − θ∗) − f (θ ) + f (θ∗) ≤ −α
2

(θ − θ∗)�C−1(θ − θ∗).

Since θ∗ is the minimum of f, then the right directional derivative satisfies f ′(θ∗;θ − θ∗) ≥ 0
for all θ ∈R

d. Therefore, for all θ ∈R
d,

f (θ ) ≥ f (θ∗) + α

2
(θ − θ∗)�C−1(θ − θ∗).
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