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Abstract

For an algebraic K3 surface with complex multiplication (CM), algebraic fibres of the
associated twistor space away from the equator are again of CM type. In this paper, we
show that algebraic fibres corresponding to points at the same altitude of the twistor base
S2 � P1

C
share the same CM endomorphism field. Moreover, we determine all the admissible

Picard numbers of the twistor fibres.

2020 Mathematics Subject Classification: 14J28 (Primary); 14K22, 14D07 (Secondary)

1. Introduction

A projective (or equivalently, algebraic) complex K3 surface X is said to be CM (complex
multiplication) if the endomorphism field KT(X) of the Hodge structure on the transcendental
lattice T(X) = NS(X)⊥

Q
⊆ H2(X, Q) is a CM field, and dimKT(X)

T(X) = 1. Denote by X →
P1
C

the twistor space of the projective K3 surface X associated with a Kähler class given
by an ample class � = c1(L) ∈ H2(X, Q) (see Section 2·1 for a short description). Despite
the transcendental nature of the twistor construction, the fibres Xζ that are again algebraic
share some arithmetic properties. In particular, all algebraic fibres away from the equator
P1
C

� S2 are CM, and the corresponding CM endomorphism fields share the same totally
real maximal subextension [Huy20, theorem 5·3].

In this paper we prove that the CM fields corresponding to fibres at the same altitude
of S2 � P1

C
coincide (Theorem 6·8). This result will be proven by introducing an action of

the topological multiplicative group K×
T(X) on the Noether–Lefschetz locus of the upper-half

sphere.
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18 FRANCESCO VIGANÒ

THEOREM 1·1. Consider the twistor space X → P1
C

associated with a projective com-
plex K3 surface X with complex multiplication. Assume that ζ1, ζ2 ∈ P1

C
are two points of

Picard jump at the same altitude and not on the equator. Then Xζ1 is algebraic if and only if
Xζ2 is such. If so, then the CM endomorphism fields of these K3 surfaces coincide. Moreover,
the set of points of Picard jump at the same altitude of ζ1 (and ζ2) is countable and dense in
the circle at that altitude.

The Picard number of a K3 surface is the rank of its Néron–Severi group. Huybrechts
proved that, if a fibre Xζ has excessive Picard number (that is, bigger than the orig-
inal Picard number ρ(X)), then ζ lies on the equator of S2 � P1

C
[Huy20, proposition

3·2]. We prove, in the CM case, that there is only one admissible excessive Picard value
(Theorem 6·3).

THEOREM 1·2. Consider the twistor space X → P1
C

associated with a projective com-
plex K3 surface X with complex multiplication. If ζ is a point of Picard jump on the equator,
then

ρ
(Xζ

) = 10 + ρ(X)

2
.

Moreover, the Noether–Lefschetz locus of the equator is dense in the equator. More precisely,
the locus of points on the equator whose fibres are algebraic K3 surfaces is dense in the
equator.

Outline. Section 2 contains some basic information about the geometry of the twistor
space, Hodge structures of K3 type and CM fields. In Section 3 we describe a family of
Hodge structures, parameterised by a sphere, attached to a given Hodge structure of K3
type. This construction is, at the level of Hodge structures, the algebraic equivalent of the
twistor space. Afterwards, in Section 4, we prove Proposition 4·4 (algebro-equivalent of
Theorem 1·2) and other results characterising points of Picard jump on the equator of the
mentioned sphere. Two actions of the topological multiplicative group K×

T(X) are introduced
in Section 5; these will play a key role in the proof of Corollary 5·10 (algebro-equivalent of
Theorem 1·1) and related statements. Finally, the translation into geometric terms is exposed
in Section 6, and Theorems 1·1 and 1·2 are proven.

2. Preliminaries

We present a short description of the twistor space of a complex K3 surface, and we recall
some facts about Hodge structures of K3 type and CM fields.
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CM and NL loci of the twistor space of a K3 19

2·1. The twistor space of a complex K3 surface

A complex K3 surface X admits a sphere of different complex structures. More explic-
itly, one can attach a set of different complex structures Iζ to the underlying differentiable
manifold X, so that

(
X, Iζ

)
is again a K3 surface, and these structures are parameterised

by a sphere ζ ∈ S2 � P1
C

. These K3 surfaces can be patched together into a 3-dimensional
complex manifold X , called twistor space (see [HKLR87, section 3·F], [Hit92] or [Joy00,
chapter 7] for more on the twistor space and the details of its construction). X comes with
a holomorphic map X → P1

C
with the property that, for ζ ∈ P1

C
� S2, the fibre Xζ is the K3

surface
(
X, Iζ

)
. In fact, this construction is non-canonical, and depends on the choice of a

Kähler class of X (any K3 surface is Kähler, [Siu83]). The original K3 surface corresponds
to one of the poles of P1

C
� S2.

Even if the original K3 surface X is algebraic (or equivalently, projective), X is no longer
algebraic, and has to be thought of as of transcendental nature. The twistor space of a K3
surface plays an important role in several situations. Among all, it provides an example of
K3-fibration over a compact base, and it is used in a modern proof of Torelli Theorem (any
two K3 surfaces are connected by a finite path of twistor lines, see [Huy16, section 7·3]).

2·2. Hodge structures of K3 type

By polarised Hodge structure of K3 type we mean the data of a vector space T over Q of
dimension r ≥ 2, endowed with a symmetric bilinear form ( . ) of signature (2, r − 2), and a
decomposition

TC = T2,0 ⊕ T1,1 ⊕ T0,2

such that the C-linear extension of ( . ) satisfies:

(i) the subspaces T1,1 and T2,0 ⊕ T0,2 are orthogonal;

(ii) ( . ) is positive definite on PT = (
T2,0 ⊕ T0,2

) ∩ TR and T2,0, T0,2 ⊆ TC are isotropic;

(iii) complex conjugation on TC preserves T1,1 and exchanges T2,0 and T0,2;

(iv) dimC
2,0 = 1.

We will denote by σ a C-generator of T2,0. Note that σ̄ generates T0,2, and the required
conditions give (σ .σ) = 0, (σ .σ̄ ) > 0, (�(σ ))2 = (�(σ ))2 and (�(σ ) .�(σ )) = 0. The plane
PT is considered with the orientation given by the basis {�(σ ) , �(σ )}. We will also assume
that T is irreducible.

Define KT to be the ring of endomorphism of the Hodge structure T . As T is irreducible,
KT is a division algebra. It was pointed out by Zarhin [Zar83] that KT is indeed a number
field, endowed with an embedding KT →C. This embedding is defined in the following
way: as ϕ preserves the (2, 0)-part of T , ϕ(σ) = ϕ · σ , where we identify ϕ with a scalar in
C. Zarhin proved also that KT is either totally real or complex multiplication (CM). Notice
that T is naturally a KT -module and, therefore, it becomes a KT -vector space.

