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Abstract
In a 4-manifold, the composition of a Riemannian Einstein metric with an almost paracomplex structure that is
isometric and parallel defines a neutral metric that is conformally flat and scalar flat. In this paper, we study hyper-
surfaces that are null with respect to this neutral metric, and in particular we study their geometric properties with
respect to the Einstein metric. Firstly, we show that all totally geodesic null hypersurfaces are scalar flat and their
existence implies that the Einstein metric in the ambient manifold must be Ricci-flat. Then, we find a necessary
condition for the existence of null hypersurface with equal nontrivial principal curvatures, and finally, we give a
necessary condition on the ambient scalar curvature, for the existence of null (non-minimal) hypersurfaces that are
of constant mean curvature.

1. Introduction

Einstein Riemannian 4-manifolds (M, g) with a parallel, isometric, almost paracomplex structure P
exhibit many interesting properties through the metric g′ defined by g′ = g(P., .). In particular, the met-
ric g′ is of neutral signature, locally conformally flat, and scalar flat and shares the same Levi-Civita
connection and Ricci tensor with g [5].

Recently, Urbano in [11] and later Gao et al. in [4] have studied hypersurfaces in S2 × S2 andH2 ×H2,
respectively, endowed with the Einstein product metric. In particular, they used two complex structures
J1, J2 on those manifolds to study isoparametric and homogeneous hypersurfaces by considering the
product P = J1J2, which is an (almost) paracomplex structure that is parallel and isometric with respect
to the product metric.

The space L(M3) of oriented geodesics in the three-dimensional non-flat real space form M3 is a
four-dimensional manifold admiting an Einstein metric and a paracomplex structure P that is isometric
and parallel. Therefore, there exists a neutral, locally conformally flat and scalar flat metric sharing the
same Levi-Civita connection and Ricci tensor with the Einstein metric (see [1] and [2] for more details).
The paracomplex structure P has been explicitly described by Anciaux in [2] in a similar manner as in
the product of surfaces. More precisely, Anciaux constructed two (para) complex structures J1 and J2 so
that J1J2 = J2J1 and then considered the product P = J1J2. This paracomplex structure was used in [6],
to study a class of hypersurfaces in L(M3), called tangential congruences, that are sets of all tangent-
oriented geodesics in a given surface in M. Particularly, it was shown that tangential congruences are
null with respect to the neutral metric and if, additionally, they are tangent to a convex surface then they
admit a contact structure. The space L(R3) of oriented lines in R3 is also a four-dimensional manifold
admiting a neutral metric G that is locally conformally flat and scalar flat and is invariant under the
Euclidean motions [1, 8]. M. Salvai showed that G is the only metric that is invariant of the group action
of the Eucliean 3-space. The null hypersurfaces in L(R3) play an important role in the study of the
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ultrahyperbolic equation:

ux1x1 + ux2x2 − ux3x3 − ux4x4 = 0, (1.1)

where u = u(x1, x2, x3, x4) is a real function in R4 (see [3]). Specifically, let R2,2 = (R4, g0 := dx2
1 + dx2

2 −
dx2

3 − dx2
4), and f :L(R3) →R2,2 be the conformal map defined according to G = ω2f ∗g0, where ω is a

strictly positive function. A function v is harmonic with respect to G, that is, �Gu = 0, if and only if
ω · v ◦ f is a solution of the ultrahyperbolic equation (1.1) [3]. This implies solving the ultrahyperbolic
equation is equivalent to solving the Laplace equation with respect to the neutral metric G. Consider
now the problem:

�Gv = 0,

where the function v on L(R3) is given on the null hypersurface H = {γ ∈L(R3)| γ ‖ P0}, with P0 is a
fixed plane in R3. In [7], Guilfoyle presented an inversion formula describing v on L(R3), using Fritz
John’s inversion formula (cf. [9]). It is then natural to ask whether an arbitrary real function defined on a
null hypersurface can be uniquely extended to a harmonic function on L(M3) with respect to the neutral
metric, for any three-dimensional real space form M3.

In this article, we study null hypersurfaces with respect to the neutral metric g− of an Einstein four-
dimensional manifold (M, g+) endowed with an almost paracomplex structure P that is parallel and
isometric so that g− = g(P+., .).

