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Let σ ∈ (0, 2), χ(σ)(y) := 1σ∈(1,2) + 1σ=11y∈B(0, 1), where 0 denotes the origin of
R

n, and a be a non-negative and bounded measurable function on R
n. In this paper,

we obtain the boundedness of the non-local elliptic operator

Lu(x) :=

∫
Rn

[
u(x + y) − u(x) − χ(σ)(y)y · ∇u(x)

]
a(y)

dy

|y|n+σ

from the Sobolev space based on BMO(Rn) ∩ (
⋃

p∈(1,∞) Lp(Rn)) to the space

BMO(Rn), and from the Sobolev space based on the Hardy space H1(Rn) to
H1(Rn). Moreover, for any λ ∈ (0, ∞), we also obtain the unique solvability of the
non-local elliptic equation Lu − λu = f in R

n, with
f ∈ BMO(Rn) ∩ (

⋃
p∈(1,∞) Lp(Rn)) or H1(Rn), in the Sobolev space based on

BMO(Rn) or H1(Rn). The boundedness and unique solvability results given in this
paper are further devolvement for the corresponding results in the scale of the
Lebesgue space Lp(Rn) with p ∈ (1, ∞), established by H. Dong and D. Kim [J.
Funct. Anal. 262 (2012), 1166–1199], in the endpoint cases of p = 1 and p = ∞.
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1. Introduction

Let n � 1, σ ∈ (0, 2), χ(σ)(y) := 1σ∈(1,2) + 1σ=11y∈B(0, 1), where 0 denotes the ori-
gin of Rn, and a be a non-negative and bounded measurable function on Rn. In
this paper, we first consider the boundedness of the non-local elliptic operator

Lu(x) :=
∫

Rn

[
u(x + y) − u(x) − χ(σ)(y)y · ∇u(x)

]
a(y)

dy

|y|n+σ
(1.1)

from the Sobolev space based on BMO(Rn) ∩ (
⋃

p∈(1,∞) Lp(Rn)) to the BMO
(bounded mean oscillation) space BMO(Rn), and from the Sobolev space based
on the Hardy space H1(Rn) to H1(Rn). Assume further that λ ∈ (0, ∞), p ∈
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(1, ∞), and f belongs to Lp(Rn) ∩ BMO(Rn) or the Hardy space H1(Rn), we also
investigate the unique solvability of the non-local elliptic equation

Lu − λu = f (1.2)

in the Sobolev space based on BMO(Rn) or H1(Rn). The results obtained in this
paper are further devolvement of the corresponding results in the scale of the
Lebesgue space Lp(Rn) with p ∈ (1, ∞) established by Dong and Kim [7] in the
endpoint cases of p = 1 and p = ∞.

In particular, when a is a fixed appropriate constant, the corresponding operator
L is just the fractional Laplacian −(−Δ)σ/2. It is said that the function u is a
solution of the equation (1.2), if (1.2) holds true in the sense of almost everywhere.

Denote by S(Rn) the classical Schwartz function space, that is, the set of all
infinitely differentiable functions satisfying that all derivatives decrease rapidly
at infinity, and by S ′(Rn) its dual space (namely, the space of all tempered
distributions).

Recall that, for any given α ∈ (0, ∞), the Bessel potential operator Jα on S ′(Rn)
is defined by, for any f ∈ S ′(Rn) and ξ ∈ Rn,

Jαf(ξ) := F−1
((

1 + | · |2)−α/2 F(f)
)

(ξ)

(see, for instance, [14, definition 1.2.4]). Here and hereafter, F and F−1, respec-
tively, denote the Fourier transform and the inverse Fourier transform. Moreover,
for any given α ∈ (0, ∞), the Riesz potential operator Iα on S ′(Rn) is defined by,
for any f ∈ S ′(Rn) and ξ ∈ Rn,

Iαf(ξ) := F−1
(| · |−αF(f)

)
(ξ)

(see, for instance, [14, definition 1.2.1]). It is worth pointing out that, when α ∈
(0, ∞), | · |−α has singularity at the origin. Therefore, Iα can only be defined on the
space of tempered distributions modulo polynomials. Moreover, for any α ∈ (0, ∞)
and u ∈ S ′(Rn), the fractional derivative of u with order α is defined by

∂αu := −(−Δ)α/2u = F−1 (| · |αF(u)) .

