
The Journal of Symbolic Logic

Volume 88, Number 3, September 2023

EXPANDING THE REALS BY CONTINUOUS FUNCTIONS
ADDS NO COMPUTATIONAL POWER

URI ANDREWS, JULIA F. KNIGHT, RUTGER KUYPER, JOSEPH S. MILLER , AND
MARIYA I. SOSKOVA

Abstract. We study the relative computational power of structures related to the ordered field of reals,
specifically using the notion of generic Muchnik reducibility. We show that any expansion of the reals by a
continuous function has no more computing power than the reals, answering a question of Igusa, Knight,
and Schweber [7]. On the other hand, we show that there is a certain Borel expansion of the reals that is
strictly more powerful than the reals and such that any Borel quotient of the reals reduces to it.

§1. Introduction. We would like to compare the computational power of algebraic
structures. For countable structures, Muchnik reducibility provides a useful way to
do this: if A and B are countable structures (in computable languages), then A is
Muchnik reducible to B (A ďw B) provided that every copy of B computes a copy
of A. Schweber, in [9], introduced a generalization of this reducibility that allows us
to compare the computational power of structures of arbitrary cardinality.

Definition 1.1 (Generic Muchnik reducibility). For a pair of structures A and
B (not necessarily countable) in V, we say that A is generically Muchnik reducible
to B, and we write A ď˚

w B, if for any generic extension V [G ] of the set-theoretic
universe V in which both structures are countable, we have V [G ] |= A ďw B.

In other words, we collapse cardinals so that the structures A and B become
countable, and then we apply the standard tools of computability theory to study
them. It follows from Shoenfield’s absoluteness theorem [18] that generic Muchnik
reducibility is set-theoretically robust:

Lemma 1.2 (Schweber [9]). If A ď˚
w B, then A ďw B in every forcing extension

that makes A and B countable.

After the initial paper [9], there have been several further papers in which generic
Muchnik reducibility is used to compare the computational power of structures
related to the real numbers. Here are some of these structures.

• Cantor space: This is represented in [9] by W = (P(�)Y �,P(�), �, S, P),
where S is the successor function on �. Another representation, possibly more
natural, is C = (2�, (Rn)nP�), where forα P 2� ,α P Rn if and only ifα(n) = 1.
Clearly, W ”˚

w C.
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• The ordered field of reals: This is R = (R,+,ˆ,ă).
• The non-standard reals: R˚ is an �-saturated extension of R. Note that this

structure is not unique, although it becomes unique after collapse of cardinals.
• Baire space: This is the structure B = (��, (Rn,m)n,mP�), where f P Rn,m if

and only if f(n) = m.

The structures listed above all fall into one of two generic Muchnik degrees. In [9],
it is shown that W ď˚

w R. Igusa and Knight [6] showed, using a result of MacIntyre
and Marker [11], that R˚ ”˚

w W . Downey, Greenberg, and Miller [3] showed that
R ”˚

w B. Thus, we have that

C ”˚
w W ”

˚
w R˚

ď
˚
w R ”

˚
w B.

Finally, we know from [3, 6] that the above inequality ď˚
w is strict, so

C ”˚
w W ”

˚
w R˚

ă
˚
w R ”

˚
w B.

In the present paper, we investigate structures of the form Rf = (R, f), the
ordered field of reals expanded by a function f. Igusa, Knight, and Schweber [7]
showed that if f is analytic, thenRf ”˚

w R. They asked whether this remains true for
arbitrary continuous functions f. They believed that the answer should be negative,
witnessed possibly by something like Brownian motion, with complicated level sets
as studied in [1]. Here, we show that the answer to the question is actually positive.

Theorem 1.3. If f is a continuous function (of any arity) on R, then Rf ď˚
w R.

Below, we give a brief outline of the proof of Theorem 1.3. Recall that for a
countable family of sets S Ď P(�), an enumeration is a relation E Ď �2 such that
the sets En = tx : (n, x) P Eu are exactly those in S. For a countable family of
functions F Ď �� , an enumeration is a function P : �2 Ñ � such that the functions
Pn(x) = P(n, x) are exactly those in F.

Definition 1.4 (Turing ideal, jump ideal).

(1) A Turing ideal is a family of sets S Ď P(�) that is closed under disjoint union
and Turing reducibility.

(2) A jump ideal is a Turing ideal that is closed under Turing jump.

After collapse, the old P(�) becomes a countable jump ideal S, and the family
F of functions f P �� that are present in the old �� is the family of functions
computable from elements of S. Downey, Greenberg, and Miller [3] give an
important characterization of the two generic Muchnik degrees discussed above,
that of C and that of R. After collapse, computing a copy of C is equivalent to
computing an enumeration of S, while computing a copy of R is equivalent to
computing an enumeration of F. The first step in the proof of our main theorem is
to explore what computational power is given by an enumeration of F, but not given
by an enumeration of S.

Let S be a countable jump ideal, and let E be an enumeration of S. We may think of
E as a function taking each index n to the setEn . We consider the companion function
J taking n to the set (E0 ‘ ¨¨¨ ‘ En)1. More formally, J will be an enumeration of a
subfamily of S, with specified indices.
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Definition 1.5 (Running jump). Let E be an enumeration of a jump ideal S.
The running jump for E is the relation J Ď �2 such that (n, x) P J if and only if
x P (E0 ‘ ¨¨¨ ‘ En)1.

In Section 2, we prove the following result, which we believe is of independent
interest.

Theorem 1.6. Let S Ď P(�) be a countable jump ideal, and let F Ď �� be the
family of all functions computable from sets in S. From an arbitrary enumeration P of
F, we can compute an enumeration E of S together with the running jump for E.

After collapse, let S be the family of sets in the old P(�), and let F Ď �� be the
family of functions computable from sets in S. From a copy of R (now a countable
structure), we can compute an enumeration P of F (this is immediate from the fact
that R ”˚

w B). Applying Theorem 1.6, we get an enumeration E of S together with
the running jump J for E. In Section 3, we show that the combination of E and the
running jump J provides the information needed to build a copy of Rf .

Theorem 1.7. Suppose f : Rk Ñ R is continuous. After collapse, let E be an
enumeration of the sets in the old P(�), let J be the running jump for E, and let
Rf = (R, f). Then there is a copy of Rf computable from E ‘ J .

We further show that continuous expansions of Cantor space also have generic
Muchnik degree bounded by the degree of R. Denote by Cf the expansion of C by
a function f on Cantor space. The following is a direct consequence of the more
generally phrased Theorem 3.2.

Theorem 1.8. If f is a continuous function (of any arity) on C, then Cf ď˚
w R.

In Section 3, we also give examples of continuous functions f such that Cf ”˚
w R.

An interesting question arises: are there generic Muchnik degrees strictly between
the degree of C and the degree of R and if so, can they be obtained as continuous
expansions of C? This problem is treated in detail in the upcoming paper by Andrews,
Miller, Schweber, and M. Soskova [2]. They show that there is a degree strictly
between C and R. Later Gura1 exhibited a whole hierarchy of such degrees. On
the other hand, Andrews, Miller, Schweber, and M. Soskova [2] show a dichotomy
result for expansions of C by closed predicates: they lie either in the degree of C or
in the degree of R. Recall that continuous functions have closed graphs, and hence
this answers our original questions.