Definition 2·1. T is said to be:

(i) of totally real type if KT is totally real;

(ii) of almost complex multiplication type, or almost CM, if KT is CM; and

(iii) of complex multiplication type, or CM, if KT is CM and dimKTT = 1.
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20 FRANCESCO VIGANÒ

The last condition seems technical, but turns out to be extremely useful in several situa-
tions. In fact, one can define the CM type case by requiring the sole condition dimKT T = 1
to be satisfied. Indeed, van Geemen [vGe08, lemma 3·2] proved that, whenever KT is totally
real, dimKT T ≥ 3 holds. Of course, the condition dimKT T = 1 is equivalent to [KT : Q] = r.

As the form ( . ) is non-degenerate, we can define the transpose ϕ′ of ϕ by the condition

(γ .ϕ(δ)) = (
ϕ′(γ ) .δ

)
,

for any γ , δ ∈ T . ϕ′ is in fact an element of KT , and corresponds to the complex conjugate of
ϕ via the embedding KT ↪→C, that is: ϕ′(σ ) = ϕ̄ · σ (see [Huy20, remark 2·6] or [Huy16,
chapter 3]). In particular, an element ϕ ∈ KT is an isometry for ( . ) if and only if its image
in C has unitary norm. We will denote by K0

T = KT ∩R the real part of KT , once seen KT

as a subfield of C via the prescribed embedding. Notice that K0
T can be characterised by the

subfield of KT of self-transpose endomorphisms.
The period field kT of T is defined in the following way. Let γ vary in T . Among the

periods (σ .γ ), at least one is not zero, say for γ̃ , since σ �= 0 and ( . ) is non-degenerate.
1

The period field is defined to be the subfield of C generated over Q by the quotients
(σ .γ ) / (σ .γ̃ ). Clearly, it is enough to consider these quotients only for γ varying in a
Q-basis of T . For a proof of the following result, see [Huy20, lemma 2·10].

LEMMA 2·2. Assume that T is a polarised irreducible Hodge structure of K3 type with
complex multiplication (i.e. KT is a CM field and dimQT = [KT : Q]). Then:

(i) the endomorphism field KT and the period field kT coincide (as subfields of C);

(ii) for any basis {γi} of T and any σ ∈ T2,0, σ �= 0, the coordinates xi = (σ .γi) satisfy

KT = kT = r⊕
i=1

Q · (xi/x1) .

2·3. Useful facts on CM fields

First of all, we recall a result proven by Blanksby and Loxton [BL78].

THEOREM 2·3. If E ⊆C is a CM field, then E =Q(α), for a primitive element α

satisfying |α| = 1.

We now present other elementary properties carried by CM fields.

LEMMA 2·4. Let E ⊆C be a number field given as a subfield of C, and let e ∈ E, e �= 0.
Then the dimension of the Q-vector space (R · e) ∩ E does not depend on e, and is equal to
dimQ(E ∩R).

Proof. It is enough to notice that (R · e) ∩ E = e · (E ∩R).

This Lemma assumes a particular form in the case of a CM field.

1 More precisely, if T is irreducible, (σ .γ ) = 0 if and only if γ = 0.
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COROLLARY 2·5. Let E ⊆C be a CM field given as a subfield of C, and let α be a
generator of E satisfying |α| = 1, n = [E : Q]. For any e ∈ E, e �= 0, the dimension of the
Q-vector space (R · e) ∩ E does not depend on e, and is equal to n/2.

Proof. The statement follows from Lemma 2·4, together with the fact that E ∩R is the
maximal totally real subfield of E, satisfying dimQ(E ∩R) = n/2.

PROPOSITION 2·6. Assume that a number field E is given as a subfield of C. Suppose
that E �R and Ē = E. Then E ∩ S1 is dense in S1.

Proof. It is enough to show that there exist elements α ∈ E lying on the circle of arbitrary
small non-zero argument (density follows taking powers of these elements). Let δ be an
element of E\R. For r ∈Q, define

αr = δ + r

δ̄ + r
∈ E.

Then |αr| = 1 and αr has arbitrary small non-zero argument, since limr→∞αr = 1.

COROLLARY 2·7. If E is a CM field given as a subfield of C, then E ∩ S1 is dense in S1.

Proof. A CM field satisfies the hypotheses of Proposition 2·6.

3. Twistor sphere of Hodge structures

Associated with T and an abstract class � of positive square, there exists a sphere of related
Hodge structures. Here we outline its construction, following [Huy20, section 3].

If one wishes to keep in mind the geometric picture, they should think of T as the tran-
scendental lattice of a projective complex K3 surface X, of ( . ) as the restriction of the
cup product on H2(X, Q) to T , and of � as an ample class of X. Altered Hodge structures
(or sub-Hodge structures of these) correspond to transcendental lattices of the K3 surfaces
constituting the twistor space of X (compare with Remark 6·1).

Fix a positive integer d ∈Z>0. We extend T to the Hodge structure of K3 type T ⊕Q�, of
dimension r + 1 and endowed with a form ( . ) of signature (3, r + 1 − 3), by declaring � to
be of type (1, 1), orthogonal to T , and to satisfy (�.�) = d. PT ⊕R� ⊆ TR ⊕R� is, therefore,
a positive 3-space. Notice that T ⊕Q� is no longer irreducible. The associated twistor base
is the conic

P1
� = {z = [

σ ′] ∈ P
(

T2,0 ⊕ T0,2 ⊕C�
)

|(σ ′.σ ′) = 0}.

Points of the conic P1
� define different Hodge structures on T ⊕Q�, in the following sense.

Any z ∈ P1
� defines a Hodge structure of K3 type on T ⊕Q�, that we say corresponding to z:

its (2, 0)-part is the line corresponding to z = [
σ ′], i.e. the line Cσ ′, its complex conjugate

the (0, 2)-part, and the (1, 1)-part is given as the orthogonal complement of the former two.
Notice that ( . ) is positive definite on

(
Cσ ′ ⊕Cσ̄ ′) ∩(TR ⊕R�) =R�(

σ ′) ⊕R�(
σ ′); this

follows immediately from the fact that ( . ) is positive definite on PT ⊕R�, which contains
R�(

σ ′) ⊕R�(
σ ′).

Mapping z ∈ P1
� to the oriented, positive real plane

Pz = 〈�(z) , �(z)〉R
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yields an identification P1
� � Grpo(PT ⊕R�) with the Grassmannian of oriented, positive

planes in PT ⊕R�. The complex conjugate z̄, i.e. the point
[
σ ′

]
, corresponds to the same

plane with reversed orientation:

Pz̄ = 〈�(z) , �(z)〉R.

Indeed, the basis given by {�(z) , −�(z)} induces the same orientation as the basis given
by {�(z) , �(z)}.

We define the period point of T as x = [σ ] ∈ P(TC). Via the natural inclusion P(TC) ⊆
P(TC ⊕C�), we see that both x = [σ ] and its complex conjugate x̄ = [σ̄ ] belong to the
conic P1

�, as (σ .σ) = 0 and (σ̄ .σ̄ ) = 0. Thinking of Pz with its orientation being given as
the orthogonal complement of a generator αz of the line P⊥

z ⊆ PT ⊕R� provides a natural
identification

P1
� � Grpo

2 (PT ⊕R�) � S2
� = {α ∈ PT ⊕R�|(α.α) = 1}.