Furthermore, for any given α ∈ (0, 2) and u ∈ S(Rn), the fractional derivative of u
with order α has the equivalent definition

∂αu(x) = −(−Δ)α/2u(x) = cP.V.

∫
Rn

[u(x + y) − u(x)]
dy

|y|n+α

=
c

2

∫
Rn

[u(x + y) + u(x − y) − 2u(x)]
dy

|y|n+α
, (1.3)

where

c :=
α(2 − α)Γ(n+α

2 )
πn−222−αΓ(2 − α

2 )
,

Γ is the Gamma function, and P.V. denotes the integral is taken according to the
Cauchy principal value sense. It is worth pointing out that (1.3) is well defined for
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any u ∈ C2
b (Rn) (the set of all 2-times continuously differentiable bounded functions)

(see, for instance, [13]).
For any given α ∈ (0, ∞) and function space X on Rn, the Sobolev spaces based

on X, Jα(X) and Iα(X), are defined by the image of X under Jα and Iα, respec-
tively. Furthermore, for any u ∈ Jα(X) [or u ∈ Iα(X)], the (quasi-)norm of u is
given by ‖u‖Jα(X) := ‖Jα(u)‖X [or ‖u‖Iα(X) := ‖Iα(u)‖X ]. By this, we find that,
for any function u ∈ Iα(X), the fractional derivative ∂αu ∈ X.

Moreover, recall that the Riesz transform Rj , for any given j ∈ {1, . . . , n}, is
defined by, for any f ∈ S(Rn),

Rjf(x) = cn lim
ε→0

∫
|y|�ε

yj

|y|n+1
f(x − y) dy,

where cn := Γ(n+1
2 )π−n+1

2 (see, for instance, [26, 27]). When n = 1, the correspond-
ing operator is known as the Hilbert transform.

The classical Hardy space H1(Rn) is defined to be the set of all f ∈ L1(Rn) such
that Rjf ∈ L1(Rn) for any j ∈ {1, . . . , n}, with the norm

‖f‖H1(Rn) = ‖f‖L1(Rn) +
n∑

j=1

‖Rjf‖L1(Rn) (1.4)

(see, for instance, [27]). Furthermore, denote by L1
loc(R

n) the set of all locally
integrable functions on Rn. Let f ∈ L1

loc(R
n). It is said that f belongs to the BMO

(bounded mean oscillation) space BMO(Rn), if

‖f‖BMO(Rn) := sup
B⊂Rn

1
|B|

∫
B

|f(x) − fB |dx < ∞,

where the supremum is taken over all balls B of Rn and fB := 1
|B|

∫
B

f(y) dy (see, for
instance, [14, 15, 27]). Recall that ‖ · ‖BMO(Rn) is only a semi-norm and BMO(Rn)
modulo constants is a Banach space. To make BMO(Rn) itself a Banach space, for
f ∈ BMO(Rn), we may consider the norm

‖f‖BMO+(Rn) := ‖f‖BMO(Rn) +

∣∣∣∣∣ 1
|B1(0)|

∫
B1(0)

f(x) dx

∣∣∣∣∣ , (1.5)

which is useful to consider the pointwise multipliers of BMO(Rn), where B1(0)
denotes the ball with the centre 0 and the radius 1. It is known that the Hardy space
H1(Rn) and the BMO space BMO(Rn), respectively, are appropriate substitutes of
the Lebesgue spaces L1(Rn) and L∞(Rn) when studying the boundedness of some
linear operators (see, for instance, [14, 27–29]). Moreover, it is well known that
the space BMO(Rn) is the dual space of the Hardy space H1(Rn) (see, for instance,
[14, 27]).