In Section 4, we investigate continuous expansions of Baire space B. We show
that, unlike with R, there is a way to continuously expand B to get a structure of
strictly higher complexity. Let (B,‘,1 ) be the structure of Baire space with adjoined
join and jump functions (appropriately defined for members of ��). We show that
this structure has a very powerful generic Muchnik degree.

Theorem 1.9. There is a continuous expansion of Baire space in the generic
Muchnik degree of (B,‘,1 ).

1Unpublished.
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(1) (B,‘,1 ) ą˚
w B.

(2) Every Borel expansion (even Borel quotient) of B is generic Muchnik reducible
to (B,‘,1 ).

We refer to the generic Muchnik degree of the structure (B,‘,1 ) as the Borel
complete degree. In Section 4, we show that as a consequence of this, Theorem 1.3
cannot be strengthened to Borel expansions of R—there are such expansions of R
in the Borel complete degree. As with C, it is natural to ask if continuous expansions
of B can lie strictly between B and the Borel complete degree. Assuming Δ1

2-Wadge
determinacy, Andrews, Miller, Schweber, and M. Soskova [2] prove a dichotomy
result for closed (equivalently, continuous) expansions of B: they have the same
generic Muchnik degree either as B or as the Borel complete degree. They also show
that there are generic Muchnik degrees strictly between these two.

§2. Results on enumerations. We turn to the proof of Theorem 1.6. Recall the
statement.

Theorem 1.6. Let S Ď P(�) be a countable jump ideal, and let F Ď �� be the
family of functions computable from sets in S. From an arbitrary enumeration P of F,
we can compute an enumeration E of S together with the running jump for E.

Proof. We will compute an enumeration E in stages, so that at any stage we have
determined finitely many bits of E. At stage s, we will have instructions for each
column En with n ă s . These instructions either will be to copy some element of P
(or rather a set associated with that element in a fixed way that will be made precise)
or will be an index for a computation that describes how we should complete the
column. In the former case, we will say that n is a copy column and in the latter case,
we will say that n is a fix column.

The difficulty in the construction, of course, comes from computing the relation
J that gives us the running jump for E. The core idea is that the jump ideal contains
sets computing the settling time functions for the running jumps. Recall that A1 has
a standard representation as an A-c.e. set WA. A settling time function for A1 is a
function s : � Ñ � such that n P A1 if and only if n PWAæs(n)

s(n) , i.e., n is the stage s(n)

approximation to the setWA and references the oracle A only on numbers less than n.
If a jump ideal S contains A, then the least (with respect to majorizing) settling time
function sA1 is computable from A1, and hence it is in F. To define Ji , we make an
initial guess towards a P-index for a settling time function of (E0 ‘ ¨¨¨ ‘ Ei)1: we
guess that P0 is such a function. We then try to compute (E0 ‘ ¨¨¨ ‘ Ei)1 using our
current guess of that function and the columns E0, ... , Ei . If the guess is incorrect,
we will notice this after a finite amount of time. We will see that the settling time
function predicted that some natural number x R (E0 ‘ ¨¨¨ ‘ Ei)1, but now, after
computing more steps than our guess assured us would be enough, we see that
x P (E0 ‘ ¨¨¨ ‘ Ei)1. At that point, we would like to revise our guess at the settling
time function by moving to the next possible function in our enumeration P of F,
until we eventually hit the right one.

We need a way to deal with the injury that happens when we discover that our
guess is incorrect. We will have already specified finitely many bits of E, and of J.
We have already announced that x R (E0 ‘ ¨¨¨ ‘ Ei)1, misled by the wrong guess.
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This means that our assignment of copy columns and fix columns is no longer
consistent with J being the running jump of E. To remedy this problem, we ensure
during the construction that there is always a way to extend Ei that is compatible
with Ji and that we can compute such an extension. To achieve this, we use the Low
Basis Theorem by Jockusch and Soare [8]. We state it here in a relativized, uniform
manner.

Theorem 2.1 (The Low Basis Theorem). LetT Ď 2ă� be an infinite X-computable
tree. There is an infinite path Y through T such that (X ‘ Y )1 ďT X

1. Moreover, an
index for this reduction can be obtained uniformly in an index from the reduction
witnessing that T ďT X .

As a result, J will remain correct. The trade-off is that this action interferes with
the requirement that E is an enumeration of S. In particular, we will have to turn
more columns into fix columns (whose role is simply to be filled in and keep J
consistent). Indeed, as a copy column, En was trying to enumerate some element X
of S, but after injury, we abandon this goal and instead let En fill in its column in
a way that preserves J. Our only option is to enumerate X at position Ej for some
fresh j.

The approach described above ensures that we compute J correctly, and that
if every requirement copying some element X of S is injured only finitely often,
then E is an enumeration of S. Intuitively, the injury should only happen finitely
often because we eventually find the right settling time function. However, there is
a complication. Let us fix a set X and assume that all higher priority requirements
are no longer injured after stage s. At stage s, we find out that our guess towards
the settling time function for (E0 ‘ ¨¨¨ ‘ Ei)1 is incompatible with our assignment
of Ei as a copy column and transition to the escape strategy explained above. We let
Ei , Ei+1, ... , Ej–1 be fix columns and we begin filling them in with sets that are low
with respect to previous columns, i.e., Ei+k is low over E0 ‘ ¨¨¨ ‘ Ei+k–1. Note that
this will make it easy to fill in the columns Ji , ... , Jj–1 as (E0 ‘ ¨¨¨ ‘ Ei+k)1 will be
computable from (E0 ‘ ¨¨¨ ‘ Ei–1)1. We start copying X at position j ą i , where j is
a column for which we have not yet defined any values. We now need to guess at the
settling time function for (E0 ‘ ¨¨¨ ‘ Ej–1 ‘ X )1. This settling time function could
be vastly different from the one for (E0 ‘ ¨¨¨ ‘ Ei–1 ‘ X )1. Indeed, even though we
were able to select the fix columns so that we can control the corresponding running
jump columns, we cannot even guarantee that E0 ‘ ¨¨¨ ‘ Ei–1 ‘ X ”T E0 ‘ ¨¨¨ ‘

Ej–1 ‘ X . An easy counterexample can be derived from the existence of two low
sets whose join is H1: it could be that both X and Ei ‘ ¨¨¨ ‘ Ej–1 are low over
E0 ‘ ¨¨¨ ‘ Ei–1 but (E0 ‘ ¨¨¨ ‘ Ej–1 ‘ X )1 ”T (E0 ‘ ¨¨¨ ‘ Ei–1 ‘ X )2. Thus, there
is no guarantee that we ever guess the settling time function correctly.

