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1. Introduction

This is the first of two papers in which we generalize McAlister’s theory of locally inverse
regular semigroups, developed in [7] and [8], to a class of non-regular semigroups.

Recall that a locally inverse regular semigroup is a regular semigroup S in which each
local submonoid eSe, where e is an idempotent, is inverse or, equivalently, in which
the idempotents in each local submonoid commute. In this paper, we replace regular
semigroups by semigroups S having local units: this means that for each s ∈ S there exist
idempotents e, f ∈ S such that es = s = sf . Thus our aim is to generalize McAlister’s
results to semigroups S with local units which have ‘locally commuting idempotents’, in
the sense that the idempotents in each submonoid commute.

In this paper, we concentrate on generalizing the results McAlister obtained in [7],
where locally inverse regular semigroups are described in the following way. To begin
with, he showed (in [6]) that the regular elements of a Rees matrix semigroup over an
inverse semigroup form a locally inverse regular semigroup; he called these semigroups
‘regular Rees matrix semigroups over inverse semigroups’. Then he proved that every
locally inverse regular semigroup is a locally isomorphic image of a regular Rees matrix
semigroup over an inverse semigroup. Recall that a local isomorphism is a homomorphism
θ : S → T , which is injective when restricted to local submonoids.

To achieve our generalization, we have to assume that our semigroups are equipped
with what we term a ‘McAlister sandwich function’, something which is automatic in
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the regular case. In our second paper [3], we completely characterize semigroups with
local units having locally commuting idempotents which are endowed with a McAlister
sandwich function.

In the non-regular case, we have to be careful about what we mean by a ‘local isomor-
phism’. In Lemma 1.3 of [7], McAlister proves that in the regular case local isomorphisms
are in fact injective on every subset of the form aSb, where a, b ∈ S. For semigroups which
are not necessarily regular, the concept of a strict local isomorphism was devised in [9];
this is a function θ : S → T , which is injective on every subset of the form aSb, where
a and b are any elements such that a ∈ Sa and b ∈ bS. Evidently, local isomorphisms
between regular semigroups are equivalent to strict local isomorphisms. It is easy to check
that a strict local isomorphism between semigroups with local units is the same thing as
a homomorphism which is injective on all subsets of the form eSf , where e and f are
idempotents: this is the form of the definition of ‘strict local isomorphism’ that we shall
use in this paper.

2. Properties of regular elements

Let S be an arbitrary semigroup. The set Reg(S) of regular elements of S will play an
important role in our work, although it need not be a subsemigroup. If A ⊆ S then E(A)
will denote the set of idempotents in A. If s ∈ S then V (s) denotes the set of all inverses
of s. Let e, f ∈ E(S). Then the sandwich set S(e, f) is defined to be the set fV (ef)e.
Thus the sandwich set is non-empty precisely when ef is regular. It is easy to check (or
see Nambooripad [10]) that if S(e, f) is non-empty then

h ∈ S(e, f) ⇔ h2 = h, fhe = h and ehf = ef.

Nambooripad [11] showed that a natural partial order could be defined on any regular
semigroup; independently, Hartwig [1] showed that the regular elements of any semigroup
could be naturally ordered. We use Nambooripad’s form of the definition, but follow
Hartwig in applying it to the regular elements of any semigroup. Specifically, let S be an
arbitrary semigroup. A relation 6 is defined on the set Reg(S) as follows. Let s, t ∈ S.
Then s 6 t if and only if Rs 6 Rt and s = ft for some f ∈ E(Rs). We include the proof
of the following result for completeness.

Proposition 2.1. Let S be an arbitrary semigroup. Then the relation 6 is a partial
order on the set of regular elements of S.

Proof. Let s ∈ Reg(S). Then, by assumption, there exists s′ ∈ V (s). Thus s = (ss′)s.
Hence Rs = Rs, s = (ss′)s and ss′ ∈ E(Rs). It follows that s 6 s, and so 6 is reflexive.

Suppose that s 6 t and t 6 s. Then Rs = Rt and there exist idempotents e, f ∈
E(Rs) = E(Rt) such that s = ft and t = es. But f ∈ Rs = Rt implies that ft = t. Thus
s = t, and 6 is antisymmetric.