Non-local equations have aroused extensive research interest in recent years. The
non-local equations of the form (1.2) naturally arise in the study of jump Lévy pro-
cesses; they have extensive applications in many fields, such as, economics, physics
and probability theory (see, for instance, [3, 5, 13, 24]), and have been extensively
studied (see, for instance, [3, 4, 6–11, 16, 18–20]).
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The study of the boundedness of the non-local elliptic operator L defined as
in (1.1) can be founded in many existing literatures. In particular, if the kernel
function a satisfies the lower and upper bounds condition, and also satisfies the
cancellation condition when σ = 1, Dong and Kim [7, 8] obtained the boundedness
of the operator L from the Sobolev space Jσ(Lp(Rn)) with p ∈ (1, ∞) to Lp(Rn),
and from the Lipschitz space Λα+σ(Rn) to Λα(Rn) for any given α ∈ (0, ∞) (see, for
instance, [26, 27] or § 2 below for the definition of the Lipschitz space). Afterwards,
for the non-local operator associated with the x-dependent kernel a(x, ·) imposed
on the Hölder continuity of x, by using the boundedness of the singular integral of
convolution type on Lebesgue spaces Lp(Rn) and the partition of unity argument,
Mikulevičius and Pragarauskas [20] obtained the boundedness of the operator L
from the Sobolev space Jσ(Lp(Rn)) to Lp(Rn) when p ∈ (1, ∞) is sufficiently large.
Recently, Dong et al. [6] removed the restriction on p and extended the result
established by Mikulevičius and Pragarauskas [20] to the weighted Lebesgue spaces
Lp

ω(Rn) for any p ∈ (1, ∞) and ω ∈ Ap(Rn) (the Muckenhoupt weight class). Fur-
thermore, when the kernel also depends on the temporal variable, the boundedness
of parabolic operators with local or non-local time derivatives was also considered
in the existing literatures (see, for instance, [6, 9–11, 19, 20]).

The research on the solvability and regularity of the solutions of non-local equa-
tions is even richer. In particular, for the fraction Laplacian problem (−Δ)su = f in
Rn, with s ∈ ( 1

2 , 1) and f ∈ L1(Rn), Karlsen et al. [16] proved the unique existence
by a dual method, and the solution belonging to the local fractional Sobolev space
W

1−(2−2s)/q, q
loc (Rn) with q ∈ (1, n+2−2s

n+1−2s ). For the fractional Laplacian equation with
Lp(Rn)-data, the existence and regularity of the solution can be obtained by the
classical theory of pseudo-differential operators. However, for the general kernel a,
the theory of pseudo-differential operators is no longer effective. In [7], by using the
boundedness of the non-local operator L as in (1.1) from Jσ(Lp(Rn)) to Lp(Rn)
with p ∈ (1, ∞), Dong and Kim proved that the solution of the non-local ellip-
tic equation (1.2) with f ∈ Lp(Rn) (p ∈ (1, ∞)) exists and belongs to the Bessel
potential space Jσ(Lp(Rn)). Moreover, in [8], by using the boundedness of the non-
local operator L from the Lipschitz space Λα+σ(Rn) to Λα(Rn) with any given
α ∈ (0, ∞) and the method of continuity, Dong and Kim established the unique
solvability of the equation (1.2) with any given f ∈ Λα(Rn), and also proved that
the corresponding solution belongs to Λα+σ(Rn). In the same paper [8], the solvabil-
ity of the equation (1.2), with the kernel being x-dependent, was also established.
Furthermore, the solvability of the non-local parabolic equation, the Dirichlet prob-
lem of the non-local equation on domains and the semi-linear non-local equations
also have been extensively studied in the existing literatures (see, for instance, [1,
6, 11, 22–25, 31]).

Throughout this paper, we always assume that the kernel function a satisfies the
following assumption.

Assumption 1.1. Let σ ∈ (0, 2) and a be a non-negative measurable function on
Rn.

(i) There are positive constants μ and Λ such that, for any y ∈ Rn,

(2 − σ)μ � a(y) � (2 − σ)Λ.

https://doi.org/10.1017/prm.2022.82 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2022.82


Hardy regularity estimates for a class of non-local elliptic equations 2029

(ii) If σ = 1, then, for any 0 < r < R,∫
r�|y|�R

ya(y)
dy

|y|n+1
= 0.

Now, we give the main results of this paper.

Theorem 1.2. Let n � 1, σ ∈ (0, 2), p ∈ (1, ∞), and the kernel function a satisfy
assumption 1.1. Then the following two assertions hold true.