Luckily, there is an easy fix for this problem. Instead of guessing at the settling
time function for (E0 ‘ ¨¨¨ ‘ Ei–1 ‘ X )1 and then for (E0 ‘ ¨¨¨ ‘ Ej–1 ‘ X )1 after
the first injury, as we were previously doing, we will guess at a function that encodes
the settling time function for all possible situations that we might end up in. More
precisely, we guess at a function g with the property that if Φe(((E0 ‘ ¨¨¨ ‘ Ei–1)1 ‘

X )1)Ó = Z 1 for some set Z, then the e-th column g [e] of g is the settling time
function for Z 1. Since the Low Basis Theorem is uniform, we will know an index
e such that Φe(((E0 ‘ ¨¨¨ ‘ Ei–1)1 ‘ X )1) = (E0 ‘ ¨¨¨ ‘ Ej–1 ‘ X )1. If our current
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guess towards g is g̃, we modify the construction to use g̃ [e] as the current guess at
the settling time function, and if it turns out that g̃ [e] is incorrect, then we give up
on g̃ completely and move on to the next guess for g.

Construction. Our requirements are as follows. We have an ambient requirement:

• Q: for all x, i P �, x P Ji if and only if x P (E0 ‘ ¨¨¨ ‘ Ei )1,
and we have countably many copy requirements:

• Ri : for every i P � there exists a j P � such that Ej = P̂i = tn : Pi (n) = 1u.
The ambient requirement Q will not be subject to injury, and the requirements Ri
are given a priority order of order type �.

The construction will proceed in stages. At stage s, we will construct E[s] and
J [s] such that, ultimately, E =

Ť

să� E[s] and J =
Ť

să� J [s]. We will omit [s]
in the construction; unless explicitly mentioned, all objects being constructed are
evaluated at the current stage.

For every i P �, we have a moduleMi that is building Ji and a module Ni that is
building Ei . They share two parameters: qi P � Y tfixu and ci P �. If qi P �, then
we are in the case that i is currently a copy column; our current guess for the function
g described above isPqi , and ci indicates thatMi is currently copying P̂ci . If qi = fix,
then we are in the case that Ei is a fix column and ci is an index for a computation;
we will endeavor to make (E0 ‘ ¨¨¨ ‘ Ei)1 = Φci ((E0 ‘ ¨¨¨ ‘ Ei–1)1). At any stage,
letmi ă i be greatest such that qmi ‰ fix. If there is no such natural numbermi , then
we letmi =– 1, and we let J–1 = H1. We have access toH1, having fixed an index for
it in the enumeration P. Then by composing the computations Φcmi+1 through Φci ,
we see how we intend to compute Ji from Jmi , baring further injury.

At stage s, we attempt to determine the value of J (m) for every m = xi, jy with
i ď s and j ď s . We first callM0 on input x for every x ď s , thenM1 on input x for
every x ď s and so forth.

The M-module. We describe the moduleMi on input x, that is, we describe how we
determine the value of Ji(x). Whenever we call the moduleMi on input x, we first
recursively call Mi–1 on every input ď x. (Note that both N and M modules may
call an M module on numbers larger than s, so this instruction is not redundant.
It ensures that if there is a mistake in our guess at an earlier column, then that
mistake gets discovered. This will ultimately allow us to prove that every stage of
the construction terminates in finite time.) If Ji(x) is already defined, we do nothing
further. Otherwise, we have two cases to consider:

Case 1. Suppose that qi P �. That is, the i-th column is currently a copy column.
Then using the indices ck for k P (mi, i), we can find a computation which (assuming
no injury) will describe the columns Emi+1, ... , Ei–1 from (E0 ‘ ¨¨¨ ‘ Emi )

1, which
(again assuming no injury) equals Jmi . Thus we can find an index e so that (again
assuming no injury) we will have (E0 ‘ ¨¨¨ ‘ Ei)1 = Φe((Jmi ‘ Ei)

1). We then let
t = Pqi (xe, xy). If the requirement’s guess is correct about qi , then this t bounds
the settling time function for (E0 ‘ ¨¨¨ ‘ Ei)1 at x. We thus call the modules Nk on
input x1 for each k ď i and x1 ď t. Once these all return, we will know the values of
Ek(x1) for each k ď i and x1 ď t. We then run the enumeration of (E0 ‘ ¨¨¨ ‘ Ei)1

(as a set c.e. in E0 ‘ ¨¨¨ ‘ Ei) for t stages to see if it enumerates x in this time. This
determines whether we want to set Ji(x) to be 0 or 1. We are almost ready to declare
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that Ji(x) is this value, but before we can do this, we have to ask permission of every
previous column; we will describe the process of asking for permission below. If they
all give permission, then we declare Ji(x) to be the value determined above.

Case 2. Suppose that qi = fix. Then the i-th column is a fix column, and ci gives
a parameter for a computation of Ji from Ji–1. Thus, we simply callMi–1 for every
x for which Ji–1 is undefined until we see a computation giving ΦJi–1

ci (x) Ó. Define
a computable increasing function α so that for all sets A,B , we have z P B if and
only if α(z) P (A‘ B)1. We say that x is a coding number if and only if x = α(z)
for some z. Note that if x = α(z) is a coding number for z then whether x enters
(A‘ B)1 when this set is enumerated computably in A‘ B will depend solely on
whether z P B . If ΦJi–1

ci (x) = 0, we ask for permission from every previous column
to make Ji(x) = 0. If ΦJi–1

ci (x) = 1 and x = α(z) is a coding number, then we ask
for permission to set Ei(z) = 1 and Ji(x) = 1. If ΦJi–1

ci (x) = 1 and x is not a coding
number, then we search for a confirmation set. This means that we call the modules
N0, ... , Ni on increasing inputs until we have assigned enough of E0 ‘ ¨¨¨ ‘ Ei so
that the previous columns give permission to define Ji(x) to be 1.

The N-module. We now describe the modulesNi on input z. Our goal is to determine
whether Ei(z) is 0 or 1.

Case 1. Suppose that qi P �. Then the goal ofEi is to copy P̂ci . We ask permission
to set Ei(z) = P̂i(z) and do so if every previous column gives permission.

Case 2.Ei is a fix column. CallMi(α(z)). If this assigns Ji(α(z)) = 0, then assign
Ei(z) = 0. (The fact that previous columns gave permission to assign Ji(α(z)) = 0
will imply that they also give permission to make Ei(z) = 0.) Note that ifMi(α(z))
assigns Ji(α(z)) = 1, then it also assigns Ei(z) = 1.

Permissions. We now describe the process of asking for permission from previous
columns. We either want to assign Ji(x) for some i and x, or Ei(z) for some i
and z (or both) and we need permission from each previous column. Let m be the
largest so that qm is defined. We describe how the k-th column determines whether
to give permission. Let �k+1, ... , �m be the fragments of Ek+1, ... , Em determined
so far including the requested assignment, and let �k+1, ... , �m be the fragments of
Jk+1, ... , Jm determined so far including the requested assignment.

Let T be the tree of possible ways to complete �k+1, ... , �m so that for every j, x
with j P (k,m] and �j(x) = 0, we do not put x into the running jump. The k-th
column wants to give permission if and only if:

• For every pair j, x with j P (k,m] and �j(x) = 1, x P (E0 ‘ ¨¨¨ ‘ Ek ‘ �k+1 ‘

¨¨¨ ‘ �j)1. Here E0, ... , Ek are not just the partial fragments determined so far,
rather they are the sets as they would be determined assuming all our guesses
are correct. In other words, over the first k columns, the �’s have enough
information already encoded to put x into the correct running jump.