Our first result deals with totally geodesic null hypersurfaces. In particular, we have the following:

Theorem 1. Every totally geodesic null hypersurface is scalar flat. If M admits a totally geodesic null
hypersurface then (M, g+) is Ricci-flat.

Let N be the unit normal vector field, with respect to the Riemannian Einstein metric g+ along a null
hypersurface. The principal curvature corresponding to the principal direction PN is zero. The other
two principal curvatures are called nontrivial. The next result provides a necessary condition for the
existence of null hypersurfaces with equal nontrivial principal curvatures.

Theorem 2. Suppose (M, g) has nonnegative scalar curvature and � is a null hypersurface with equal
nontrivial principal curvatures. Then, g is Ricci-flat and � is totally geodesic.

Finally, we study (non-minimal) null hypersurfaces having constant mean curvature (CMC). In
particular, we prove the following:

Theorem 3. Let � be a CMC, non-minimal null hypersurface in (M, g). Then, all principal curvatures
and the scalar curvature of � are constant. Furthermore, the scalar curvature of g is given by:

R̄ = −8λ1λ2,

where λ1, λ2, denote the nontrivial principal curvatures of �.

2. Preliminaries

Let (M, g) be an Einstein 4-manifold endowed with a product structure P (specifically a type (1,1) tensor
field with P2 = Id) such that:

1. The eigenbundles corresponding to the eigenvalues +1 and −1 have equal rank.
2. P is an isometry, that is,

g(P., P.) = g(., .).
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3. P is parallel, that is,

∇P = 0,

where ∇ is the Levi-Civita connection of g.

In other words, P is an almost paracomplex structure that is parallel and isometric.
Define the metric g− by:

g− = g(P., .),

and denote g by g+. Then, g− is of neutral signature, locally conformally flat and scalar flat [5]. Also,
both metrics g+ and g− share the same Levi-Civita connection ∇ (see [2] for further details).

Let �3 be an oriented hypersurface of M and consider the normal bundles:

N±(�) = {ξ ∈ TM | g±(X, ξ ) = 0, ∀X ∈ T�}.
Let N± be the normal vector of � with respect to g± so that

g±(N±, N±) = ε± ∈ {−1, 0, 1},
(note that ε+ = 1) and define the functions C± on � according to

C+ = g+(PN+, N+) = g−(N+, N+),

and

C− = g−(PN−, N−) = g+(N−, N−).

Consider the tangential vector field along �:

X = PN+ − C+N+.

Let ∇ be the Levi-Civita connection of g+ induced on �. For a tangential vector field Y along �, we
have

g+(∇C+, Y) = ∇YC+

= 2 g+(∇YN+, X)

= g+(Y , −2A+X),

showing that

∇C+ = −2A+X, (2.1)

where A± denotes the shape operator of � immersed in (M, g±).
Also,

∇YX = −PTA+Y + C+A+Y , (2.2)

where PT stands for the orthogonal projection of P on �. Let R±, H±, and σ± be, respectively, the scalar
curvature, the mean curvature, and the second fundamental form of � immersed in (M, g±).

Proposition 1. The Hessian of C+ is

∇2C+(u, v) = −2(∇uσ+)(X, v) − 2C+g+(A+u, A+v) + 2g+(PA+u, A+v). (2.3)
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Proof. In this proof, we omit the subscript + unless it is necessary.
Using (2.1) on the tangential vector fields u, v, we have

∇2C(u, v) = g(∇u( − 2AX), v)

= −2g(∇uAX, v)

= −2∇u(g(AX, v)) + 2g(AX, ∇uv)

= −2∇u(g(X, Av)) + 2g(AX, ∇uv)

= −2g(∇uX, Av) − 2g(X, ∇uAv) + 2g(AX, ∇uv)

= −2g(εCAu − PTAu, Av) − 2g(X, ∇uAv) + 2g(AX, ∇uv)

= −2εCg(Au, Av) + 2G(PAu, Av) − 2g(X, ∇uAv) + 2g(AX, ∇uv)

Note that σ (u, v) = g(Au, v) and for simplicity use ∇uσ (X, v) to denote (∇uσ )(X, v). We now have

∇uσ (X, v) = u(σ (X, v)) − σ (∇uX, v) − σ (X, ∇uv)

= u(G(X, Av)) − g(∇uX, Av) − g(AX, ∇uv)

= g(∇uX, Av) + g(X, ∇uAv) − g(∇uX, Av) − g(AX, ∇uv)

= g(X, ∇uAv) − g(AX, ∇uv),

and therefore,

∇2C(u, v) = −2εCg(Au, Av) + 2g(PAu, Av) − 2∇uσ (X, v).