Finally, suppose that s 6 t and t 6 v. Then Rs 6 Rt and Rt 6 Rv and there are
idempotents f ∈ E(Rs) and e ∈ E(Rt) such that s = ft and t = ev. Clearly, Rs 6 Rv

and s = (fe)v. But Rf 6 Re and so fe ∈ E(Rs). Hence s 6 v, and 6 is transitive. �
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The relation 6 is called the Hartwig–Nambooripad order [1,10] or the natural partial
order defined on the regular elements. Observe that if e and f are idempotents then
e 6 f precisely when e = ef = fe, which is the usual order on the idempotents of a
semigroup. There are a number of alternative ways of characterizing this order; the proofs
of the following can all be deduced from [11]. Again, we include proofs for the sake of
completeness.

Proposition 2.2. Let S be a semigroup and let s, t ∈ Reg(S). Then the following are
equivalent.

(i) s 6 t.

(ii) For each f ∈ E(Rt) there exists e ∈ E(Rs) such that e 6 f and s = et.

(iii) For each f ′ ∈ E(Lt) there exists e′ ∈ E(Ls) such that e′ 6 f ′ and s = te′.

(iv) There exist idempotents e and f such that s = et = tf .

Proof. (i)⇒ (ii). Let s 6 t. Then by definition, Rs 6 Rt and s = it for some i ∈
E(Rs). Let f ∈ E(Rt). Then Ri = Rs 6 Rt = Rf , and so Ri 6 Rf . In particular,
fi = i. Put e = if , then it is easy to check that e2 = e, e 6 f and iR e. It follows that
e ∈ E(Rs). Finally, et = ift = it = s.

(ii)⇒ (iii). Let f ′ ∈ E(Lt). By Theorem 2.3.4(2) of [2], choose t′ ∈ V (t) ∩ Rf ′ . Then
t′t = f ′ and tt′ ∈ E(Rt). Thus, by (ii) there exists e ∈ E(Rs) such that e 6 tt′ and
s = et. Put e′ = t′et, then s = et = t(t′et) = te′. It is easy to check that e′ 6 f ′. Also,
te′ = tt′et = et = s and t′s = t′et = e′, so that sL e′. Hence the result.

(iii)⇒ (iv). Let f ′ ∈ E(Lt), e′ ∈ E(Ls), where e′ 6 f ′ and s = te′. Since f ′ ∈ E(Lt)
there exists t′ ∈ V (t) such that f ′ = t′t. Thus s = te′ = te′f ′ = (te′t′)t. But

(te′t′)2 = te′(t′t)e′t′ = te′f ′e′t′ = te′t′,

and so te′t′ is an idempotent.
(iv)⇒ (i). Let s = et = tf where e and f are idempotents. From s = tf we have that

Rs 6 Rt. Let s′ ∈ V (s). From s = et we obtain es = s and so ess′ = ss′. Put i = ss′e.
Then it is easy to check that i2 = i, s = it and iR s. �

We shall now derive some properties of the natural partial order on semigroups where
the idempotents in every local submonoid commute.

Proposition 2.3. Let S be a semigroup in which the idempotents in every local sub-
monoid commute.

(i) |S(e, f)| 6 1 for all e, f ∈ E(S).

(ii) If x, y, u, v ∈ Reg(S) and x 6 u, y 6 v and xy, uv ∈ Reg(S), then xy 6 uv.

(iii) If x, y ∈ Reg(S) and e is an idempotent such that xe = x and ey = y, then xy is
regular.
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Proof. (i) Let h, k ∈ S(e, f). We show that h = k. We have that

fhe = h, ehf = ef and fke = k, ekf = ef.

It is easy to check that eh, ek, hf and kf are all idempotents. Furthermore,

eh, ek ∈ E(eSe) and hf, kf ∈ E(fSf).

Thus ehek = ekeh and hfkf = kfhf , since the idempotents in every local submonoid
commute. Hence ehk = ekh and hkf = khf . But

ehk = ehfke = efke = ek.

By the same token, ekh = eh. Thus ek = eh. Similarly, hf = kf . Now

k = fke = fkek = fkeh = kh

and

h = fhe = hfhe = kfhe = kh.

Thus k = h.
(ii) Let u′ ∈ V (u) and v′ ∈ V (v). By Proposition 2.2 (ii) and (iii), there exist idempo-

tents e and f such that

e 6 u′u, eLx, x = ue and f 6 vv′, f R y, y = fv.