• T has an infinite path.

Note that these two conditions are true if and only if two bits in the set (E0 ‘ ¨¨¨ ‘

Ek)1 have fixed specific values—the first condition is equivalent to a fixed bit being 1
and the second to a fixed bit being 0. Thus, in order to determine whether or not to
give permission, we call the moduleMk on these bits. If these modules both return
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the correct value confirming the condition, then we give permission. Otherwise, if
the first condition is incorrect (the module returns 0 to show that the first condition
fails), then we simply deny permission but do not declare injury.

If the module returns a value signifying that T does not have a path, then we
declare injury which means that for all j P [i, m], we set qj to be fix. Let S be the
tree of possible ways to complete the columns Ei , ... , Em so that for every j, x with
j P (k,m] and Jj(x) = 0, we do not put x into the running jump. Since the (i – 1)st
column gave permission to the current configuration, there is some y such that
Ji–1(y) = 0 and this confirms that S has a path. Thus, by the effectiveness of the
Low Basis Theorem, we can set ci , ... , cm to be so that there is some path through
S so which would make Φ

Jj–1
cj = Jj for each j P [i, m]. We then complete the stage

(though we may have not succeeded in the goal of assigning any value of J).
Lastly, whether we declared injury or not during the stage, before finishing the

stage, we take the least m so that qm is undefined and the least i so that currently no
column has cj = i and define cm to be i. If this is the l-th time that we define some
cj to be i since we last assigned some cj1 to be i – 1, then we assign qj to be l. This
completes the construction.

Verification. We say that the i-th column is correct at stage s if for all j ď i , the
parameters qj and cj will never be changed at a stage t ą s .

Lemma 2.2. Suppose that the i-th column is correct at stage s. Define the sets
Aj, Bj for j ď i inductively as follows: A–1 = H and B–1 = H1. If the j-th column
has parameters qj, cj with qj = fix, then define Bj as Φcj (Bj–1). Define z P Aj if and

only if α(z) P Bj . If qj P �, then define Aj = P̂cj and Bj = (A0 ‘ ¨¨¨ ‘ Aj)1. Then
for each j ď i , Ej = Aj and Jj = Bj . In particular, Jj = (E0 ‘ ¨¨¨ ‘ Ej)1.

Proof. We prove the result by induction on j. It is clearly true for j =– 1.
If qj = fix, then since Jj–1 = Bj–1 = (A0 ‘ ¨¨¨ ‘ Aj–1)1, it follows that when we
determined the final value of the parameter cj , we were looking at a tree S that
was accurately determined by previous columns (which do not get injured again or
else cj would be modified) to be infinite. Thus, by the Low Basis Theorem, S has
an infinite low path and the sequence of Turing functionals we determined, one of
which is Φcj , is correct. Note that when we ask for permission to define Jj(x) or
Ej(z), it cannot end in injury by our assumption that the j-th column is already
correct. When we run the Nj module on z, if we want to make Ej(z) = 1, then that
permission will be given because changing a bit in E cannot result in a failure of the
permission for the first reason (i.e., it can only cause injury). If we want to make
Ej(z) = 0, then we do not even ask for permission. When we run the Mj module
on x, Φcj will eventually converge on x. If Mj wants to define Jj(x) = 0, it will
be given permission (or else j is not correct). If Mj wants to make Jj(x) = 1 and
x = α(z) then we will get permission to enumerate z in Ej and that is all we need as
a confirmation set, and henceMj will be granted permission to define Jj(x). If x is
not a coding number then we are assured that eventually we will find a confirmation
set by the correctness of Φcj and all previous columns and the fact that Nj always
gets permission to define Ej , as we just argued. Thus, we will build Ej = Aj and
Jj = Bj for some sets Aj and Bj so that (A0 ‘ ¨¨¨ ‘ Aj)1 = Bj .
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If qj P �, then since the column is correct, it follows that Ej = P̂cj = Aj . Note
that since, in Case 1 of the Mj module, we only ever request to place Jj(x) = 1
if we already see enough of E0 ‘ ¨¨¨ ‘ Ej defined, it follows that when we ask for
permission to assign Jj(x), we either get permission or some column declares injury.
Since the columns are all correct by assumption, the latter case is impossible. Thus Jj
defines a sequence in 2� . Since qj is correct, it is never injured, so (A0 ‘ ¨¨¨ ‘ Aj–1 ‘

Aj)1 cannot contain an x so that Jj(x) = 0. Thus Jj Ě (A0 ‘ ¨¨¨ ‘ Aj)1. Similarly,
since we only ever put Jj(x) = 1 after we have already seen a fragment � ĺ Ej such
that x P (A0 ‘ ¨¨¨ ‘Aj–1 ‘ �)1, it follows that Jj = (A0 ‘ ¨¨¨ ‘ Aj)1 = Bj . %

Lemma 2.3. If i – 1 is correct at stage s and qi = fix, then i is also correct at stage s.

Proof. Let t be the stage when ci was last redefined. It follows that the first i
columns were correct at the stage t. Hence, the tree S that we considered at that
stage was determined correctly and the Low Basis Theorem allowed us to compute
the functional Φci such that Φci ((E0 ‘ ¨¨¨ ‘ Ei–1)1) = B = (E0 ‘ ¨¨¨ ‘ Ei–1 ‘ A)1

for some set A, and the fragment ofEi that has already been determined agrees with
A. By Lemma 2.2, if i is correct at stage t then eventually Ei = A (and Ji = B).
Using the same proof as above, we can argue that unless i is injured, whenever it
defines a value for Ei(z) from now on, it agrees with A. The only reason for i not
being correct at stage s is that a request for permission ends in injury. This request
can only come from Mi and only for a bit Ji(x) to be given value 0, given the
assumption that s is correct for i – 1. (As we argued in the previous proof, requests
for Ji(x) to be given value 1 do not end in a failure of the second kind and so do
not cause injury.) On the other hand, Mi will only ask for such a permission if it
has already seen that ΦJi–1

ci (x) = 0. The tree T of possible extensions of � ĺ Ei that
make Ji(x) = 0 contains an infinite path, namely A. So injury will not occur. %

Lemma 2.4. Every stage terminates.

Proof. Note that when we callMj on input x, we may have to callNk for k ď j,
and when we call Nj on input x, we may call Mk for k ď j. One fear is that we
may callMj from Nj and Nj fromMj . The only reason that we callMj from Nj
is if j is a fix column. In this case, Nj calls an instanceMj on input x where x is a
coding number, so this instance ofMj does not call Nj . Thus there are no loops in
the module calls.

The other fear is inMj calls for fix columns j. This makes a sequence ofM(j–1)-calls
and waits to see a computation converge. Notice that if the sequence ofM(j–1)-calls
were infinite, then we would determine the full j – 1 first columns during this stage.
Thus, the stage ends if j – 1 is not correct at stage s. If j – 1 is correct at stage s,
then Lemma 2.3 shows that j is correct at stage s, and Lemma 2.2 shows that we
eventually assign the appropriate values of Jj , and thus the stage ends. %

Lemma 2.5. For every i, there is a stage s so that the i-th column is correct at stage s.