Proposition 2. If � denotes the Laplacian of the metric g+ induced on the hypersurface �, then

�C+ = −6 g+(X+, ∇H+) − 2C+|σ+|2 + 2 Tr(PTA2
+),

where H+ denotes the mean curvature and A+ is the shape operator.

Proof. In the proof, we omit the subscript + unless it is necessary. The Codazzi–Mainardi equation
for � is

g(R(u, v)z, N) = (∇uσ )(v, z) − (∇vσ )(u, z).

Consider the orthonormal frame (e1, e2, e3) of �, where Aei = λiei. The fact that g is Einstein gives

3∑
i=1

(
(∇eiσ )(X, ei) − (∇Xσ )(ei, ei)

) =
3∑

i=1

g(R(ei, X)ei, N)

=
3∑

i=1

g(R(ei, X)ei, N) + g(R(N, X)N, N)

= Ric(X, N)

= R̄
4

g(X, N)

= 0.
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Thus,
3∑

i=1

(∇eiσ )(X, ei) =
3∑

i=1

(∇Xσ )(ei, ei)

=
3∑

i=1

∇X(σ (ei, ei)) − σ (∇Xei, ei) − σ (ei, ∇Xei)

= 3∇XH − 2
3∑

i=1

g(∇Xei, Aei)

= 3g(X, ∇H) − 2
3∑

i=1

λig(∇Xei, ei)

= 3g(X, ∇H).

We now have

�C =
3∑

i=1

∇2C(ei, ei)

= −2
3∑

i=1

(
(∇eiσ )(X, ei) + Cg(Aei, Aei) − g(PAei, Aei)

)

= −6g(X, ∇H) − 2
3∑

i=1

(
λ2

i C − λ2
i g(Pei, ei)

)
,

and this completes the proof.

Let R, Rij, Rijkl be, respectively, the scalar curvature, the Ricci tensor, and the curvature tensor of the
metric g+ induced on � and let R̄, R̄ij, R̄ijkl be, respectively, the scalar curvature, the Ricci tensor, and the
curvature of the ambient metric g+.

Using the Gauss equation, we get (for simplicity, we omit the subscript +):

R = gijRij

= gijgkl(R̄kilj + σijσkl − σilσkj)

= gijgklR̄kilj + 9H2 − |σ |2.

The fact the g+ is Einstein implies

gijgklR̄kilj = gijR̄ij − gNNRic(NN)

= (R̄+ − gNNRic(NN)) − gNNRic(NN)

= R̄+ − 2Ric(NN)

= R̄+ − 2(R̄+/4)g+(N, N)

= R̄+/2.

We then have

R+ = 1
2
R̄+ + 9H2

+ − |σ+|2. (2.4)

We then have
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Proposition 3. Assume (M, g+) has positive (resp. negative) scalar curvature and � is a totally geodesic
hypersurface. Then the metric g+ induced on � has positive (resp. negative) scalar curvature.

3. Null hypersurfaces

Definition 1. A null hypersurface in a pseudo-Riemannian manifold is an oriented hypersurface where
the induced metric is indefinite and the normal vector field is null.

In this section, when we refer to a null hypersurface we simply mean a hypersurface that is null with
respect to the neutral metric of g−.

Proposition 4. Suppose � is an oriented hypersurface of M. Then, the following statements hold:

1. |C+| ≤ 1, and C− > 0.
2. C+ = 0, if and only if � is a null hypersurface.
3. If � is a null hypersurface, then PN+ is a principal direction with zero corresponding principal

curvature.

Proof.