(i) The operator L defined as in (1.1) is a continuous operator from Jσ(Lp(Rn)) ∩
Jσ(BMO(Rn)) to BMO(Rn), moreover, there exists a positive constant C,
depending only on n, σ, μ and Λ, such that, for any u ∈ Jσ(Lp(Rn)) ∩
Jσ(BMO(Rn)),

‖Lu‖BMO(Rn) � C ‖∂σu‖BMO+(Rn) , (1.6)

where, for a function f ∈ BMO(Rn), ‖f‖BMO+(Rn) is defined as in (1.5).

(ii) The operator L defined as in (1.1) is a continuous operator from Jσ(H1(Rn))
to H1(Rn), moreover, there exists a positive constant C, depending only on
n, σ, μ and Λ, such that, for any u ∈ Jσ(H1(Rn)),

‖Lu‖H1(Rn) � C ‖∂σu‖H1(Rn) . (1.7)

Remark 1.3. In theorem 1.2(i), we need a constraint that u ∈ Jσ(Lp(Rn)) for some
p ∈ (1, ∞) to obtain (1.6). This additional condition is due to our proof method
(see (3.20) and (3.21) below for the details). Precisely, let λ ∈ (0, ∞) be a constant
and f := −(−Δ)σ/2u − λu. To guarantee that there exists a unique solution for
the equation Lw − λw = f which is important in the proof of theorem 1.2(i), we
need to assume that f ∈ Lp(Rn) for some p ∈ (1, ∞). This leads to the constraint
that u ∈ Jσ(Lp(Rn)) for some p ∈ (1, ∞). Meanwhile, because of the lack of the
density of Lp(Rn) ∩ BMO(Rn) in BMO(Rn), we could not replace the condition
u ∈ Jσ(Lp(Rn)) ∩ Jσ(BMO(Rn)) with u ∈ Jσ(BMO(Rn)) by the method used in
the proof of theorem 1.2(i).

Next, we show via a counterexample that, for any given p ∈ (1, ∞), Lp(Rn) ∩
BMO(Rn) is not dense in BMO(Rn) with respect to ‖ · ‖BMO(Rn). Indeed, let n = 1
and f0(x) := sinx for any x ∈ R. Then f0 ∈ L∞(Rn) and hence f0 ∈ BMO(Rn).
Let p ∈ (1, ∞). Now, we prove that, for any g ∈ Lp(Rn) ∩ BMO(Rn), ‖f0 −
g‖BMO(Rn) � 2

π , which implies that Lp(Rn) ∩ BMO(Rn) is not dense in BMO(Rn)
with respect to ‖ · ‖BMO(Rn). For any k ∈ N, let Ik := (kπ, (k + 2)π). Then, for any
k ∈ N,

‖f0 − g‖BMO(Rn) � 1
|Ik|

∫
Ik

|(f0 − g) − (f0 − g)Ik
|dx

� 1
|Ik|

∫
Ik

|f0 − (f0)Ik
|dx − 1

|Ik|
∫

Ik

|g − (g)Ik
|dx

� 2
π
− 1

π

∫ (k+2)π

kπ

|g|dx. (1.8)

https://doi.org/10.1017/prm.2022.82 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2022.82


2030 W. Ma and S. Yang

Moreover, by g ∈ Lp(R), we conclude that limk→∞
∫ (k+2)π

kπ
|g|dx = 0. Thus,

letting k → ∞ in (1.8), we find that, for any g ∈ Lp(Rn) ∩ BMO(Rn),
‖f0 − g‖BMO(Rn) � 2

π .

Theorem 1.4. Let n � 1, λ ∈ (0, ∞), σ ∈ (0, 2), p ∈ (1, ∞), and the kernel
function a satisfy assumption 1.1. Then the following two assertions hold true.

(i) For any given f ∈ BMO(Rn) ∩ Lp(Rn), the solution u of the equation (1.2)
uniquely exists and, moreover, u ∈ Jσ(BMO(Rn)) and there exists a positive
constant C, depending only on n, σ, μ and Λ, such that

λ‖u‖BMO(Rn) + ‖∂σu‖BMO(Rn) � C‖f‖BMO+(Rn), (1.9)

where, for any f ∈ BMO(Rn), ‖f‖BMO+(Rn) is defined as in (1.5).