Proof. Let s0 ą i be a stage such that i – 1 is correct. Thus, at stage t ą s0, each
of the columns j ă i successfully determines Jj(x) for every x ď t. By the definition
of correctness, if the i-th column is not correct at stage s0, then there is a t ą s0 at
which qi becomes redefined to fix. But then by Lemma 2.3, the i-th column is correct
at stage t. %

https://doi.org/10.1017/jsl.2022.66 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2022.66


1092 URI ANDREWS ET AL.

Lemma 2.6. For every n there is a stage s and a column i so that the i-th column is
correct at stage s, qi P �, and ci = n at stage s.

Proof. Let s0 be the first stage at which the lemma is true for every m ă n. Let
X = P̂n. Let i be the largest such that qi P � is defined at stage s0. By the final action
for every stage, all t ą s0 end with some column k(t) having qk P � and ck = n. If
this k(t) is constant from some stage onward, then we have that this column must
be correct and we are done. Thus, we need to see why k cannot change infinitely
often. Suppose this were the case. Then let t be a stage where qk(t) is the P-index of
a function g such that for every e, if Φe(((E0 ‘ ¨¨¨ ‘ Ei)1 ‘ X )1)Ó = Z 1 for some set
Z, then the e-th column g [e] of g bounds the settling time function for Z 1.

Since every column between i and k(t) is a fix column, we know that the (k(t) –
1)st column is correct at stage t. Also, for every stage greater than t where we call
Mk(t) on any input, we will get the correct response because g bounds the appropriate
settling time function. Hence the k(t)-th column is not injured, so it is also correct
at stage t. %

Lemma 2.7. The set E gives an enumeration of S, and J is the running jump of E.

Proof. By Lemma 2.6, every set in S is enumerated in E. By Lemma 2.5, every
column is eventually correct. By Lemma 2.2, this means that the columns up to the
i-th column each either copy elements of S or are low over elements of S, thus are
in S. Similarly, Lemma 2.2 shows that the i-th column of J is the running jump of
the first i columns of E. %

This completes the proof of Theorem 1.6. %

Note that we did not build an injective enumeration in the previous proposition,
but any enumeration E for which we can compute the running jump can easily
be turned into an enumeration E˚ without repetitions, using the running jump.
Furthermore, we do not lose the running jump, because we also have an index
telling us how to compute J˚

i from Ji˚ , where i˚ is the least j such that E0, ... , Ej
contains i different elements.

Finally, let us remark that it is essential that we started with an enumeration of
the functions, but ended up with an enumeration of the sets. We cannot strengthen
Theorem 1.6 by assuming that we are only given an enumeration of the sets in S; this
follows from Lemma 3.3 and the fact mentioned above that C ă˚

w B. On the other
hand, we cannot strengthen Theorem 1.6 to give us an enumeration of the functions
computable from elements of S, along with the running jump of this enumeration;
this follows by Proposition 4.6 and Theorem 4.15.

§3. Continuous expansions of the reals. We will now show that continuous
expansions of R are generic Muchnik reducible to Baire space.

Theorem 1.7. Suppose f : Rk Ñ R is continuous. After collapse, let E be an
enumeration of the sets in the old P(�), let J be the running jump for E, and let
Rf = (R, f). Then there is a copy of Rf computable from E and J.

Proof. We need a good way of representing the elements in our copy of Rf .
We may think of each element as the sum of an integer z and a remainder e in the
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interval [0, 1], where e has a binary expansion corresponding to some Ei . (Here,
we identify Ei with �Ei .) Recall that a dyadic rational2 is one of form z

2k
, where

z P Z and k P �. Let D be the set of dyadic rationals. If e is a dyadic rational in the
interval [0, 1], then e has two binary expansions. Even fixing the binary expansion,
our enumeration may have more than one index i for the same set Ei . To resolve
this issue we note the following obvious claim and use the properties of the running
jump.

Claim 1. Using oracle Ei , and fixing z, we can apply a uniformly effective
procedure to enumerate the true statements q ă z + Ei , z + Ei ă q, where q is
a dyadic rational.

Using E and J, we can effectively say whether z + Ei = q, where q is a dyadic
rational. We can also effectively say whether z + Ei = z 1 + Ej . Thus, we can
effectively build a structure (R,ă, tquqPD) with the ordering, plus constants q for
the dyadic rationals, and with the elements we want. The constants are dense in the
ordering, and we have a many-one function F, computable from E and J, taking
each pair xz, iy to the appropriate r P R such that the statements from Claim 1 are
true.

Claim 2. Using E and J, we can effectively expand the structure (R,ă, tquqPD),
adding +, ˆ, and f.

We prove Claim 2 as follows. Recall that the setT = Th(Rf) is one of the columns
in E, so we can fix it as a parameter. Using T, we can enumerate the sentences of
T saying that f maps I into I 1, where I is a k-fold product of closed intervals
with dyadic rational endpoints and I 1 is a closed interval with dyadic rational
endpoints. Using a tuple r̄ = xzj + Eij : i ă ky, we can enumerate the set S of k-
fold products of closed intervals with dyadic rational endpoints which contain r̄. We
want f(r̄) = F (z 1 + Em), where z 1 + Em lies in all of the intervals I 1 with dyadic
rational endpoints that, according to the theory T, contain f(I ) for some I P S.
For the given r̄, the set of I 1 is c.e. in T and the Eij . Given Em, and the jump of
T ‘

À

jăn Eij ‘ Em, we can determine whether a given z 1 + Em is an appropriate
F-pre-image of f(r̄). Thus, using E and J, we can effectively compute f(r̄) from r̄.

Similarly, since the operations + and ˆ are also continuous, we can effectively
compute r + r1 and r ˆ r1 from r and r1. %

In the same way, we can prove that (R, tfnunP�) ď˚
w R, where tfnunP� is a

countable family of continuous functions on R.

Theorem 3.1. Let f1, f2, ... be continuous functions (of any arities) on R. Then
(R, tfnunP�) ”˚

w R.

In [3, 7], it is shown that (R,+,ă) and (R, tquqPQ,ă) are both generic Muchnik
equivalent to R. Using the techniques given above, and the fact that both of these
structures are generic Muchnik above B, it is now straightforward to show that
(R,+,ă) and (R, tquqPQ,ă) expanded with a countable number of continuous
functions are equivalent to the original structures. In particular, (R,+,ă) ”˚

w

(R, tquqPQ,ă) ”˚
w R now follows directly, because ˆ and + are continuous.

2We do not restrict to the interval [0, 1].
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Recall that two other structures that have been studied are Cantor space C and
Baire B space and for them we know that C ”˚

w R˚, and Baire space B ”˚
w R.

We may consider expanding either structure by continuous functions. Let us start
with C.

Theorem 3.2. Let f1, f2, ... be continuous functions (of any arities) on 2� . Then
(C, tfiuiP�) ď˚

w B.