1. It is not hard to confirm that |X|2 = 1 − (C+)2 ≥ 0. Also,

C− = g+(N−, N−) > 0.

2. Assuming C+ = 0, we have that g+(PN+, N+) = 0 and using the fact that g+ is Riemannian then,
PN+ ∈ T�. This implies

g−(PN+, N−) = 0,

or,

g+(N+, N−) = 0.

But this tells us that N− ∈ T�, and therefore

g−(N−, N−) = 0,

which means that � is null. Conversely, assume that � is null and consider the nonzero nor-
mal vector field N−. Then, g−(N−, N−) = 0. On the other hand, g−(N−, T�) = 0, which means
g+(PN−, T�) = 0. Therefore, PN− = λN+, where λ = 0, since N− is nonzero vector field. Thus,

C+ = g−(N+, N+)

= λ−2g−(N−, N−)

= 0,

and this completes the proof.
3. Since � is null then C+ = 0 and therefore,

X+ = PN+ − C+N+ = PN+ ∈ T�.

Note that

0 = ∇C+ = −2A+X+,

which implies

A+PN+ = 0,

and therefore PN+ is a principal direction.
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For a null hypersurface �, we study the geometric properties of the metric g+ induced on � and for
this reason we omit the + subscripts unless it is necessary.

3.1. Examples of null hypersurfaces
Example 3.1. We now describe the almost paracomplex structure defined in the spaces of oriented
geodesics of 3-manifolds of constant curvature using their (para) Kähler structures (see [1, 6, 8, 10] for
more details).

For p ∈ {0, 1, 2, 3}, consider the (pseudo-) Euclidean 4-space R4
p := (R4, 〈., .〉p ), where

〈., .〉p = −
p∑

i=1

dX2
i +

4∑
i=p+1

dX2
i ,

and let S3
p be the quadric

S
3
p = {x ∈R

4| 〈x, x〉p = 1}.
The quadric S3

0 is the 3-sphere S3, S3
3 ∩ {x ∈R4| X4 > 0} is anti-isometric to the hyperbolic 3-space H3,

S3
1 is the de Sitter 3-space dS3, and S3

2 is anti-isometric to the anti-de Sitter 3-space AdS3.
Let gp be the metric 〈., .〉p induced on S3

p by the inclusion map. The space of oriented geodesics in S3
p

is a four-dimensional manifold and is identified with the following Grasmmannian spaces of oriented
planes on R4

p:

L
±(S3

p) = {x ∧ y ∈ 
2(R4
p)| y ∈ TxS

3
p, gp(y, y) = ±1}.

Let ι : L±(S3
p) → 
2(R4

p) be the inclusion map and 〈〈, 〉〉p be the flat metric in the 6-manifold 
2(R4
p)

defined by:

〈〈u1 ∧ v1, u2 ∧ v2〉〉p := 〈u1, u2〉p 〈v1, v2〉p − 〈u1, v2〉p 〈u2, v1〉p .

The metric Gp = ι∗ 〈〈, 〉〉p on L±(S3
p) is Einstein [2].

It was shown in [5], that the Hodge star operator ∗ on the space of bivectors 
2(R4
p) in R4

p, restricted
to the space of oriented geodesics L±(S3

p) defines an almost paracomplex structure J∗ that is paral-
lel and isometric with respect to the Einstein metric Gp. In particular, for x ∧ y ∈L±(S3

p), the almost
paracomplex structure is defined by:

J
∗
x∧y = ∗|Tx∧yL±(S3

p) .

The metric G′
p := Gp(J∗., .), is of neutral signature, locally conformally flat and scalar flat in L±(S3

p).
Let φ : S → S3

p be a non-totally geodesic smooth surface and (e1, e2) be the principal directions of φ

with corresponding eigenvalues κ1 and κ2. Then,

� : S × S
1 →L(S3

p) : (x, θ ) �→ φ(x) ∧ ( cos θ e1(x) + sin θ e2(x)),

is the immersion of the tangential congruence � = �(S × S1) in the space of oriented geodesics L(S3
p).