With this identification, x and x̄ correspond to the normalisations of � and −�. We think
of them as the north and south poles of S2

� . The equator of the twistor base is the circle

S1
� = {z ∈ P1

�|� ∈ Pz} � {α ∈ S2
�|(α.�) = 0}.

Indeed, if � ∈ Pz then the line orthogonal to Pz in PT ⊕R� is orthogonal to �, and vice
versa.

If, for z ∈ P1
�, we write z = [

σ ′ = aσ + bσ̄ + c�
]
, for some a, b, c ∈C, then z ∈ P1

� if and
only if

(
σ ′.σ ′) = 0, i.e.

2ab(σ .σ̄ ) + c2d = 0. (3·1)

The only points with c = 0 are the north and the south poles x = [σ ] , x̄ = [σ̄ ]. For all the
other points, c �= 0 and, after rescaling σ ′, we may assume c = 1. The following result gives
the explicit form of the isomorphism P1

� � S2
� .

LEMMA 3·1. Pick an element z = [
σ ′ = aσ + bσ̄ + �

] ∈ P1
� corresponding to a point on

S2
� different from both poles. Then its image in S2

� is given, in coordinates for the basis
{�(σ ) , �(σ ) , �}, by the point

x(a, b) = v(a, b)

‖ v(a, b) ‖ ,

where

v(a, b) =
(

�(b − ā) , �(b − ā) ,
(
aā − bb̄

) (σ .σ̄ )

2d

)

and ‖ ‖ corresponds to
√
( . ).

Remark 3·2. The basis {�(σ ) , �(σ ) , �} is orthogonal for ( . ); nonetheless, it is not
normalised.

Remark 3·3. If we assume a = b̄, then, if σ ′ �= 0,(
σ ′.σ ′) = 2aā(σ .σ̄ ) + d > 0,

as (σ .σ̄ ) > 0. Thus z = [
σ ′] ∈ P1

� forces a �= b̄.
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Proof of the Lemma. Consider the plane Pz = 〈�(
σ ′) , �(

σ ′)〉R. Let αz be the unique
element of PT ⊕R� of norm 1 that is positively orthogonal to Pz. We are proving that
v = v(a, b) gives the coordinates of a vector in PT ⊕R� that is positively aligned to αz,
and this will be enough. First of all, we check the orthogonality relations. Note that

�(
σ ′) = σ ′ + σ ′

2
= a + b̄

2
σ + b + ā

2
σ̄ + � = �(b + ā) �(σ ) + �(b + ā) �(σ ) + �

and

�(
σ ′) = σ ′ − σ ′

2i
= a − b̄

2i
σ + b − ā

2i
σ̄ = �(

a − b̄
) �(σ ) + �(

a − b̄
) �(σ ) .

Recall that

(�(σ ) .�(σ )) = (�(σ ) .�(σ )) = (σ .σ̄ )

2
, (�(σ ) .�(σ )) = 0.

Then, simple computations give

(
v.�(

σ ′)) = (σ .σ̄ )

2

(�(b − ā) �(b + ā) + �(b − ā) �(b + ā) +(
aā − bb̄

)) = 0

and

(
v.�(

σ ′)) = (σ .σ̄ )

2

(�(b − ā) �(
a − b̄

) + �(b − ā) �(
a − b̄

)) = 0.

The positive alignment follows from the positivity of the discriminant of the matrix
⎡
⎣�(b + ā) �(b + ā) 1

�(
a − b̄

) �(
a − b̄

)
0

�(b − ā) �(b − ā)
(
aā − bb̄

)
(σ .σ̄ )

2d

⎤
⎦

which is

(aā − bb̄)2 (σ .σ̄ )

2d
+ (

a − b̄
)(

a − b̄
)
> 0

as a �= b̄, thanks to Remark 3·3.

Remark 3·4. The equator S1
� is defined by the condition |a| = |b|, or equivalently aā = bb̄,

for z = [
σ ′ = aσ + bσ̄ + �

]
.

LEMMA 3·5. Choose a non-zero element �′ ∈ T ⊕Q�. Then there are exactly two points
z, z′ ∈ P1

� such that �′ is orthogonal to z and z′, i.e. �′ ∈ P⊥
z and �′ ∈ P⊥

z′ . Moreover, z′ = z̄,

and z and z̄ correspond to antipodal points on S2
� via the isomorphism P1

� � S2
� .

Proof. The case �′ = � has already been discussed; suppose that �′ /∈Q�. The orthogonal
complement of �′ in TC ⊕C� does not contain the whole T2,0 ⊕ T0,2 ⊕C� (since the form
( . ) is non-degenerate on this last vector space). Therefore �′⊥ ∩(

T2,0 ⊕ T0,2 ⊕C�
)

is a C-
plane in T2,0 ⊕ T0,2 ⊕C�. Passing to the projective spaces, �′⊥ ∩(

T2,0 ⊕ T0,2 ⊕C�
)

defines
a line in P

(
T2,0 ⊕ T0,2 ⊕C�

)
, which cuts the conic P1

� in two distinct points, or one single
point (with double multiplicity). On the other hand, the second case is not admissible: if
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z = [
σ ′ = aσ + bσ̄ + �

]
satisfies conditions (3·1) and (4·1), then

z̄ =
[
σ ′ = b̄σ + āσ̄ + �

]

satisfies both equations as well. Besides, as already pointed out in Remark 3·3, a �= b̄, so that
z �= z̄. Then z, z̄ are the required points. Lastly, note that z and z̄ are antipodal on the sphere
P1

� � S2
�; for, compare with the isomorphism of Lemma 3·1.

4. Picard jump on the equator

We focus our attention on the Noether–Lefschetz locus of the equator S1
� ⊆ P1

�, its points
of Picard jump and their period fields.

4·1. Excessive Picard jump values

We have already remarked that the original extended Hodge structure of K3 type on T ⊕
Q� is no longer irreducible, being � a (1, 1)-class. Given z ∈ P1

�, we define the Picard number
ρz of the Hodge structure corresponding to z to be the Q-dimension of the space of (1, 1)-
classes of T ⊕Q�, that is

ρz = dimQ

(
P⊥

z ∩(T ⊕Q�)
)

.

For instance, as the original T is irreducible, we deduce that ρx = ρx̄ = 1.

Definition 4·1. We say that a point z ∈ P1
� is of Picard jump if ρz ≥ 1, of excessive Picard

jump if ρz > 1. We call Noehter–Lefschetz locus the set of points z ∈ P1
� of Picard jump.

We are interested in understanding how points of Picard jump distribute on the sphere
P1

� � S2
� , and the possible relative Picard numbers. Huybrechts proved the following result

[Huy20, proposition 3·2].

PROPOSITION 4·2. Assume that T is a polarised irreducible Hodge structure of K3 type.
Then, for the twistor base P1

� � S2
� , one has:

(i) the set {z ∈ P1
�

∣∣ ρz ≥ 1} is countable and dense (in the classical topology);

(ii) the set
{
z ∈ P1

�

∣∣ ρz〉1
}

is at most countable and contained in the equator S1
� .