Proof. After collapse, given a copy of B, we can compute an enumeration E
of the family of sets in the old P(�), together with the associated running jump
enumeration J by Theorem 1.6. Given E, we immediately compute a copy A of C.
Computable in E and J, we have a many-one function I taking all indices i for setsEi
to elements a P C such that if Ei = Ej , then I (i) = I (j). We let Rn(a) hold if and
only if n P Ei for any and all i such that I (i) = a. For simplicity, consider a single
continuous function f on C, of a single variable x. The fact that f is continuous
means that Th(C, f) includes sentences ϕ�,� , saying, for certain �, � P 2ă� , that f
maps the sequences extending � to sequences extending �. For a P A, we say that
a extends � if, for all k P dom(�), �(k) = 1 implies Rk(a) and �(k) = 0 implies
�Rk(a).

We let f(a) = b where for all sentences ϕ�,� in Th(C, f), if a extends �, then
b extends �. For each a P A, let Ta be the set of � such that for some sentence
ϕ�,� P Th(C, f), a extends �. Assuming that Ej is the theory and I (i) = a, we can
effectively enumerate Ta using Ei and Ej . For any s ą i, j, we can use Js to see if
there is k ď s with I (k) = b such that b extends � for all � P Ta . For sufficiently
large s, we will find an appropriate k and b. We let f(a) = b. %

Recall that C itself is not equivalent to B, so not all continuous expansions of
C are equivalent to B. However, some simple-looking expansions of C turn out to
be equivalent to B. In particular, let ‘ : 2� ˆ 2� Ñ 2� denote the join operator
and � : 2� Ñ 2� denote the shift, i.e., �(b0b1b2b3 ¨¨¨ ) = b1b2b3 ¨¨¨ . Both are natural
continuous functions on Cantor space. We show that Cantor space with join, and
Cantor space with shift, are both equivalent to Baire space.

Lemma 3.3. If X can compute an enumeration E of the sets in a jump ideal I, and
the set FinE = tn : En is finiteu is c.e. in X, then X computes an enumeration P of the
functions in I.

Proof. First, we show that X computes an enumeration F of the infinite sets in
I. The construction of F is straightforward: Fn initially copiesEn, and if at any stage
s we see that En is finite, because n enters the c.e. in X set FinE , we make Fn cofinite
by adding all elements ě s .

If A is an infinite set, then let fA be the function such that fA(n) is one less
than the distance between the (n + 1)-st and (n + 2)-nd element of A; in other
words, fA(n) = pA(n + 1) – pA(n) – 1, where pA is the principal function of A. It
is straightforward to check that the functions computable from sets in I are exactly
the functions of the form fA where A is an infinite set in I. We can compute an
enumeration P of these functions from the enumeration F. %

Proposition 3.4. (C,‘) ”˚
w (C, �) ”˚

w B.
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Proof. That (C,‘) ď˚
w B and (C, �) ď˚

w B follows directly from Theorem 3.2.
For the other direction, we claim that, after collapse, every copy of (C,‘) or (C, �)
computes an enumeration E of the sets in the old P(�) and enumerates the set FinE
of the indices of finite sets in E. By Lemma 3.3 and the characterization given in [3]
this shows that (C,‘) ě˚

w B and (C, �) ě˚
w B.

For the structure (C, �), the claim follows from the fact that a set A is finite
if and only if �n(A) = 0� for some n P �. For (C,‘), the claim follows from the
fact that every finite set can be generated by taking joins of 0� = (0000 ¨¨¨ ) and
10� = (1000 ¨¨¨ ). We show by induction on n that for any � of length 2n, the sequence
�0� can be obtained from applying the operation join to 0� and 10� . For � of
length 1 the statement is obviously true. Suppose the statement is true for all � with
|�| = 2n. Let � be a string of length 2n+1. Let �0 be the string with length 2n, such that
�0(k) = �(2k), and let �1 be the string with length 2n, such that �1(k) = �(2k + 1).
Note that �00� ‘ �10� = �0� , so ifE1 andE2 are the expressions for �00� and �10� ,
then (E1)‘ (E2) is the expression for �0� . %

Another interesting relationship between Cantor space and Baire space is given
by the notion of the jump of a structure. There have been several approaches to
this notion: A. Soskova and Soskov [19, 20] use Moschovakis extensions [15] and
a coding of the forcing relation for Π1 formulas, Puzarenko [16] and Stukachev
[23] proposed a definition that works well with Σ-reducibility, and Montalbán
investigated a definition that expands the original structure by a complete set of
relations defined by computable infinitary Π1 formulas [12]. The relationships
among these three approaches are discussed by Montalbán in [13]. In [13],
Montalbán uses relations defined by computable infinitary Σ1 formulas. This is
the approach that we use, lifting it to uncountable structures.

Definition 3.5 (Jump of a structure). Let A be a structure in a computable
language. The jump of A is the structure A1 = (A, P0, P1, ... ), where tPnună� is a
listing of the relations on A defined by computable infinitary Σ1 formulas (without
parameters). (Note that we have a computable list of the formulas that define these
relations.)

Proposition 3.6. C1 ”˚
w B.

Proof. We know that after collapse, every copy of B computes an enumeration E
of the family of sets that is the old powerset of�, together with the running jump. We
claim that this computes a copy A1 of C1. We assign constants a effectively to indices
for the distinct setsEi . Note that equality can be determined using the running jump
(although we could even have assumed that our original enumeration were injective).
Also using the running jump, we can determine the truth of a given computable Σ1

formulaϕ(ā) =
Ž

j(Dūj) αj(ā, ūj) (whereαj is finitary quantifier-free). To see this,
we note that the elementary first-order theory of C is computably axiomatizable, with
effective elimination of quantifiers. So we have an effective procedure, using the sets
ā, for deciding whether a given disjunct (Dūj) αj(ā, ūj) is true. With the running
jump, we can say whether there is some disjunct that is true.

After collapse, a copy A of C1 with universe � computes an enumeration E of
the sets in the old P(�). In particular, for the n-th element xn of A, we enumerate
the set En so that xn = �(En). Further, the jump has predicates Pk which define
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the computable Σ1 formula which says that x(m) = 1 for some m ą k. We can thus
enumerate from A the indices n so that for some k, A |= �Pk(xn). Thus, computable
inA, we have an enumeration of all the sets in the oldP(�) and FinE is c.e. inA. Thus
by Lemma 3.3 and the characterization given in [3], this shows that C1 ě˚

w B. %

§4. The Borel complete degree. We have seen that B ”˚
w R is generic Muchnik

above every continuous expansion ofR or C. In this section we prove that continuous
expansions of Baire space can be strictly more complicated. This can be seen as a
consequence of the fact that the projections of closed subsets of Baire space can
be quite complicated—indeed, they are exactly the Σ1

1 classes. The upper bound of
all continuous expansions of B is an interesting generic Muchnik degree in its own
right. We call it the Borel complete degree because, as we will see, it bounds all Borel
structures (in fact, all Borel quotients).