It can be shown that if φ is a totally geodesic immersion, the mapping � is not an immersion. Also, �

is a null hypersurface with respect to the locally conformally flat neutral metric g− [6].
The eigenvalues of the tangential hypersurface � are 0, λ+ and λ−, where

λ+ = κ1 cos2 θ + κ2 sin2 θ λ− = −κ1 sin2 θ − κ2 cos2 θ ,

and therefore the mean curvature is

H = 1
3
(κ1 − κ2) cos 2θ .

This yields
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Proposition 5. If S is a totally umbilic surface in the non-flat three-dimensional real space form, then
the corresponding tangential congruence � is a null hypersurface in (L(S3

p), G′
p) and is minimal in

(L(S3
p), Gp).

Example 3.2. Consider the Cartesian product of the 2-spheres S2 × S2 endowed with the product
metric:

g+ = g ⊕ g,

where g is the round metric of S2. It is well known that g+ is Einstein with scalar curvature R = 4.
Define the almost paracomplex structure P on S2 × S2 by:

P(u, v) = (u, −v),

where (u, v) ∈ T(S2 × S2). Then, P is G+-parallel and isometric. For t ∈ ( − 1, 1), consider the homoge-
neous hypersurfaces:

�t = {(x, y) ∈ S
2 × S

2 ⊂R
3 ×R

3) | 〈x, y〉 = t}.
In fact, �t is a tube of radius cos−1 (t/

√
2) over the diagonal surface � = {(x, x) ∈ S2 × S2}. It was shown

in [11] that �t is null for every t with respect to the neutral metric:

g− = g+(P., .) = g ⊕ ( − g)

and the principal curvatures are

λ1 = 1√
2

√
1+t
1−t

, λ2 = − 1√
2

√
1−t
1+t

, λ3 = 0.

Thus, �t is a CMC null hypersurface for any t ∈ ( − 1, 1) and is minimal only when t = 0 as the mean
curvature H is

H = 1
3
√

2

(√
1+t
1−t

−
√

1−t
1+t

)
.

Similarly, we have the following example.

Example 3.3. Consider the Cartesian product of the 2-spheres H2 ×H2 endowed with the product
metric:

g+ = g ⊕ g,

where g is the standard hyperbolic metric of H2. It is not hard for one to see that g+ is Einstein with
scalar curvature R = −4. As before, the almost paracomplex structure P on H2 ×H2 is given by:

P(u, v) = (u, −v),

where (u, v) ∈ T(H2 ×H2). Again, P is g+-parallel and isometric and for t ∈ ( − ∞, −1), consider the
homogeneous hypersurfaces:

�t = {(x, y) ∈H
2 ×H

2 ⊂R
3 ×R

3) | 〈x, y〉 = t}.
In fact, �t is a tube of radius cosh−1 (t/

√
2) over the diagonal surface � = {(x, x) ∈H2 ×H2}. It was

shown in [4] that �t is null for every t with respect to the neutral metric:

g− = g+(P., .) = g ⊕ ( − g)

and the principal curvatures are

λ1 = 1√
2

√
1+t
1−t

, λ2 = 1√
2

√
1−t
1+t

, λ3 = 0.

Thus, �t is a CMC, non-minimal null hypersurface for any t ∈ ( − 1, 1) with mean curvature:

H = 1
3
√

2

(√
1+t
1−t

+
√

1−t
1+t

)
.
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3.2. Main results

Consider the principal orthonormal frame (e1, e2, e3 = PN) of the null hypersurface � so that

Aei = λiei.

It is easily shown that there is an angle θ ∈ [0, 2π ) such that

Pe1 = cos θe1 + sin θe2 Pe2 = sin θe1 − cos θe2.

We call the angle θ the principal angle of the null hypersurface �.
We now have the following result for totally geodesic null hypersurfaces:

Theorem 1. Every totally geodesic null hypersurface is scalar flat. If M admits a totally geodesic null
hypersurface, then (M, g+) is Ricci-flat.