The fact that the Noether–Lefschetz locus is countable is a particular instance of a more
general fact (see [Huy16, chapter 6, proposition 2·9]). However, there is a very simple
argument that applies in this case. Assume that z is of Picard jump, and let �′ ∈ T ⊕Q�

be a (1, 1)-class for the Hodge structure induced by z. Then �′⊥ identifies a line in
P
(
T2,0 ⊕ T0,2 ⊕C�

)
, that cuts the conic P1

� in two points: z and z̄. Thus, �′ is a (1, 1)-class
only for finitely many z ∈ P1

�, and therefore the Noether–Lefschetz locus is countable, as
T ⊕Q� is.

Assume that z = [aσ + bσ̄ + c�]. The condition defining �′⊥ can be translated as

a
(
σ .�′) + b

(
σ̄ .�′) + (

�.�′) = 0. (4·1)
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LEMMA 4·3. Assume that �′ ∈ T ⊕Q�, �′ /∈Q� and choose z to be one of the two points
orthogonal to �′. Then the point z is contained in the equator S1

� if and only if �′ ∈ T.

Proof. Write z = [
σ ′]. Assume that z ∈ S1

� , i.e. � ∈ Pz = 〈�(
σ ′) , �(

σ ′)〉R ⊆ 〈σ ′, σ ′〉C.

Then � = aσ ′ + bσ ′ for some a, b ∈C; hence
(
�.�′) = 0 since

(
σ ′.�′) = 0, which means �′ ∈

T . Conversely, assume that �′ ∈ T , i.e.
(
�.�′) = 0. Write σ ′ = aσ + bσ̄ + c�. After rescal-

ing σ , we may assume that
(
σ .�′) = 1, so that

(
σ̄ .�′) =(

σ .�′) = 1 as well. The condition(
σ ′.�′) = 0 implies,

a
(
σ .�′) + b

(
σ̄ .�′) + c

(
�.�′) = 0, i.e. b = −a.

Therefore, the condition (3·1)

−2a2(σ .σ̄ ) + c2d = 0

implies c �= 0 (and therefore we may assume c = 1) and a ∈R (since d > 0 and (σ .σ̄ ) > 0).
Therefore

σ ′ = aσ̄ − aσ + �

and

� = σ ′ + σ ′

2
= �(

σ ′)

and the proof is concluded, as � ∈ Pz.

If the original Hodge structure T has CM, all points of Picard jump on the equator share
the same Picard number.

PROPOSITION 4·4. Suppose that T is a polarised irreducible Hodge structure of K3 type
and CM, and consider its sphere of related Hodge structures. Assume that z ∈ S1

� is a point
of Picard jump on the equator. Then ρz = r/2.

Proof. Firstly, note that P⊥
z ∩(T ⊕Q�) is all contained in T . This follows from

Lemma 4·3 applied to any non-zero element �′ ∈ P⊥
z ∩(T ⊕Q�). Hence P⊥

z ∩(T ⊕Q�) =
P⊥

z ∩ T . The key remark is that P⊥
z ∩ T admits an action of the real part K0

T = KT ∩R
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of the endomorphism field KT . To show this, choose β ∈ K0
T and �′ ∈ P⊥

z ∩ T . Write z =[
σ ′ = aσ + bσ̄ + �

]
. Then, using that � is orthogonal to T , we obtain (β ∈ K0

T is

self-adjoint for ( . ))
(
σ ′.β

(
�′)) = (

aσ + bσ̄ + �.β
(
�′))

= (
aσ + bσ̄ .β

(
�′))

= (
β(aσ + bσ̄ ) .�′)

= a
(
β · σ .�′) + b

(
β · σ̄ .�′)

= β · (aσ + bσ̄ + �.�′)
= β · (σ ′.�′) = 0.

As a consequence, P⊥
z ∩ T is a K0

T -vector space. As
[
K0

T : Q
] = r/2 (we are in the CM case

by assumption, so that
[
KT : K0

T

] = 2 and [KT : Q] = r), dimK0
T
P⊥

z ∩ T can only take three

different values: 0, 1, 2. We immediately exclude the case dimK0
T
P⊥

z ∩ T = 0 since z is a

point of Picard jump. Assume by contradiction that dimK0
T
P⊥

z ∩ T = 2. In fact, this equality

would imply P⊥
z ∩ T = T . This would force σ ′ to belong to C�, or equivalently to have

zero TC-part (indeed the form ( . ) in non-degenerate on T , and therefore on TC). On the
other hand, this is a contradiction, since any non-zero σ ′ ∈C� does not satisfy (3·1). In
conclusion, dimK0

T
P⊥

z ∩ T = 1, or equivalently dimQP⊥
z ∩ T = [

K0
T : Q

] = r/2, i.e. ρz = r/2.

Remark 4·5. If the original T has CM, the only case where there are no points of excessive
Picard jump (i.e. ρz ≤ 1 for all z ∈ P1

�) is r = 2.

Remark 4·6. The hypothesis on T of being of CM type plays a fundamental role in order
to ensure the validity of the property ρz = r/2 for all points of jump on the equator. It
is not difficult to construct explicit examples of irreducible polarised Hodge structures of
K3 type T for which the excessive Picard values are multiple. In addition, not even the sole
assumption that KT is CM, without supposing dimQT = [KT : Q], is enough to guarantee the
result.

Remark 4·7. However, if T is not assumed to be of CM type, one may argue as in the proof
of Proposition 4·4 to deduce that ρz (for z point of Picard jump on the equator) is divisible
by

[
K0

T : Q
]

and strictly smaller than r.

The following result enriches Proposition 4·2. To prove it, it is not necessary to assume
that T has CM, or that KT is CM. However, in Section 5·2 we will give a better description
of the distribution of points of Picard jump on the equator in the CM case.
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PROPOSITION 4·8. Assume that T is a polarised irreducible Hodge structure of K3 type,
and consider its sphere of related Hodge structures. Then the set of points of Picard jump
on the equator is dense in the equator (for the classical topology). In particular, this set is
countable (not finite).

Proof. Thanks to Lemma 3·1, a point on the equator S1
� ⊆ P1

� corresponds via the
isomorphism P1

� � S2
� to the normalisation of the vector

v(a, b) = (�(b − ā) , �(b − ā) , 0) .

Lemma 3·1 also gives a condition on z to belong to S1
� , namely |a| = |b|. Write R to denote

these absolute values; then a = Reiθ , b = Reiτ for some θ , τ ∈R. Moreover, (3·1) gives

2R2ei(θ+τ)(σ .σ̄ ) = −d,

from which we deduce that θ + τ≡2ππ . Hence, b = −Re−iθ = −ā. Then

v(a, b) = (−2Rcos(−θ) , −2Rsin(−θ) , 0) .