We consider structures with universe equal to Baire space, although we could
equally well consider structures with universe equal to Cantor space or R. For
Baire space, we have the topology generated by the basic open neighborhoods
N� = tf P �� : f Ě �u, where � P �ă� . The Borel subsets of Baire space are the
members of the �-algebra generated by these basic open neighborhoods.

Definition 4.1 (Borel structure, congruence relation, Borel quotient).

(1) For a Polish space X, a Borel structure (on X) has the form A = (D, (Rn)nP�),
where D Ď X is a Borel set, and for all n, Rn is a Borel relation on X.

(2) For a structure A = (D, (Rn)nP�), a binary relation E on D is a congruence
relation if it is an equivalence relation and for all n, if Rn is k-ary and ā, b̄ are
k-tuples such that aiEbi for i ă k, then Rn(ā) iff Rn(b̄). From a congruence
relation E on A, we get a well-defined quotient structure A{E with universe
equal to the set of equivalence classes D{E and relations Rn{E that hold of a
k-tuple a0{E, ... , ak–1{E iff Rn holds of a0, ... , ak–1.

(3) A Borel quotient is the quotient of a Borel structure A by a Borel congruence
relation.

Borel structures were first studied by H. Friedman in unpublished notes (see [21]).
More work on Borel structures can be found in [10, 22]. Some recent work can be
found in [5, 14], although they use the name Borel structure for what we call a Borel
quotient.

Examples of Borel structures include (B,‘, 1), (C,‘, 1), and R. An example of a
Borel quotient is the Turing degrees with‘ and 1. The Büchi automatic structures are
also Borel quotients [4]. Another class of examples consists of the automorphism
groups of countable structures that are algebraic in the sense that the language
consists just of operation symbols.

Definition 4.2. A structure A is Borel complete if it is a Borel structure that is
generic Muchnik above every other Borel structure. The generic Muchnik degree of
such a structure is also called Borel complete.

Below, we give an example of a continuous expansion of B that turns out to have
Borel complete degree. First, we know what the join and jump are, for sets; we define
these operations on functions as follows.
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Definition 4.3 (Join and jump for functions).

(1) For functions f, g P �� , the join is the function h such that h(2n) = f(n)
and h(2n + 1) = g(n). We write f ‘ g for the join.

(2) Forf P �� , we have a jump te : ϕfe (e) Óu. We define the jump of the function
f to be the characteristic function of this set.

Example 4.4. Consider the following subclass of �� :

P = t(f ‘ g)‘ h : h is the settling time function for f1 and g = f1
u.

Note that it is Π0
1 to verify that h is the settling time function for f1, and given

h, it is Π0
1 to verify that g = f1. Therefore, P is a Π0

1 class in �� , hence closed.
Let F : B Ñ B be a continuous function such that P = F –1(0�). Because P is a Π0

1
class, we can even take F to be computable. The structure (B,‘, F ) is a continuous
expansion of B with strictly higher generic Muchnik degree. Towards proving this,
we need to understand what kind of computational power is present in copies of
(B,‘, F ) after we collapse the continuum.

Proposition 4.5. Let I be a countable jump ideal. Let (BI ,‘, F ) be the restriction
of (B,‘, F ) to the functions in I. Any copy of (BI ,‘, F ) computes an enumeration of
the functions in I along with join and jump as functions on indices.

Proof. A copy A of (BI ,‘, F ) gives us a natural enumeration tfnunP� of the
functions in I such that‘A is exactly a function that takes two indices to the index of
the join. To find the jump of fn, search form, j P � such that FA((n ‘A m)‘A j)
is the index of 0� . Then fm = f1

n. %

In Theorem 4.15, we will prove that for a sufficiently rich ideal I, it is strictly easier
to compute an enumeration of the functions in I than to compute an enumeration
of the functions in I along with join and jump as functions on indices. First, we
make some easy observations about the difficulty of the latter task, before defining
how rich we want our ideals to be.

Proposition 4.6. For a countable ideal I and a set X, the following are equivalent:

(1) X computes an enumeration of the sets, or the functions, in I, with join and jump
as functions on indices.

(2) X computes an enumeration of the sets, or the functions, in I, with running jump
as a function on indices.

(3) X computes an enumeration of the sets, or the functions, in I with the
corresponding running double jump function, not on indices.

(4) X computes an enumeration of the functions in I, with the running jump function,
not on indices.

Proof. We first show that (1) ñ (2) ñ (3) ñ (4) ñ (1) for functions. Suppose
X computes an enumeration E of the functions in I, with join and jump as functions
on indices. We can find an index for (E0 ‘ ¨¨¨ ‘ En)1, so we have the running jump as
a function on indices. Having an index j for (E0 ‘ ¨¨¨ ‘ En)1, we can find an index k
for (E0 ‘ ¨¨¨ ‘ Ej)1, so we can compute E2

n . In particular, we can also compute the
running jump function. Finally, having the running jump function, and two indices
i and j, we can search for an index k such that Ei ‘ Ej = Ek , which we computably
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do using the running jump function; and given an index i, we can search for indices
j and k such that Ek is the jump of Ei with settling time function Ej , which we can
also do computably using the running jump function. Using the same argument, we
can show that (4)ñ (1)ñ (2)ñ (3) holds with (1), (2), and (3) for sets.

Finally, we show that (3) for sets is equivalent to (3) for functions. Clearly, the
version for functions implies the version for sets. Suppose that X computes an
enumeration E of the sets in I along with the running double jump. From an infinite
set A, we obtain a natural function fA(n) = pA(n + 1) – pA(n) – 1, where pA is the
principal function of A as we did in the proof of Lemma 3.3. Once again we note that
every functionf : � Ñ � is of the formfA for some infinite set A. Using the running
double jump we can effectively determine whether Ei is infinite. If Ei is infinite,
then we let Fi = fEi , and if Ei is finite, we let Fi be the identity function. Now,
note that (E0 ‘ ¨¨¨ ‘ Ei)2 can compute an index e such that Φe(E0 ‘ ¨¨¨ ‘ Ei) =
(F0 ‘ ¨¨¨ ‘ Fi), so (E0 ‘ ¨¨¨ ‘ Ei)2 can also compute (F0 ‘ ¨¨¨ ‘ Fi)2. Thus, we can
compute the running double jump on the enumeration F of the functions. %

Corollary 4.7. (B,‘, 1) ”˚
w (C,‘, 1).

Now it is not hard to show, using the standard encoding of Cantor space in the
real numbers, that there is also a Borel expansion of R in the same generic Muchnik
degree as (B,‘, 1).

Proposition 4.6 also allows us to easily adapt the proof of Proposition 3.6 to give
an additional example of a structure in the Borel complete degree.

Corollary 4.8. (B,‘, 1) ”˚
w B1.

We turn toward the second main result of the paper, which says that adding further
Borel relations to (B,‘, 1) does not increase the generic Muchnik degree.

Theorem 4.9. If B˚ is a Borel expansion of B, then B˚ ď˚
w (B,‘, 1).

To extend this result from Borel expansions of B to arbitrary Borel structures, we
use the following general observation about quotients.

Observation 4.10. For any structure A and any congruence relation E on A,
A{E ď˚

w (A, E). That is, from a copy of A, with the congruence relation added, we
can compute a copy of the quotient structure.