(ii) For any given f ∈ H1(Rn), the solution u of the equation (1.2) uniquely
exists and, moreover, u ∈ Jσ(H1(Rn)) and there exists a positive constant
C, depending only on n, σ, μ and Λ, such that

λ‖u‖H1(Rn) + ‖∂σu‖H1(Rn) � C‖f‖H1(Rn). (1.10)

Remark 1.5. (i) Let λ ∈ (0, ∞), σ ∈ (0, 2), f ∈ L∞(Rn) ∩ Lp(Rn) with some p ∈
(1, ∞), and u be the solution of the equation (1.2). By the maximum principle,
it was proved in [8, theorem 1.1] that λ‖u‖L∞(Rn) � ‖f‖L∞(Rn). From this and
theorem 1.4, it follows that

λ‖u‖L∞(Rn) + ‖∂σu‖BMO(Rn) � C‖f‖L∞(Rn),

where C is a positive constant depending only on n, σ, μ and Λ.
(ii) When λ = 0 in theorem 1.4, we could give a priori estimate for the equation

Lu = f in Rn. Indeed, if u ∈ BMO(Rn) ∩ Lp(Rn) is a solution of the equation Lu =
f with f ∈ BMO(Rn) ∩ Lp(Rn) for some p ∈ (1, ∞), then, for any λ ∈ (0, ∞), we
have Lu − λu = f − λu. Since the constant C in (1.9) is independent of λ, u and f ,
by taking λ → 0+, it follows that (1.9) holds true with λ = 0. Similarly, if u ∈
H1(Rn) is a solution of the equation Lu = f with f ∈ H1(Rn), we also obtain that
(1.10) holds true with λ = 0.

(iii) The methods used in this paper to show theorems 1.2 and 1.4 are not effec-
tive to deal with the general case that the kernel function a depends on both the
variables x and y, considered as [6, 11, 20]. Indeed, in the proofs of theorems 1.2
and 1.4, we use the exchangeability that (−Δ)σ/2L = L(−Δ)σ/2 and RjL = LRj

which plays a key role in the proofs of theorems 1.2 and 1.4, where the operator
L is as in (1.1) and Rj with j ∈ {1, . . . , n} denotes the Riesz transform. However,
these exchangeable properties may not hold true for the operator L when the kernel
function a depends on both the variables x and y.

The remainder of this paper is organized as follows. In § 2, we recall the notions of
the Bessel potential space and the Riesz potential space based on Lp(Rn), H1(Rn)
or BMO(Rn), and the Lipschitz–Zygmund space. Moreover, we also present the
boundedness result of the singular integral operator on the Hardy space H1(Rn),
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and some important results established by Dong and Kim [7, 8]. In § 3, we prove
theorems 1.2 and 1.4. To prove theorem 1.2(i), the key step is to establish the
mean oscillation estimates. This method was originated in [17] and used to treat
second-order elliptic and parabolic equations with VMO coefficients. Moreover, in
[7, 8, 11], this method was further developed to treat non-local elliptic and parabolic
equations. To show theorem 1.2(ii), we use the boundedness of the singular integral
operator on the Hardy space H1(Rn), which is motivated by [6]. Meanwhile, to
prove theorem 1.4, we also use the method of mean oscillation estimates. Moreover,
a duality argument is also used.

Finally, we make some conventions on notations. Throughout the whole paper,
we always denote by C a positive constant which is independent of the main param-
eters, but it may vary from line to line. The symbol f � g means that f � Cg. For
any x ∈ Rn and r ∈ (0, ∞), let Br(x) be a ball with centre x and radius r. In par-
ticular, when x = 0 (the origin of Rn), we let Br := Br(0). We denote by N the
set of all positive integers. Moreover, for an open set Ω ⊂ Rn, we denote by C∞

c (Ω)
the set of all infinitely differentiable functions with compact supports on Ω and by
C∞

b (Ω) the set of all infinitely differentiable functions with bound derivatives on
Ω. For a multiindex γ := (γ1, . . . , γn) with each component γi being a nonnega-
tive integer, let |γ| = γ1 + · · · + γn and, for any |γ|-th differentiable function u, set
Dγu(x) := ∂|γ|u(x)

∂x
γ1
1 ···∂xγn

n
.

2. Preliminaries

In this section, we recall the notions of some function spaces, such as, the
Bessel potential space and the Riesz potential space based on Lp(Rn), H1(Rn) or
BMO(Rn), and the Lipschitz–Zygmund space. Moreover, we also present the bound-
edness result of the singular integral operator on H1(Rn), and some important
results established in [7, 8].