Therefore, in order to prove the statement, it is enough to show that the set of pos-
sible complex arguments assumed by the periods (σ .γ ), γ ∈ T is dense in the circle
{z ∈C | |z| = 1} (the point of Picard jump corresponding to such a γ would be determined
by a = Reiθ such that θ(or π + θ) is the opposite of the argument of (σ .γ )). However, the
Q-vector space P of the periods (σ .γ ), γ ∈ T is not contained in an R-line of C; indeed, if
this were the case, then the period field kT =Q((σ .γi) / (σ .γ1)) (for a basis {γi} of T) would
be contained in R, contradiction. As a consequence, P is dense in C, and then the set of the
complex arguments of elements of P\ {0} is dense in the circle.

5. Actions on Noether–Lefschetz loci

In this section, assume that T is a polarised irreducible Hodge structure of K3 type, and
consider again the associated twistor base P1

� � S2
� . We define two actions: first, an action

of the multiplicative group K×
T on the Noether–Lefschetz locus of the upper-half sphere,

deprived of the north pole; then, an action of the multiplicative group K×
T /(K0

T )× on the
Noether–Lefschetz locus of the equator. We treat in particular the situation arising when we
assume that T is of CM type: the jumping loci outside and on the equator are homogeneous
under the actions of K×

T and K×
T /(K0

T )×, respectively.
One may define these two actions together as a unique action on the whole P1

�; however,
we prefer to keep them separated to analyse the different behaviours on points outside and
on the equator S1

� .
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5·1. Outside the equator

Denote by U the upper-half sphere of P1
� � S2

� (defined by the condition |a| > |b| on z =[
σ ′ = aσ + bσ̄ + �

]
, see Lemma 3·1), and by Q the set of points of Picard jump in U (that

is, the Noether–Lefschetz locus of U ), deprived of the north pole x. Notice that a point z ∈Q
satisfies ρz = 1, by Proposition 4·2, and hence is orthogonal to a unique (up to a rational
scalar) non-zero element �′ ∈ P⊥

z ∩(T ⊕Q�). Denote by Q+ the set of z ∈Q for which the
corresponding �′ is such that

(
�′.�′) > 0.

Remark 5·1. Unless r = 2, the form ( . ) is not positive definite on T . Thus, Q+�Q if r > 2.

For a point z ∈ P1
�, we define its altitude as the last coordinate of the vector defined by

Lemma 3·1, namely the third coordinate of the corresponding point in S2
� for the basis

{�(σ ) , �(σ ) , �} of PT ⊕R�.
Recall that d = (�.�) ∈Z>0. Choose an element �′ = γ1 + (m/d) � ∈ T ⊕Q�, �′ /∈ T , �′ /∈

Q�, so that the two corresponding orthogonal points are neither the poles nor on the equator
(see Lemma 3·5 and Lemma 4·3). Denote by z1 ∈Q the only point of Picard jump in the
upper-half sphere orthogonal to �′. Taking a scalar multiple of �′ identifies the same z1; we
may assume m = d, so that �′ = γ1 + �. For an element A ∈ K×

T , we define z2 = A ∗ z1, where
z2 ∈Q is the only point of Picard jump in the upper-half sphere orthogonal to �′′ = γ2 + �,
where γ2 = A(γ1). This association defines an action of K×

T on Q.

PROPOSITION 5·2. The action defined above is free. Moreover, if T has CM, the action
is transitive.

Proof. If A ∈ K×
T is different from the identity morphism, �′ and �′′ are linearly indepen-

dent over Q, so that they cannot be orthogonal to the same point in Q (thanks to Proposition
4·2); thus, the action is free. The transitivity of the action in the CM case follows from
dimKT T = 1.

Remark 5·3. If T does not have CM, the action is not transitive (as dimKT T > 1).

PROPOSITION 5·4. Under the same assumptions as above, suppose that z1 =[
σ ′ = aσ + bσ̄ + �

] ∈Q and additionally that A ∈ K×
T . Then:

(i) if |A| = 1, say A = eiθ , then z2 = A ∗ z1 is represented by the element

σ ′′ = aA(σ ) + bA(σ̄ ) + � = aAσ + bĀσ̄ + � = aeiθσ + be−iθ σ̄ + �.

In particular, A acts on Q by a rotation of angle −θ along the �-axis, and z1 and z2

have the same altitude;
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(ii) if |A| �= 1, then z1 and z2 = A ∗ z1 do not have the same altitude. In particular, if
|A| < 1 the altitude of z2 is greater than the one of z1, and vice versa;

(iii) if A ∈ K0
T = KT ∩R, then z1 and z2 = A ∗ z1 lie on the same meridian of P1

� � S2
� .

Remark 5·5. Recall that the homeomorphism P1
� � S2

� of Lemma 3·1 sends z1 =[
σ ′ = aσ + bσ̄ + �

]
to the normalisation of the vector

v(a, b) =
(

�(b − ā) , �(b − ā) ,
(
aā − bb̄

) (σ .σ̄ )

2d

)
.

This allows us to deduce that the tangent of the angle between a vector of a point S2
� and the

plane of zero-altitude is given, up to sign, by

(σ .σ̄ )

2d
|ā + b| .

Indeed, it is suffices to notice that

aā − bb̄ = (ā + b)
(
a − b̄

)
,

since ab ∈R by (3·1).

Proof of the Proposition. Firstly, assume that |A| = 1. We are showing that z2 = [
σ ′′]

actually belongs to the conic P1
�, i.e.

(
σ ′′.σ ′′) = 0. For, it is enough to observe that the (3·1),

that here takes the form

2(aA)
(
bĀ

)
(σ .σ̄ ) + d = 0,

is satisfied since |A| = 1 and z1 ∈ P1
�. If |a| > |b| then |aA| > ∣∣bĀ

∣∣, so that z2 still belongs to
the upper-half sphere. To prove the first statement, it suffices to show that

(
σ ′′.�′′) = 0 holds

true, where �′′ = A(γ1) + �. Recall that, since |A| = 1, A is an isometry for ( . ); therefore we
obtain

(
σ ′′.�′′) = (aA(σ ) + bA(σ̄ ) + �.A(γ1) + �)

= a(A(σ ) .A(γ1)) + b(A(σ̄ ) .A(γ1)) + d

= a(σ .γ1) + (σ̄ .γ1) + d

= (
σ ′.�′) = 0.
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For the statement concerning the action by rotation and the same altitude of z1 and z2, it
is enough to compare the tangents of the angles between the vectors corresponding to z1 and
z2, as done in Remark 5·5.

Remark 5·6. One could expect, for a general A ∈ K×
T not necessarily of norm one, the point

z2 = A ∗ z1 to be given by

z2 =
[
σ ′′ = aĀ−1(σ ) + bĀ−1(σ̄ ) + � = aĀ−1σ + bA−1σ̄ + �

]
,

so that
(
σ ′′.�′′) = 0 by a similar argument. Nonetheless, (3·1) is no longer satisfied and z2 /∈

P1
l , so this guess is not true. It is indeed more complicated to deduce an explicit expression

for z2 when A does not have norm one.

We continue the proof of Proposition 5·4. Assume now that |A| �= 1. Even without com-
puting explicitly z2 we can prove that z2 has different altitude from z1. Define B = Ā−1 and
consider

σ ′′ = aBσ + bB̄σ̄ + �.