Thus xy = uefv. By assumption, xy is regular. But ey Lxy and so ey is regular, and
ey R ef and so ef is regular. Hence S(e, f) is non-empty. Let h ∈ S(e, f). Then fhe = h

and ehf = ef , and so xy = uefv = uehfv = u(eh)(hf)v. Observe that he = h and
hu′u = h and so

u′uh Lh, u′uh 6 u′u and ehLh, eh 6 e 6 u′u.

Thus u′uh L eh and u′uh, eh 6 u′u. But E(u′uSu′u) is a commutative semigroup, and
so u′uh = eh. Similarly, hvv′ = hf . Hence

xy = u(eh)(hf)v = u(u′uh)(hvv′)v = uhv.

Now

hv = (hvv′)(vv′)v = (vv′)(hvv′)v = v(v′hv).

Thus

xy = uhv = uv(v′hv)
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where v′hv is an idempotent. Similarly,

xy = uhv = (uhu′)uv,

where uhu′ is an idempotent. Hence xy 6 uv by Proposition 2.2 (iv).
(iii) Let x′ ∈ V (x). Then x′xe = x′x. Thus ex′x is an idempotent and x′xL ex′x 6 e.

Hence xL ex′x. By standard regular semigroup theory there is x′′ ∈ V (x) such that
x′′x = ex′x. Thus we have proved that if xe = x, then there is x′ ∈ V (x) such that
x′x 6 e. Similarly, if ey = y, then there exists y′ ∈ V (y) such that yy′ 6 e. With these
choices of inverses we calculate

xy(y′x′)xy = x(yy′)(x′x)y = x(x′x)(yy′)y = xy,

since x′x, yy′ 6 e and so they commute. Thus xy is regular. �

Property (ii) above generalizes a theorem of Nambooripad [11] which states that a
regular semigroup is locally inverse if and only if the natural partial order is compatible
with the multiplication. Property (iii) above will be used repeatedly in what follows to
show that certain products of regular elements are again regular.

The following lemma, and its left–right dual, will be needed in § 4.

Lemma 2.4. Let x, y ∈ Reg(S) such that x 6 y and ey = y for some idempotent e.
Then there exists an idempotent f 6 e such that x = fy.

Proof. Let y′ ∈ V (y). Then eyy′ = yy′. It is easy to check that yy′e ∈ E(S), yy′e 6 e

and yy′eR y. Thus, by Proposition 2.2 (ii), there exists an idempotent f 6 yy′e such that
x = fy. Clearly, f 6 e. �

3. An associated semigroup

Let S be a semigroup with local units with locally commuting idempotents. We may
associate a category with S as follows. Put

C(S) = {(e, x, f) ∈ E(S) × S × E(S) : exf = x}

with product given by (e, x, f)(f, y, j) = (e, xy, j) and undefined in all other cases.
Our aim is to convert C(S) into a semigroup with local units and with a normal band

of idempotents. To do this, we need to introduce a major assumption on the structure
of the semigroup S.

A function p : E(S) × E(S) → S, where we write pu,v = p(u, v), is called a McAlister
sandwich function if it satisfies the following three conditions.

(M1) pu,v ∈ uSv and pu,u = u.

(M2) pu,v ∈ V (pv,u).

(M3) pu,vpv,f 6 pu,f .
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To see that condition (M3) makes sense, we have to show that the product pu,vpv,f

is always regular. To this end, observe that by condition (M2), both pu,v and pv,f are
regular; by condition (M1), we have that pu,vv = pu,v and vpv,f = pv,f ; thus the regularity
of pu,vpv,f follows from Proposition 2.3 (iii). By induction, the above argument implies
that any product of the form

pa,bpb,cpc,d . . .

is regular.
All regular locally inverse semigroups have McAlister sandwich functions by Lemma 2.2

of [7].

Proposition 3.1. Let S be a semigroup with local units with locally commuting idem-
potents equipped with a McAlister sandwich function. Define a semigroup multiplication
on C(S) by

(e, x, f) · (i, y, j) = (e, xpf,iy, j).

Then the idempotents of (C(S), ·) form a normal band.