When X is one of Lp(Rn), H1(Rn) or BMO(Rn), we recall the relations of the
Sobolev spaces Jα(X) and Iα(X) as follows (see, for instance, [26, 28, 29]).

Proposition 2.1. Let α ∈ (0, ∞). Then the following properties hold true.

(i) For any p ∈ (1, ∞), Jα(Lp(Rn)) = Lp(Rn) ∩ Iα(Lp(Rn)).

(ii) Jα(H1(Rn)) = H1(Rn) ∩ Iα(H1(Rn)).

(iii) Jα(BMO(Rn)) = BMO(Rn) ∩ Iα(BMO(Rn)).

Let u ∈ L∞(Rn). We recall that the harmonic extension of u to Rn+1
+ := Rn ×

(0, ∞) is defined by the convolution

U(·, y) := p(·, y) ∗ u(·)

for any y ∈ (0, ∞), where p(·, y) is the classical Poisson kernel on Rn+1
+ . Let α ∈

(0, ∞) and � be the smallest integer greater that α. The Lipschitz–Zygmund space
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Λα(Rn) is defined by

Λα(Rn) :=

{
u ∈ L∞(Rn) : sup

y∈(0,∞)

y	−α
∥∥D	

yU(·, y)
∥∥

L∞(Rn)
< ∞

}
,

where D	
y denotes the �-th derivative with respect to y, which is equipped with the

norm

‖u‖Λα(Rn) := ‖u‖L∞(Rn) + sup
y∈(0,∞)

y	−α
∥∥D	

yU(·, y)
∥∥

L∞(Rn)
.

Let Ω ⊂ Rn be an open set, α ∈ (0, ∞) be a non-integer and � the largest integer
smaller than α. Denote by Cα(Ω) the set of all bounded continuous functions on
Ω, with satisfying that

‖f‖Cα(Ω) :=
∑
|γ|�	

‖Dγf‖L∞(Ω) +
[
D	f

]
Cα−�(Ω)

< ∞,

where [·]Cα−�(Ω) denotes the Hölder semi-norm, namely, for a function g on Ω,

[g]Cα−�(Ω) := sup
x, y∈Ω
x�=y

{ |g(x) − g(y)|
|x − y|α−	

}
.

Then we have the following properties of the Lipschitz–Zygmund space (see, for
instance, [26, chapter V] and [27, chapter VI]).

Proposition 2.2. Let α ∈ (0, ∞) and Λα(Rn) be the Lipschitz–Zygmund space
on Rn.

(i) For any 0 < α1 < α2 < ∞, Λα2(Rn) � Λα1(Rn).

(ii) If α is a non-integer, then Λα(Rn) = Cα(Rn).

(iii) If α ∈ (0, 2), then

‖u‖Λα(Rn) = ‖u‖L∞(Rn) + sup
|h|>0

|h|−α‖u(·+h) + u(·−h) − 2u(·)‖L∞(Rn).

The following is the known result of the boundless of the singular integral operator
on H1(Rn) (see, for instance, [27, chapter III, theorem 3]).

Lemma 2.3. Let T be a singular integral operator on Rn. Assume that there exists
a kernel function K such that, for any f ∈ L2(Rn) with compact support,

Tf(x) =
∫

Rn

K(x − y)f(y) dy

holds true for any x outside the support of f . Assume further that there exists a
positive constant A such that, for any y 
= 0,∫

|x|�2|y|
|K(x − y) − K(x)|dx � A,
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and, for any f ∈ L2(Rn),

‖Tf‖L2(Rn) � A‖f‖L2(Rn).

Then there exists a positive constant C depending only on the constant A such that,
for any f ∈ H1(Rn),

‖Tf‖L1(Rn) � C‖f‖H1(Rn).

The following conclusions were established in [7, 8].

Lemma 2.4 [7, theorem 2.1]. Let p ∈ (1, ∞), λ ∈ [0, ∞), σ ∈ (0, 2), and the kernel
function a satisfy assumption 1.1. Then the operator L defined as in (1.1) is a
continuous operator from Jσ(Lp(Rn)) to Lp(Rn) and there exists a positive constant
C, depending only on n, p, σ, μ and Λ, such that

λ‖u‖Lp(Rn) + ‖Lu‖Lp(Rn) � C
∥∥∥−(−Δ)σ/2u − λu

∥∥∥
Lp(Rn)

.