It corresponds to a point in P
(
T2,0 ⊕ T0,2 ⊕C�

)
orthogonal to �′′. Then 0 =(

σ ′′.�′′) =(
σ ′′.�′′

)
, where

σ ′′ = b̄Bσ + āB̄σ̄ + �.

Note that σ ′′, σ ′′ are linearly independent over C since a �= b̄ (see Remark 3·3). Therefore,
the line in P

(
T2,0 ⊕ T0,2 ⊕C�

)
passing through these points is exactly the line of elements

orthogonal to �′′; among these points there are z2 and z2, given by the intersection with the

conic P1
�. The general point of this line has the form z =

[
λσ ′′ + μσ ′′

]
. Since λ + μ = 0

does not give an element of P1
�, we may assume λ + μ = 1, and z =

[
λσ ′′ + (1 − λ) σ ′′

]
.

Assume that z ∈ P1
�. We claim that λ ∈R. Firstly, note that λ �= 1/2, otherwise the σ -

coefficient and the σ̄ -coefficient of λσ ′′ + (1 − λ) σ ′′ would have the same norm, forcing z
to be on the equator S1

� , contradiction. Since z ∈ P1
�, then

0 = (λσ ′′ + (1 − λ) σ ′′)2 = λ2(σ ′′.σ ′′) + 2λ(1 − λ)
(
σ ′′.σ ′′

)
+ (1 − λ)2

(
σ ′′.σ ′′

)
.
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Note that
(
σ ′′.σ ′′) =

(
σ ′′.σ ′′

)
. Therefore, also the point z′ identified by

z′ =
[
(1 − λ) σ ′′ + λσ ′′

]

is in the intersection of the conic P1
� with the line of elements orthogonal to �′′. Since λ �=

1/2, it cannot coincide with z, and thus z′ = z̄, where

z̄ =
[
λσ ′′ + (

1 − λ̄
)
σ ′′

]
.

Hence, λ = λ̄.
As noticed in Remark 5·5, to discuss the difference of altitude we are interested in the

quantity |ā + b| for the new coefficients. We have

λσ ′′ +
(

1 − σ ′′
)

= (
λa + (1 − λ) b̄

)
Bσ + (λb + (1 − λ) ā) B̄σ̄ + �

and, using λ ∈R,
∣∣(λā + (1 − λ) b) B̄ + (λb + (1 − λ) ā) B̄

∣∣ = |ā + b| ∣∣B̄∣∣ = |ā + b| |A|−1.

This relation tells us exactly that, for points in the upper-half sphere, acting by an element
of K×

T of norm smaller than one increases the altitude, while the action of elements of K×
T

of norm greater than one decreases the altitude.
Finally, we prove the third statement. If A ∈R then B = Ā−1 = A−1 ∈R, too. Arguing as

above, we deduce that z2 is represented by the element

λσ ′′ + (1 − λ) σ ′′ = (
λa + (1 − λ) b̄

)
Bσ + (λb + (1 − λ) ā) Bσ̄ + �

for some λ ∈R. Set

ã = (
λa + (1 − λ)b

)
B, b̃ = (

λb + (1 − λ)a
)
B.

For this element, the quantity b̃ − ã is equal to

((2λ − 1) b + (1 − 2λ) ā) B = (b − ā)(2λ − 1) B.

As (2λ − 1) B ∈R, the angle determined by �(
b̃ − ã

)
and �(

b̃ − ã
)

is the same as the
angle determined by �(b − ā) and �(b − ā), so that z2 and z1 lie on the same meridian.

Remark 5·7. Of course, one can state a similar result for points in the lower-half sphere, as
the lower-half may be obtained by conjugating the upper-half sphere.

Huybrechts proved that, for a point z1 ∈Q+ orthogonal to �′, the corresponding polarised
irreducible Hodge structure of K3 type, namely T ′ = �′⊥, is of CM type, and the real parts
K0

T and K0
T′ of KT and KT′ , respectively, coincide [Huy20, proposition 3·8]. Moreover, he

gave an explicit description of KT′ [Huy20, corollary 3·10]: it is the quadratic extension of
K0

T = K0
T′ described by

X2 + γ X + δ = 0,
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where
2

γ = m
(
α + α−1

)
, δ = m2 − d

2(σ .σ̄ )

(
α2 + α−2 − 2

)
,

KT =Q(α), d = (�.�), m = (
�.�′) and σ is such that

(
σ .�′) = 1.

PROPOSITION 5·8. Same hypotheses as in Proposition 5·4. Suppose that T has CM.
Assume, moreover, that z1 ∈Q+ and that A ∈ K×

T satisfies |A| = 1. Then z2 = A ∗ z1 ∈Q+
and the polarised irreducible Hodge structures of K3 type corresponding to the points z1

and z2, namely �′⊥ and �′′⊥, have the same CM field.

Proof. To prove that z2 ∈Q+, it is enough to notice that
(
�′′.�′′) = (A(γ1) + �.A(γ1) + �)

= (A(γ1) .A(γ1)) + (�.�)

= (γ1.γ1) + (�.�)

= (
�′.�′) > 0,

as A is an isometry for ( . ) and z1 ∈Q+.
We now prove that the coefficients γ , δ are the same for the two points z1, z2, so that

KT′ = KT′′ . For both points m = d, since we fixed the �-part of �′, �′′; thus γ is the same.
Note that σ depends on �′: it is chosen such that

(
σ .�′) = 1. On the other hand, if we choose

such a σ for �′, then A(σ ) = Aσ satisfies
(
A(σ ) .�′′) = (A(σ ) .A(γ1) + �) = (A(σ ) .A(γ1)) = (σ .γ1) = (

σ .�′) = 1,

since A is an isometry. Hence, we may choose A(σ ) = Aσ for �′′. Then
(
Aσ .Aσ

) = (
Aσ .Āσ̄

) = AĀ(σ .σ̄ ) = (σ .σ̄ )

so that δ is the same as well.

Remark 5·9. It is possible to construct examples to show that not all the degree-2 CM exten-
sions of K0

T are realized as the CM endomorphism fields of some polarised irreducible Hodge
structures of K3 type T ′ = �′⊥. Moreover, the same degree-2 CM extension of K0

T may occur
for infinitely many different T ′ = �′, even for an Euclidean dense subset of z1 ∈Q+ (again,
�′ is chosen orthogonal to z1 ∈Q+).

Endow K×
T with the topology induced as a subspace of C× by the fixed embedding

KT ↪→C. Notice that the proof of Proposition 5·4 also puts in evidence the continuity of
the action of K×

T on Q. We summarise all the results in the following corollary.

COROLLARY 5·10. Assume that T has CM. Then:

(i) the topological group K×
T acts freely, transitively and continuously on Q. Having

fixed an element z1 ∈Q, this action induces a homeomorphism between K×
T and Q,

2 In [Huy20, corollary 3·10] a factor 2 in the expression of δ is missing.
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and this homeomorphism induces a homeomorphism between C× and U , and between
C and U ∪ {x};

(ii) the subgroup of K×
T given by the elements of norm one acts on Q by rotation along

the �-axis;

(iii) all points in Q at the same altitude of z1 are obtained from z1 by acting with an
element of K×

T of norm one. Besides, given a point z1 ∈Q, there exist countably many
points at the same altitude, and they are dense in the corresponding circle of U at that
altitude;

(iv) if z1 ∈Q+, all the other points of Picard jump at the same altitude are in Q+, and the
Hodge structures �′⊥ and �′′⊥ corresponding to these points have the same CM;

(v) finally, Q+ is dense in U .