Proof. It is evident that (C(S), ·) is a semigroup. We begin by locating the idempo-
tents. Observe that (e, x, f)2 = (e, x, f) if and only if xpf,ex = x. Thus, in particular, x

is regular.
Suppose that (e, x, f) is an idempotent. By condition (M2), pf,epe,fpf,e = pf,e. Thus

x = xpf,epe,fpf,ex. Now xpf,e, pf,ex ∈ E(S), and xpf,e 6 e and pf,ex 6 f using
condition (M1). The product xpf,epe,f is regular by Proposition 2.3 (iii) using condi-
tion (M1). Thus, by Proposition 2.3 (ii), we have that xpf,epe,f 6 epe,f = pe,f . By
Proposition 2.3 (iii) and condition (M1) the product xpf,epe,fpf,ex is regular and so
xpf,epe,fpf,ex 6 pe,ff 6 pe,f by Proposition 2.3 (ii). Hence x 6 pe,f .

Conversely, suppose that x is regular and x 6 pe,f . Then x = f ′pe,f = pe,fe′ for some
idempotents e′, f ′ ∈ S by Proposition 2.2 (iv). Thus

xpf,ex = f ′pe,fpf,epe,fe′ = f ′pe,fe′ = x.

We have therefore proved that

E(C(S), ·) = {(e, x, f) ∈ C(S) : x ∈ Reg(S) and x 6 pe,f}.

We now show that the idempotents form a band. Let (e, x, f) and (k, y, l) be idempo-
tents. Then by the result above

x 6 pe,f and y 6 pk,l.

By definition (e, x, f)·(k, y, l) = (e, xpf,ky, l). By Proposition 2.3 (iii) and condition (M1),
the product xpf,k is regular, as is pe,fpf,k. Thus, by Proposition 2.3 (ii), xpf,k 6 pe,fpf,k.
Similarly, xpf,ky and pe,fpf,kpk,l are both regular, and so by Proposition 2.3 (ii) xpf,ky 6
pe,fpf,kpk,l. But by two applications of condition (M3), we have that pe,fpf,kpk,l 6 pe,l.
Hence (e, xpf,ky, l) is an idempotent.
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Finally, to show that the band is normal, we check that the idempotents in the
local submonoids commute (using the fact that a band is normal precisely when it
is locally inverse; see [2, p. 141, Exercise 18]). Let (e, z, f) be an idempotent and let
(e, x, f), (e, y, f) 6 (e, z, f) be idempotents. We prove that (e, x, f) · (e, y, f) = (e, y, f) ·
(e, x, f). By definition,

(e, x, f) · (e, y, f) = (e, xpf,ey, f) and (e, y, f) · (e, x, f) = (e, ypf,ex, f).

Now y = ypf,ez and so
xpf,ey = xpf,eypf,ez.

But xpf,e and ypf,e are idempotents, and using condition (M1) we have xpf,e, ypf,e 6 e.
Thus xpf,ey = ypf,expf,ez. But x = xpf,ez thus xpf,ey = ypf,ex. Hence (e, x, f)(e, y, f) =
(e, y, f)(e, x, f). �

We shall denote the semigroup (C(S), ·) by C(S)•.

4. A semigroup with commuting idempotents

The semigroup C(S)• has a normal band of idempotents. In this section, we shall show
that we can define a congruence δ on this semigroup in such a way that C(S)•/δ has
commuting idempotents; in addition, the natural homomorphism δ\ will be a strict local
isomorphism.

In the case of regular semigroups, this result follows from the existence of a minimum
inverse congruence on any regular orthodox semigroup, and Proposition 1.4 of [7]. Recall
that on an orthodox regular semigroup T the minimum inverse congruence γ on T can
be defined by

(a, b) ∈ γ ⇔ V (a) ∩ V (b) 6= ∅.

As a first step, we characterize γ on the semigroup C(S)• in the case where S is regular
(and therefore locally inverse).

Proposition 4.1. Let S be a regular locally inverse semigroup, and let (e, x, f),
(i, y, j) ∈ C(S)•. Then (e, x, f) γ (i, y, j) if and only if x = pe,iypj,f and y = pi,expf,j .

Proof. Suppose first that (e, x, f) γ (i, y, j). Let (a, b, c) ∈ V (e, x, f)∩V (i, y, j). Then

x = xpf,abpc,ex and y = ypj,abpc,iy

and

b = bpc,expf,ab and b = bpc,iypj,ab.