Moreover, for any λ ∈ (0, ∞) and f ∈ Lp(Rn), there exists a unique solution u ∈
Jσ(Lp(Rn)) for the equation (1.2), and there exists a positive constant C, depending
only on n, p, σ, μ and Λ, such that

λ‖u‖Lp(Rn) + ‖∂σu‖Lp(Rn) � C‖f‖Lp(Rn).

Lemma 2.5 [8, theorem 1.3]. Let α ∈ (0, ∞), λ ∈ (0, ∞), σ ∈ (0, 2), and the kernel
function a satisfy assumption 1.1. Then the operator L − λ is a continuous operator
from Λα+σ(Rn) to Λα(Rn), where L is as in (1.1). Moreover, for any f ∈ Λα(Rn),
there exists a unique solution u ∈ Λα+σ(Rn) for the equation (1.2), and there exists
a positive constant C, depending only on n, σ, μ, Λ, λ and α, such that

‖u‖Λα+σ(Rn) � C‖Lu − λu‖Λα(Rn).

3. Proofs of theorems 1.2 and 1.4

In this section, we prove theorems 1.2 and 1.4. Assume that σ ∈ (0, 2). Throughout
this paper, we always assume that ω(x) := 1

1+|x|n+σ for any x ∈ Rn and

L1(Rn, ω) :=
{

g ∈ L1
loc(R

n) : ‖g‖L1(Rn,ω) :=
∫

Rn

|g(y)|
1 + |y|n+σ

dy < ∞
}

.

Moreover, for an open set Ω ⊂ Rn, it is said that a function f ∈ C2
loc(Ω), if, for any

φ ∈ C∞
c (Ω), φf ∈ C2

c (Ω) (the set of all 2-th continuous differentiable functions with
compact supports).

We first recall the following property of the space BMO(Rn) (see, for instance,
[14, proposition 3.1.5]).

Proposition 3.1. Let f ∈ BMO(Rn). Then, for any δ ∈ (0, ∞), there exists a
positive constant C, depending only on n and δ, such that, for any x0 ∈ Rn and
R ∈ (0, ∞),

Rδ

∫
Rn

|f(x) − (f)BR(x0)|
Rn+δ + |x − x0|n+δ

dx � C‖f‖BMO(Rn).
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Now, we need the following lemma 3.2, which was established in [7, corollary
4.3].

Lemma 3.2. Let λ ∈ [0, ∞), σ ∈ (0, 2), f ∈ L∞(B1), and u ∈ C2
loc(B1) ∩ L1(Rn, ω)

be a solution of

Lu − λu = f

in B1, where the operator L is as in (1.1) and the kernel function a satisfies
assumption 1.1. Then, for any α ∈ (0, min{1, σ}), there exists a positive constant
C, depending only n, σ, μ, Λ, and α, such that

[u]Cα(B1/2) � C
[‖u‖L1(Rn,ω) + oscB1f

]
,

where oscB1f := supx, y∈B1
|f(x) − f(y)|.

Moreover, as a corollary of lemma 3.2, we have the following lemma 3.3, which
was obtained in [8, proposition 1].

Lemma 3.3. Let λ ∈ [0, ∞), σ ∈ (0, 2), f ∈ L∞(B1) and u ∈ C2
loc(B1) ∩ L∞(Rn)

be a solution of

Lu − λu = f (3.1)

in B1, where L is as in lemma 3.2. Then, for any α ∈ (0, min{1, σ}), there exists
a positive constant C, depending only n, σ, μ, Λ and α, such that

[u]Cα(B1/2) � C
[
‖u − (u)B1‖L1(Rn,ω) + oscB1f

]
, (3.2)

where (u)B1 := 1
|B1|

∫
B1

u(x) dx.