Proof. The only statements left to prove are the ones concerning the density of points of
Q at the same altitude and the density of points of Q+. The first assertion follows from the
fact that, for a CM field E, the set of points in E ∩ S1 is dense in S1, according to Corollary
2·7. For the second assertion: let γ ∈ T such that (γ .γ ) > 0, so that (γ + �.γ + �) = (γ .γ ) +
d > 0 as well. Set �′ = γ + �. Consider an element in Q× · (S1 ∩ KT

) ⊆ K×
T , say A = λα, for

λ ∈Q× and α ∈ K×
T satisfying |α| = 1. Then �′′ = A(γ ) + � satisfies

(
�′′.�′′) = (A(γ ) .A(γ )) + d = λ2(γ .γ ) + d > 0.

The density of Q+ in U follows, therefore, from the density of Q× · (S1 ∩ KT
)

in C×
(S1 ∩ KT is dense in S1 thanks to Proposition 2·6).

5·2. On the equator

Now we focus on the equator S1
� . In the case P1

�\S1
� we had at our disposal a clean way

to choose one of the two points orthogonal to a certain �′ ∈ T ⊕Q�: picking the one in
the upper-half sphere (subject to the condition |a| > |b|). Here this choice is not so clear;
therefore, we will consider pairs of antipodal points on S1

� . Define R to be the set of points
of Picard jump on the equator modulo the relation {±}. Pick an element �′ = γ1 ∈ T , γ1 �= 0,
and consider z1 = [

σ ′ = aσ + bσ̄ + �
]

on S1
� which is orthogonal to γ1. By our choice of

R, here we mean at the same time z1 and z1. For A ∈ K×
T , we define z2 = A∗z1 to be the

(pair of) point orthogonal to �′′ = γ2 = A(γ1). This defines an action of K×
T on R. This

action is no longer free: indeed, as explained in the proof of Proposition 4·4, two non-zero
elements γ , δ in T are orthogonal to the same point if there exists a β ∈ (K0

T )× = K×
T ∩R

such that β(γ ) = δ. Then, (K0
T )× is contained in the kernel of this action, or equivalently

in the stabiliser of each point. This induces an action of the quotient group K×
T /(K0

T )× on
R. If T has CM, the action of the quotient is free, i.e. (K0

T )× is exactly the stabilizer of
each point: this follows from the fact that ρz = r/2 for points of Picard jump on the equator
(Proposition 4·4). However, it will be clear later that the action of K×

T /(K0
T )× is free even

if T is not of CM type. Notice that the quotient group is trivial if T is of totally real type.
Again, if T has CM then the action is transitive (as dimKT T = 1).

We have an explicit way to compute z2 = A ∗ z1. Pick σ satisfying
(
σ .�′) = 1. If z1 =[

σ ′ = aσ + bσ̄ + �
]
, (4·1) gives a + b = 0, i.e. b = −a. On the other hand, we rewrite (3·1)

as −2a2(σ .σ̄ ) + d = 0, which forces a ∈R. Hence,
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σ ′ = aσ − aσ̄ + �.

Assume that A = Reiθ ; then z2 = [
σ ′′], where

σ ′′ = aeiθσ − ae−iθ σ̄ + �.

Indeed z2 ∈ P1
� holds since (3·1) is satisfied, and

(
σ ′′.A(γ1)

) = (
aeiθσ .A(γ1)

) + (−ae−iθ σ̄ .A(γ1)
)

= aeiθ (Ā(σ ).γ1) − ae−iθ (Ā(σ̄ ) .γ1
)

= aeiθ Ā − ae−iθA = 0.

Looking at the isomorphism P1
� � S2

� defined in Lemma 3·1, we see that A = Reiθ acts on
R by a rotation of angle −θ . Note that if A ∈ (K0

T )× then θ = 0 or θ = π , and z2 = z1 (in R),
as already mentioned.

We add a topological flavour to this discussion. Endow K×
T with the topology induced

by the topology of C× under the fixed embedding KT ↪→C, and (K0
T )× with the subspace

topology. Then the topological quotient group K×
T /(K0

T )× is a subspace of the topological
quotient group P1(R) =C×/R×. Moreover, R is a subspace of S1

�/ {±} and the action of
K×

T /(K0
T )× on it is given by rotation.

Remark 5·11. If KT is a CM field, then K×
T /(K0

T )× is dense in P1(R). To deduce this, it is
enough to show that the elements of norm one inside KT are dense in the circle: this is the
content of Corollary 2·7.

Remark 5·12. We may define the equivalent of Q+ also in this setting: let R+ be the
set of (pair of) points z ∈ S1

� ⊆ P1
� that are orthogonal to an element of T of positive self-

intersection. If γ1 ∈ T is of positive self intersection, denote by z1 (one of) its orthogonal.
For an element A ∈ K×

T , |A| = 1 implies that γ2 = A(γ1) is of positive self-intersection as
well. Then, by acting with elements of S1 ∩ K×

T on z1, we see that R+ is dense in S1
�/ {±} if

KT is a CM field.

In retrospect, we have proven the following result.

PROPOSITION 5·13. Assume that T has CM. Then:

(i) the topological group K×
T /(K0

T )× acts freely, transitively and continuously by rota-
tions on the topological space R;

(ii) having fixed an element z1 ∈R, this action induces a homeomorphism between
K×

T /(K0
T )× and R, and this homeomorphism passes to the topological completions,

inducing a homeomorphism between P1(R) and S1
�/ {±};

(iii) R is dense in S1
�/ {±}, or equivalently: the set of points of Picard jump of the equator

is (countable and) dense in the equator;

(iv) finally, R+ is countable and dense in S1
�/ {±}.
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6. Geometric interpretation

Suppose that X is a complex projective K3 surface, and let � = c1(L) be the first Chern
class of an ample line bundle. We call period field and endomorphism field of X the
period field and the endomorphism field, respectively, of the transcendental lattice T(X) ⊆
H2(X, Q), which is a polarised irreducible Hodge structure of K3 type. We say that a com-
plex projective K3 surface X has CM if T(X) has CM, that is: its dimension as a KT(X)-vector
space is 1.