Also, because an element multiplied by an inverse is an idempotent, and using the char-
acterization of idempotents in Proposition 3.1, we have that

xpf,ab 6 pe,c, bpc,ex 6 pa,f , ypj,ab 6 pi,c and bpc,iy 6 pa,j .
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By assumption,
bpc,expf,ab = bpc,iypj,ab.

Thus

xpf,a(bpc,expf,ab)pc,ex = xpf,a(bpc,iypj,ab)pc,ex.

Now

xpf,a(bpc,expf,ab)pc,ex = xpf,abpc,ex = x.

Thus
x = (xpf,ab)pc,iypj,a(bpc,ex).

It follows that
x 6 pe,cpc,iypj,apa,f 6 pe,iypj,f .

Now
pe,iypj,f = (pe,iypj,a)b(pc,iypj,f ) = (pe,iypj,a)bpc,expf,ab(pc,iypj,f ),

which is equal to

pe,i(ypj,ab)pc,expf,a(bpc,iy)pj,f 6 (pe,ipi,cpc,e)x(pf,apa,jpj,f ) 6 pe,expf,f ,

which is just x. Hence x = pe,iypj,f . We may similarly show that y = pi,expf,j .
To prove the converse, suppose that x = pe,iypj,f and y = pi,expf,j . We shall show

that V (e, x, f) ∩ V (i, y, j) 6= ∅. Observe that

y = pi,expf,j = (pi,epe,i)y(pj,fpf,j),

and, similarly,
x = (pe,ipi,e)x(pf,jpj,f ).

Now x ∈ eSf implies that there is x′ ∈ V (x) ∩ fSe. Thus (f, x′, e) ∈ C(S). Next observe
that

y(pj,fx′pe,i)y = (pi,expf,j)pj,fx′pe,i(pi,expf,j) = pi,exx′xpf,j = y

and
(pj,fx′pe,i)y(pj,fx′pe,i) = pj,fx′pe,ipi,expf,jpj,fx′pe,i = pj,fx′pe,i.

Thus pj,fx′pe,i ∈ V (y). It is now easy to check that

(f, x′, e) ∈ V (e, x, f) ∩ V (i, y, j).

Thus V (e, x, f) ∩ V (i, y, j) 6= ∅. �

Now let S be a semigroup with local units with locally commuting idempotents,
equipped with a McAlister sandwich function. Motivated by Proposition 4.1, define the
relation δ on the semigroup C(S)• by

(e, x, f) δ (i, y, j) ⇔ x = pe,iypj,f and y = pi,expf,j .
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Theorem 4.2. The relation δ is a congruence on the semigroup C(S)•, and the idem-
potents in the quotient semigroup C(S)•/δ commute. Furthermore, δ\ is a strict local
isomorphism.

Proof. The proof is long and we have to be careful to manipulate regular elements
correctly.

(1) δ is an equivalence relation

Both reflexivity and symmetry are straightforward to check. We prove transitivity
explicitly. Let

(e, x, f) δ (i, y, j) and (i, y, j) δ (k, z, l).

We prove that
(e, x, f) δ (k, z, l).

By definition,

x = pe,iypj,f and y = pi,expf,j

and

y = pi,kzpl,j and z = pk,iypj,l.

Now
x = pe,iypj,f = pe,i(pi,kzpl,j)pj,f .

By condition (M3), we have that

pe,ipi,k 6 pe,k and pl,jpj,f 6 pl,f .

Thus, by Lemma 2.4 and its dual, there are idempotents α 6 e and β 6 f such that

pe,ipi,k = αpe,k and pl,jpj,f = pl,fβ.

Hence

x = αpe,kzpl,fβ = αpe,k(pk,iypj,l)pl,fβ = αpe,kpk,i(pi,expf,j)pj,lpl,fβ.

In particular, αx = x = xβ. Now

pe,kpk,ipi,e 6 pe,e = e,

and α 6 e. But E(eSe) is a semilattice. Thus

α(pe,kpk,ipi,e) = (pe,kpk,ipi,e)α.

Similarly,

β(pf,jpj,lpl,f ) = (pf,jpj,lpl,f )β.
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Hence

x = pe,kpk,ipi,eαxβpf,jpj,lpl,f = pe,kpk,i(pi,expf,j)pj,lpl,f = pe,k(pk,iypj,l)pl,f ,

which is equal to pe,kzpl,f . We may show, in a similar way, that z = pk,expf,l. Hence
(e, x, f) δ (k, z, l), as required.