Proof. Let {e1, e2.e3} be an orthonormal frame of � such that

Aei = λiei,

where e3 = PN and therefore, λ3 = 0. The almost paracomplex structure P is

P =

⎛
⎜⎜⎜⎜⎝

cos θ sin θ 0 0

sin θ − cos θ 0 0

0 0 0 1

0 0 1 0

⎞
⎟⎟⎟⎟⎠

.

with respect to the orthonormal frame (e1, e2, e3, N).
Let ∇, ∇ be the Levi-Civita connections for the metrics g and the induced metric of g on �,

respectively. For i, j = 1, 2, 3, we have

∇ei ej = ∇ei ej + λiδijN,

and if we let ωk
ij = g(∇ei ej, ek) then

ωk
ij = −ω

j
ik.

Defining

k = ω2
11, μ = ω2

21, ν = ω2
31. (3.1)

A brief calculation gives

g(R(e2, e1)e1, e2) = −e1(μ) + e2(k) + λ1λ2 − k2 − μ2 + ν(λ1 − λ2) sin θ .

g(R(e3, e1)e1, e3) = −λ1ν sin θ − λ2ν sin θ + e3(λ1 cos θ ) − λ2
1 cos2 θ − λ1λ2 sin2 θ .

g(R(e3, e2)e2, e3) = λ1ν sin θ + λ2ν sin θ − e3(λ2 cos θ ) − λ2
2 cos2 θ − λ1λ2 sin2

θ .

Therefore, we deduce

Ric(e1, e1) = −e1(μ) + e2(k) + e3(λ1 cos θ ) + λ1λ2 cos2 θ − λ2
1 cos2 θ − k2 − μ2 − 2νλ2 sin θ .

Ric(e2, e2) = −e1(μ) + e2(k) − e3(λ2 cos θ ) + λ1λ2 cos2 θ − λ2
2 cos2 θ − k2 − μ2 + 2νλ1 sin θ .

Ric(e3, e3) = e3[(λ1 − λ2) cos θ ] − 2λ1λ2 sin2 θ − (λ2
1 + λ2

2) cos2 θ .

The scalar curvature R of � is

R = −2e1(μ) + 2e2(k) + 2λ1λ2 cos 2θ − 2(λ2
1 + λ2

2) cos2 θ (3.2)

+ 2e3[(λ1 − λ2) cos θ ] − 2k2 − 2μ2 + 2ν(λ1 − λ2) sin θ .
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Using the fact that P is parallel, namely

P∇ei ej = ∇ei Pej,

we have

ω3
12 = λ1 sin θ , ω3

11 = λ1 cos θ , ω1
12 = e1(θ/2), (3.3)

ω3
21 = λ2 sin θ , ω3

22 = −λ2 cos θ , ω1
22 = e2(θ/2),

ω1
13 = −λ1 cos θ ω2

13 = −λ1 sin θ ω1
23 = −λ2 sin θ ,

ω2
31 = −e3(θ/2), ω3

31 = ω3
32 = 0,

and thus,

∇e1 e1 = −e1(θ/2)e2 + λ1 cos θe3 ∇e1 e2 = e1(θ/2)e1 + λ1 sin θe3

∇e1 e3 = −λ1 cos θe1 − λ1 sin θe2 ∇e2 e1 = −e2(θ/2)e2 + λ2 sin θe3

∇e2 e2 = e2(θ/2)e1 − λ2 cos θe3 ∇e2 e3 = −λ2 sin θe1 + λ2 cos θe2

∇e3 e1 = −e3(θ/2)e2 ∇e3 e2 = e3(θ/2)e1 ∇e3 e3 = 0.

The relations (3.1) and (3.3) yield

μ = −e2(θ/2), k = −e1(θ/2),

and therefore,

−e1(μ) + e2(k) = [e1, e2](θ/2).

On the other hand,

[e1, e2] = e1(θ/2)e1 + λ1 sin θe3 − ( − e2(θ/2)e2 + λ2 sin θe3)

= e1(θ/2)e1 + e2(θ/2)e2 + (λ1 − λ2) sin θ e3.

Thus,

−e1(μ) + e2(k) = [e1, e2](θ/2)

= e1(θ/2)e1(θ/2) + e2(θ/2)e2(θ/2) + (λ1 − λ2) sin θ e3(θ/2)

= k2 + μ2 − ν(λ1 − λ2) sin θ

The scalar curvature given in (3.2) now becomes

R = 2e3[(λ1 − λ2) cos θ ] + 2λ1λ2 cos 2θ − 2(λ2
1 + λ2

2) cos2 θ . (3.4)

Assuming that � is totally geodesic, we can see easily that R = 0. In this case, the Gauss equation implies
also that (M, g) is scalar flat since

R̄

2
= R − 9H2 + |σ |2 = 0.