Hence, we get the following.

Corollary 4.11. If B˚ is a Borel expansion of B and E is a Borel congruence
relation on B˚, then B˚{E ď

˚
w (B,‘, 1).

In other words, (B,‘, 1) is Borel complete. Recall that we started this section
promising that the continuous expansion (B,‘, F ) of B has Borel complete degree.

Corollary 4.12. (B,‘, 1) ”˚
w (B,‘, F ).

Proof. Since (B,‘, F ) is a Borel expansion ofB, we have (B,‘, F ) ď˚
w (B,‘, 1).

On the other hand, (B,‘, 1) ď˚
w (B,‘, F ) by Proposition 4.5. %

Toward the proof of Theorem 4.9, we note that the ideal of sets from the ground
model satisfies a very strong closure property, much stronger than we have needed
so far.
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Definition 4.13 (Hyper-Scott ideal). We say that I is a hyper-Scott ideal if it is
a Turing ideal, and whenever T Ď �ă� is a tree in I, if T has an infinite path, then
it has an infinite path computable from a set in I.

Proposition 4.14. If I is the ideal sets from the ground model, then it is a hyper-
Scott ideal.

Proof. This is a very simple application of Shoenfield absoluteness [18]. Arguing
directly, if T Ď �ă� is a tree in the ground model with no path, then in the ground
model there is a rank function � : T Ñ �1 witnessing that T is well-founded. But �
also witnesses that T is well-founded in the extension. %

Proof of Theorem 4.9. Let B˚ = (B, (Rn)nP�), where the Rn’s are Borel
relations. These relations may have different arity. However, we can code a finite
sequence (f0, ... , fr) of functions by a single function f, where fi(k) = m iff
f(r ¨ k + i) = m. With this in mind, we may suppose that the relations Rn are
all unary. Furthermore, we can combine the relations Rn into one relation R such
that R(nf) holds if and only if Rn(f) holds, where nf(k) = xn, f(k)y. Thus, we
may suppose that we have just one unary Borel relation R Ď �� .

Let I be the ideal of sets from the ground model. After collapse, any copy of
(B,‘, 1) can compute an enumeration of the functions in I along with join and
jump as functions on indices of the enumeration. Since R is Borel in the ground
model, it is Δ1

1. Hence there are trees T, S Ď �ă� , both in I, such that

R(f) ðñ (Dh) f ‘ h P [T ] ðñ (@h) f ‘ h R [S].

Note that f ‘ h P [T ] and f ‘ h P [S] can be checked using (f ‘ h ‘ T )1 and
(f ‘ h ‘ S)1, which in turn can be uniformly computed from the indices of f, h, and
the functions computing T and S. Therefore, by searching for a function h in I that
witnesses eitherR(f) or its negation, we can effectively determine ifR(f) holds for
any function f from our enumeration of the functions in I. Now it is straightforward
to compute a copy of B˚ = (B, R). %

Finally, we show that (B,‘, 1) is strictly stronger than B. Note that this does
not follow immediately from the fact that B1 ”˚

w (B,‘, 1) because the jump of a
structure is not necessarily strictly above the structure itself; both Montalbán [12]
and Puzarenko [17] give fixed points for the jump operator on structures, the former
under an additional set theoretic assumption.

Theorem 4.15. Assume that I is a hyper-Scott ideal. Then there is an enumeration
of the functions in I that does not compute an enumeration of the functions in I along
with functionsf : �2 Ñ � and g : � Ñ � on indices of the enumeration that interpret
join and jump, respectively.

Proof. We produce an enumeration F of the functions in I by forcing. Our
forcing partial order consists of conditions q P (��)ă� that are sequences of
functions from I. We say that a condition p extends q (written as p ĺ q) if p extends
q as a sequence.

Consider Turing functionals E , f, and g. We want to diagonalize against EF being
an enumeration of the functions in I such that fF : �2 Ñ � takes any two indices
of functions in EF to an index of their join, and gF : � Ñ � takes every index of
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a function in EF to an index of its jump. Assume, for a contradiction, that there
is a condition q that forces this outcome. Fix an index e such that e P (T ‘ h)1 if
and only if h is not a path through T, where T is treated as a tree under an effective
bijection between trees in �ă� and elements of �� . We will use the symbol M to
denote compatibility. In particular, for � P (�ă�)ă� and a condition p, � M p if
each component �n is an initial segment of the corresponding component pn.

Claim. For any tree T in I, the following Π1
1[q ‘ T ] statement is equivalent to

“T has an infinite path”:

(@p Ě q)(@n)[ if (@� M p)[ E�n M T ],

then (Dm, k)(D� M p)[ g�(f�(n,m)) = k and E�k(e) = 0 ] ].
(˚)

(Here p is understood to range over extensions of q in (��)ă� , though not necessarily
forcing conditions—the new functions that are listed need not be in I. Also, � and
� are intended to be finite, and hence they are essentially number quantifiers.)

Note that if we can prove this claim, then we have the necessary contradiction,
because it is Σ1

1[q]-complete to determine whether a q-computable tree T Ď �ă�

has an infinite path.
To prove the claim, let T be a tree in I. First, let us assume that (˚) holds. Letp ĺ q

force the specific location of T in the list EF , and let this location be n. Therefore,
it is true that (@� M p)[ E�n M T ]. Otherwise, we could refute our choice of p. Since
(˚) holds, we have

(Dm, k)(D� M p)[ g�(f�(n,m)) = k and E�k(e) = 0 ].

Let r ĺ p extend �. Then r forces that e R (T ‘ EF
m )1, so EF

m is a path on T. Therefore,
T has an infinite path.

Now assume that T has an infinite path. Because I is a hyper-Scott ideal, T has a
path h in I. Also, because I is a hyper-Scott ideal, if (˚) fails, it fails for a p P I . So
it is enough to consider p ĺ q and n P � such that (@� M p)[ E�n M T ]. Note that
p forces EF

n to be T, because q forces it to be total and it cannot be incompatible
with T. Take r ĺ p forcing the specific location of h in EF , and let this location
be m. Now take � M r and k such that g�(f�(n,m)) Ó= k and E�k(e) Ó. Such a �
exists because q forces gF , fF , and EF to be total. Our choice of r ensures that
E�k(e) = (T ‘ h)1(e) = 0, because h is a path on T. Therefore, (˚) holds.

We have proved that any tree T in I has an infinite path if and only if (˚) holds.
This is a contradiction, and hence any condition can be extended to a condition that
diagonalizes against E , f, and g. %

Theorem 4.16. (B,‘, 1) ą˚
w B.

Note that, as a function on either B or C, the jump 1 is of Baire class 1, i.e., a
pointwise limit of continuous functions. Indeed it is a pointwise limit of a computable
sequence of computable functions. In terms of the effective Borel hierarchy, the graph
of 1 is Π0

2, in other words effective G	 . So as mentioned above, there is an expansion
of the real numbers by continuous functions and a unary function of Baire class 1
(or a Π0

2 binary relation) which is in the Borel complete degree. This puts a severe
limitation on any potential strengthening of Theorem 1.7.
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