(2) δ is a congruence

We prove that δ is left compatible with the multiplication. The proof that it is right
compatible is similar. Let (e, x, f) δ (i, y, j) and let (a, b, c) be arbitrary. Then

(a, b, c)(e, x, f) = (a, bpc,ex, f) and (a, b, c)(i, y, j) = (a, bpc,iy, j).

We prove that
(a, bpc,ex, f) δ (a, bpc,iy, j).

To do this, we need to show that

bpc,ex = bpc,iypj,f and bpc,iy = bpc,expf,j .

We shall prove the former equality explicitly; the latter equality is established in a similar
way.

By assumption,
x = pe,iypj,f and y = pi,expf,j .

Now
pc,expf,j = pc,e(pe,iypj,f )pf,j = pc,epe,ipi,expf,jpj,fpf,j .

Now pc,epe,i = γpc,i for some idempotent γ 6 c, and pc,ipi,e = αpc,e for some idempotent
α 6 c. Thus

pc,expf,j = γαpc,expf,jpj,fpf,j .

Since α, γ ∈ cSc we have that γα = αγ. Hence α(pc,expf,j) = pc,expf,j . We now have
that

pc,iypj,f = pc,ipi,expf,jpj,f = α(pc,expf,j)pj,f = pc,expf,jpj,f .

However
x = pe,iypj,f ,

and so by condition (M2) we have that xpf,jpj,f = x. Thus

pc,iypj,f = pc,ex.

It follows that
bpc,ex = bpc,iypj,f ,

as required.
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(3) Idempotents in U(S) = C(S)•/δ commute

First of all we characterize the idempotents in U(S). Suppose that δ(e, x, f) is an
idempotent in U(S). Then (e, xpf,ex, f) δ (e, x, f). Thus

xpf,ex = pe,expf,f = x.

Hence (e, x, f) is an idempotent in C(S)•. Thus δ(e, x, f) is an idempotent in U(S) if
and only if (e, x, f) is an idempotent in C(S)•. In particular, x is regular.

Let δ(e, x, f) and δ(i, y, j) be idempotents in U(S). We shall prove that they commute.
We therefore need to show that

δ(e, xpf,iy, j) = δ(i, ypj,ex, f);

that is, we need to prove that

xpf,iy = pe,i(ypj,ex)pf,j and ypj,ex = pi,e(xpf,iy)pj,f .

We shall prove the former equality; the proof of the latter equality is similar. Observe
also that

x 6 pe,f and y 6 pi,j

from the proof of Proposition 3.1 and the fact that (e, x, f) and (i, y, j) are idempotents
in C(S)•.

We have that
xpf,iy = (xpf,iy)pj,e(xpf,iy),

since (e, xpf,iy, j) is an idempotent by Proposition 3.1. Thus

xpf,iy = (xpf,i)ypj,ex(pf,iy) 6 (pe,fpf,i)ypj,ex(pf,ipi,j) 6 pe,i(ypj,ex)pf,j

using Proposition 2.3 (ii),(iii) and the fact that all elements involved are regular. Similarly,

ypj,ex 6 pi,e(xpf,iy)pj,f .

Hence

xpf,iy 6 pe,i(ypj,ex)pf,j 6 pe,ipi,e(xpf,iy)pj,fpf,j 6 pe,e(xpf,iy)pj,j = e(xpf,iy)j,

and this is equal to xpf,iy. Thus

xpf,iy = pe,i(ypj,ex)pf,j ,

as required.

(4) U(S) is a semigroup with local units

Let δ(e, x, f) be an element of U(S). Observe that (e, e, e) and (f, f, f) are both idem-
potents of C(S)•, by condition (M1). Thus δ(e, e, e) and δ(f, f, f) are both idempotents
in U(S), and clearly δ(e, x, f)δ(f, f, f) = δ(e, x, f) and δ(e, e, e)δ(e, x, f) = δ(e, x, f).
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(5) δ\ is a strict local isomorphism

Let (a, b, c) and (d, e, f) be idempotents in C(S)•. Then elements of (a, b, c) · C(S) ·
(d, e, f) will certainly have the form (a, z, f) for suitable z. Let

(a, x, f), (a, y, f) ∈ (a, b, c) · C(S) · (d, e, f).