The Ricci flatness of (M, g) follows from the fact g is Einstein.
If � is a null hypersurface, the principal curvature corresponding to the principal direction PN will

be called trivial. The following theorem explores null hypersurfaces where the nontrivial eigenvalues
are equal.

Theorem 2. Suppose (M, g) has nonnegative scalar curvature and � is a null hypersurface with equal
nontrivial principal curvatures. Then, g is Ricci-flat and � is totally geodesic.
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Proof. Using the scalar curvature R in (3.4), the Gauss equation for � becomes

R̄

2
+ (λ1 + λ2)

2 = −(λ1 − λ2)
2 cos 2θ .

Since λ1 = λ2, we have

R̄

2
+ (λ1 + λ2)

2 = 0,

implying R̄ = 0 and λ1 + λ2 = 0. This means that λ1 = λ2 = 0 and thus, � is totally null.

We now have the following theorem about CMC null hypersurfaces:

Theorem 3. Let � be a CMC, non-minimal null hypersurface in (M, g). Then, all principal curvatures
and the scalar curvature of � are constant. Furthermore, the scalar curvature of g is given by:

R̄ = −8λ1λ2, (3.5)

where λ1, λ2, denote the nontrivial principal curvatures of �.

Proof. We recall the principal orthonormal frame {e1, e2.e3 = PN} of the null hypersurface �. The
Laplacian of the function C with respect to the induced metric is

�C = −6 g(X, ∇H) − 2C|σ |2 + 2Tr(PTA2).

Since C = 0 and ∇H = 0, we have

Tr(PTA2) = 0,

which ensures
3∑

i=1

g(PA2ei, ei) = 0.

It follows
2∑

i=1

λ2
i g(Pei, ei) = 0,

and therefore,

(λ2
1 − λ2

2) cos θ = 0.

Note that � is non-minimal and therefore, λ1 + λ2 = 0.
If λ1 = λ2, we have that H = 2

3
λ1 is constant and considering the scalar curvature in (3.4), we find

1
2
R = λ2

1 cos 2θ − 2λ2
1 cos2 θ

= −λ2
1.

Using the Gauss equation (2.4), we obtain

−2λ2
1 = R

= 1
2
R̄ + 9H2 − |σ |2

= 1
2
R̄ + (2λ1)2 − 2λ2

1,

which implies that R̄ = −8λ2
1.

If cos θ = 0, then either θ = π/2 or θ = 3π/2. The scalar curvature of � given (3.4) becomes

R = −2λ1λ2.
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On the other hand, the scalar curvature in (2.4) yields

−2λ1λ2 = R

= 1
2
R̄ + 9H2 − |σ |2

= 1
2
R̄ + (λ1 + λ2)2 − λ2

1 − λ2
2,

and therefore, R̄ = −8λ1λ2. Note that R̄ is constant and as such λ1λ2 is constant. However, λ1 + λ2 is
also constant and thus both λ1 and λ2 are constant.

All principal curvatures are constant, and therefore the Gauss equation, given in (2.4), tells us that
the scalar curvature R must also be constant.

Theorem 5 can no longer be extended to minimal null hypersurfaces, since the relation (3.5)
does not necessarily hold. To see this, consider the minimal, null hypersurfaces Ma,b ⊂ S2 × S2, for
a, b ∈ S2 ⊂R3:

Ma,b = {(x, y) ∈ S
2 × S

2 | 〈x, a〉 + 〈y, b〉 = 0}.
In [11], Urbano showed that the principal curvatures are nonconstant and in particular, if (x, y) ∈ Ma,b

then:

λ1(x, y) = 〈x,a〉√
2(1−〈x,a〉2)

, λ2(x, y) = − 〈x,a〉√
2(1−〈x,a〉2)

, λ3(x, y) = 0.

As such

−8λ1λ2 = 4〈x,a〉2

1−〈x,a〉2 = 4 = R̄.
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