We can construct the twistor space X → P1
C

associated with (X, L), where we put in
evidence the considered ample line bundle. The fibre over a point ζ ∈ P1

C
is a K3 surface

of complex structure x1I + x2J + x3K, if ζ and (x1, x2, x3) correspond one to the other via
stereographic projection. One should be careful, for the presence of two spheres: S2

� � P1
�, an

element of which corresponds to a class z = [
σ ′] ∈ P1

�; S2 � P1
C

, parametrising the complex
structures x1I + x2J + x3K of the fibres of the geometric twistor space. We want to underline
the relation existing between these spheres. We may give explicitly an isomorphism P1

� � P1
C

that respects the following property: the Hodge structure determined by z = [
σ ′] ∈ P1

� on
T ⊕Q� corresponds to the Hodge structure determined by σζ on the same vector space, for
ζ ∈ P1

C
corresponding to z ∈ P1

�. Equivalently, one may ask σ ′ and σζ to differ only by a a
complex scalar. The isomorphism P1

C
� P1

� is defined by

ζ �−→
[
σζ = σ − ζ 2σ̄ + 2ζ�

]
=

[
1

2ζ
σ − ζ

2
σ̄ + �

]

(sending ∞ to [σ̄ ]). This follows from the explicit form of σζ given in [HKLR87, section
3·F]. It is remarkable that σζ is a linear combination of σ , σ̄ and � only. Composing these
isomorphisms, we get

S2
� � P1

� � P1
C � S2.

We claim that this composition is nothing but the permutation (x, y, z) �→(x1, x2, x3) =
(z, x, y) on the sphere. For, a point ζ ∈ P1

C
is sent, towards the left, to

[
1

2ζ
σ − ζ

2 σ̄ + �
]
∈ P1

�.

Set a = 1/ (2ζ ), b = −ζ/2. Then

b − ā = −ζ

2
− 1

2ζ̄
= − 1

2ζ̄

(
ζ ζ̄ + 1

) = ζ ζ̄ + 1

4ζ ζ̄
· (−2ζ )

and

aā − bb̄ = 1

4ζ ζ̄
− ζ ζ̄

4
= ζ ζ̄ + 1

4ζ ζ̄
· (1 − ζ ζ̄

)
.

Therefore the vector

v(a, b) =
(

�(b − ā) , �(b − ā) ,
(
aā − bb̄

) (σ .σ̄ )

2d

)
,

that determines the point in S2
� (Lemma 3·1), is positively aligned to the vector
(−2�(ζ ) , −2�(ζ ) , 1 − ζ ζ̄

)
,
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where we use that (σ .σ̄ ) = 2(�.�) = 2d, as already noticed. However, the image of ζ in S2

via the stereographic projection is positively aligned with
(
1 − ζ ζ̄ , −2�(ζ ) , −2�(ζ )

)
,

and this proves the claim.
Therefore, we may talk about equator and points at the same altitude for S2

� and S2 inter-
changeably (even if the altitude of S2

� corresponds, in fact, to the first coordinate of S2).
Points at the same altitude correspond, therefore, to complex structures x1I + x2J + x3K on
X with the same coefficient x1. The equator correspond to complex structures x2J + x3K, for
which the I-part is missing.

Remark 6·1. For a point ζ ∈ P1
C

, let z ∈ P1
� its correspondent under the isomorphism P1

� �
P1
C

. We have the equality

ρz + ρ(X) − 1 = ρ
(Xζ

)
.

To prove this, look at the Néron–Severi group of the K3 surface Xζ . For an element γ ∈
H2

(Xζ , Q
) = H2(X, Q), being in NS

(Xζ

)
is equivalent to being orthogonal to the (2, 0)-form

σζ = σ − ζ 2σ̄ + 2ζ�. Of course the orthogonal complement of the class � in the original
Néron-Severi group, �⊥ ⊆ NS(X), is always orthogonal to σζ (and this corresponds to the
addend ρ(X) − 1). The orthogonal complement of this last space in H2(X, Q) is T ⊕Q�,
and is in direct sum with it. Lying in T ⊕Q� and, at the same time, being orthogonal to σζ

means belonging to the space

P⊥
z ∩ (T ⊕Q�) ,

whose dimension is, by definition, ρz. Therefore, the formula above holds.

In the following, when talking about the twistor space X → P1
C

associated with a pro-
jective complex K3 surface X, we imply the choice of � = c1(L) as Kähler class for the
construction of X . The analogous of Proposition 4·2, proven by Huybrechts, is the following
result.

COROLLARY 6·2. Consider the twistor space X → P1
C

associated with a projective com-
plex K3 surface X. If ρ

(Xζ

)
> ρ(X), then ζ is contained in the equator S1 ⊆ S2 (that is: ζ is

mapped to the equator S1 ⊆ S2 under stereographic projection P1
C

� S2).

Proposition 4·4 and Proposition 5·13 yield:

COROLLARY 6·3. Consider the twistor space X → P1
C

associated with a projective com-
plex K3 surface X with complex multiplication. If ζ is a point of Picard jump on the equator,
then

ρ
(Xζ

) = 10 + ρ(X)

2
.

Moreover, the Noether–Lefschetz locus of the equator is dense in the equator. More pre-
cisely, the locus of points on the equator whose fibres are algebraic K3 surfaces is dense in
the equator.
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Proof. Only the equation is left to discuss. If r = dimQT , then r + ρ(X) = 22 and ρz =
r/2 = (22 − ρ(X)) /2, if z corresponds to ζ via the isomorphism P1

� � P1
C

. Therefore, the
formula above follows from Remark 6·1.

Remark 6·4. The only case where no points of excessive jump appear is under the assump-
tion of maximal Picard number, i.e. ρ(X) = 20. This answers [Huy20, remark 5·2] in the
CM case. Also, it is a generalization of [Huy20, remark 5·5]: not only if ρ(X) < 20 there
is no fibre such that ρ

(Xζ

) = 20, but the set of admissible values of ρ
(Xζ

)
is also very

constrained.

Remark 6·5. A K3 surface X is projective, or equivalently algebraic, if and only if there
exists a line bundle L with L2 > 0, where L2 denotes the self-intersection of this line bundle.
For a proof, see [BHPV04, theorem IV·6·2]. For twistor fibres, we see how the geometric
property “being algebraic” agrees with the algebraic requirement

(
�′.�′) > 0.

Remark 6·6. If ρ(X) = 20, each fibre Xζ corresponding to a point of Picard jump (both on
and outside the equator) has Picard number 20 and, therefore, it is automatically algebraic
and of CM type. However, when ρ(X) < 20, thanks to Remark 5·1, there are non-algebraic
fibres corresponding to points of Picard jump outside the equator.

Corollary 5·10 yields the following results.

PROPOSITION 6·7. Consider the twistor space X → P1
C

associated with a projective
complex K3 surface X with complex multiplication. Then the locus of ζ ∈ P1

C
such that Xζ

is algebraic is dense (for the classical topology) in P1
C

.

Proof. The density of the locus follows from the density of Q+ in U .

THEOREM 6·8. Consider the twistor space X → P1
C

associated with a projective com-
plex K3 surface X with complex multiplication. Assume that ζ1, ζ2 ∈ P1

C
are two points of

Picard jump at the same altitude and not on the equator. Then Xζ1 is algebraic if and only if
Xζ2 is such. If so, then the CM endomorphism fields of these K3 surfaces coincide. Moreover,
the set of points of Picard jump at the same altitude of ζ1 (and ζ2) is countable and dense in
the circle at that altitude.
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Remark 6·9. For ζ1, ζ2 ∈ P1
C

, being at the same altitude and outside the equator means
corresponding to complex structures on X having the same non-zero I-component.
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