Then if δ(a, x, f) = δ(a, y, f), it follows that x = pa,aypf,f = y. �

5. The covering theorem

Let S be a semigroup with local units having locally commuting idempotents and equip-
ped with a McAlister sandwich function. We may therefore construct the semigroup with
local units U(S) that has commuting idempotents. The map δ\ : C(S)• → U(S) is a strict
local isomorphism. Define q : E(S) × E(S) → U(S) by q(v, u) = qv,u = δ(v, vu, u). We
may therefore form the Rees matrix semigroup M = M(U(S);E(S), E(S);Q).

Put E′ = {(e, δ(e, e, e), e) : e ∈ E(S)}. Then E′ is a set of idempotents of M. The
semigroup E′ME′ is a subsemigroup of M and a semigroup with local units.

Lemma 5.1. E′ME′ = {(u, δ(u, x, v), v) ∈ M}.
Proof. Observe that

(u, δ(u, x, v), v) = (u, δ(u, u, u), u)(u, δ(u, x, v), v)(v, δ(v, v, v), v).

Thus {(u, δ(u, x, v), v) ∈ M} is contained in E′ME′. On the other hand,

(e, δ(e, e, e), e)(u, δ(i, x, j), v)(f, δ(f, f, f), f) = (e, δ(e, eupu,ixpj,vvf, f), f),

which is of the required form. �

Put EM = E′ME′. Observe that in the regular case, EM = RM the set of regular
elements of M (see the proof of Theorem 2.1 at the foot of p. 731 in [7]).

Define θ : EM → S by θ(u, δ(u, x, v), v) = x; this is well defined because if δ(u, x, v) =
δ(u, y, v), then x = y by the last part of the proof of Theorem 4.2.

Proposition 5.2. The function θ is a surjective strict local isomorphism along which
idempotents can be lifted.

Proof. Let s ∈ S. Then because S has local units, we can find idempotents e, f ∈ S

such that es = s = sf . But then θ(e, δ(e, s, f), f) = s, and so θ is surjective.
To show that θ is a homomorphism, let (u, δ(u, x, v), v), (g, δ(g, y, k), k) ∈ EM. Then

(u, δ(u, x, v), v)(g, δ(g, y, k), k) = (u, δ(u, xy, k), k).

The result is now clear.
To show that θ is a strict local isomorphism, it is sufficient to check that if

θ(u, δ(u, x, v), v) = θ(u, δ(u, y, v), v),

then (u, δ(u, x, v), v) = (g, δ(g, y, k), k); but this is immediate from the definition.
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Suppose now that e ∈ E(S). Then θ(e, δ(e, e, e, ), e) = e and (e, δ(e, e, e, ), e) ∈ E(EM).
Thus idempotents lift along θ. �

We have proved the following covering theorem.

Theorem 5.3. Let S be a semigroup with local units having locally commuting idem-
potents. If S has a McAlister sandwich set, then there exists a semigroup U with local
units whose idempotents commute, a square Rees matrix semigroup M = M(U ; I, I;Q)
over U , and a subsemigroup T of M that has local units, and a surjective homomorphism
θ : T → S that is a strict local isomorphism along which idempotents can be lifted.

It is natural to ask when a semigroup S has a McAlister sandwich function. It is
proved in [4] that if S possesses an idempotent e such that every element of eE(S) is
regular, then S has a McAlister sandwich function constructed in the same way as the
one in McAlister’s original paper [7]. In particular, if the regular elements of S form a
subsemigroup then S has a McAlister sandwich function. In our second paper [3], we
characterize semigroups with local units which possess a McAlister sandwich function.

McAlister’s work on the local structure of regular semigroups [6–8] is related to Tal-
war’s Morita theory of semigroups developed in [12] and [13]; however, Talwar is inter-
ested in more general semigroups than regular; in particular, in [12] he develops Morita
theory for semigroups with local units, whereas in [13], he develops a Morita theory for
the more general class of factorizable semigroups: a semigroup S is factorizable if S = S2.
In [5], Lawson and Márki generalized McAlister’s local structure theorem to factorizable
semigroups. It is therefore natural to ask if all of McAlister’s work can be generalized
from regular semigroups not just to semigroups with local units but to semigroups which
are factorizable.
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