Lemma 3.4. Let λ ∈ [0, ∞), σ ∈ (0, 2), f ∈ C∞
loc(R

n) ∩ BMO(Rn) satisfy that f = 0
in B2, and u ∈ Jσ(L2(Rn)) ∩ C∞

b (Rn) be a solution of

Lu − λu = f (3.3)

in Rn, where L is as in lemma 3.2. Then, for any α ∈ (0, min{1, σ}), there exists
a positive constant C, depending only on n, σ, μ, Λ and α, such that

[u]Cα(B1/2) � C ‖u − (u)B1‖L1(Rn,ω) (3.4)

and

[
(−Δ)σ/2u

]
Cα(B1/2)

� C

[∥∥∥∥(−Δ)σ/2u −
(
(−Δ)σ/2u

)
B1

∥∥∥∥
L1(Rn,ω)

+ ‖f‖BMO(Rn)

]
.

(3.5)
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Proof. By lemma 3.3 and the assumption that f = 0 in B2, we find that (3.4) holds
true. Now, we show (3.5). Applying (−Δ)σ/2 to both sides of (3.3), we conclude
that

L(−Δ)σ/2u − λ(−Δ)σ/2u = (−Δ)σ/2f.

For any x ∈ B1, we have f(x) = 0 and, if y ∈ B1/2, then f(x + y) = 0. By this,
proposition 3.1, and the fact that, for any x ∈ B1, (f)B1/2(x) = 0, we find that, for
any x ∈ B1,

∣∣∣(−Δ)σ/2f(x)
∣∣∣ = c

∣∣∣∣∣ lim
ε→0+

∫
|y|�ε

f(x + y) − f(x)
dy

|y|n+σ

∣∣∣∣∣
= c

∣∣∣∣∣
∫
|y−x|�1/2

f(y)
|y − x|n+σ

dy

∣∣∣∣∣
�
∫
|y−x|�1/2

∣∣∣f(y) − (f)B1/2(x)

∣∣∣
(1/2)n+σ + |y − x|n+σ

dy � ‖f‖BMO(Rn),

which, combined with the fact that oscB1(−Δ)σ/2f � 2‖(−Δ)σ/2f‖L∞(B1) and
lemma 3.3, further implies that (3.5) holds true. This finishes the proof of lemma
3.4. �

Then, by lemma 3.4 and a scaling and shifting the coordinates argument, we
obtain the following lemma.

Lemma 3.5. Let λ ∈ [0, ∞), σ ∈ (0, 2), k ∈ [2, ∞), f ∈ C∞
loc(R

n) ∩ BMO(Rn) sat-
isfy that f = 0 in B2kr(x0) for some x0 ∈ Rn and r ∈ (0, ∞), and u ∈ Jσ(L2(Rn)) ∩
C∞

b (Rn) be a solution of

Lu − λu = f

in Rn, where L is as in lemma 3.2. Then, for any α ∈ (0, min{1, σ}), there exists
a positive constant C, depending only on n, σ, μ, Λ and α, such that

(|u − (u)Br(x0)|
)
Br(x0)

� Ck−α(kr)σ

∫
Rn

|u(x) − (u)Bkr(x0)|
(kr)n+σ + |x − x0|n+σ

dx (3.6)

and(∣∣∣∣(−Δ)σ/2u −
(
(−Δ)σ/2u

)
Br(x0)

∣∣∣∣
)

Br(x0)

� C

⎡
⎣k−α(kr)σ

∫
Rn

∣∣∣(−Δ)σ/2u(x) − (
(−Δ)σ/2u

)
Bkr(x0)

∣∣∣
(kr)n+σ+|x − x0|n+σ

dx + k−α‖f‖BMO(Rn)

⎤
⎦.

(3.7)
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Proof. Let R := kr, U(x) := u(Rx + x0), and F (x) := Rσf(Rx + x0). Then, we
conclude that U satisfies the equation

L1U(x) − RσλU(x) = F (x)

in Rn, where F (x) = 0 in B2 and L1 is the nonlocal operator with the coefficient
a1(·) = a(R·). Moreover, it is easy to find that a1 also satisfies assumption 1.1.

Therefore, from lemma 3.4 and a change of variables, it follows that

[u]Cα(Bkr/2(x0)) = (kr)−α[U ]Cα(B1/2) � (kr)σ−α

∫
Rn

|u(x) − (u)Bkr(x0)|
(kr)n+σ + |x − x0|n+σ

dx

(3.8)
and[

(−Δ)σ/2u
]

CαBkr/2(x0)
= (kr)−(σ+α)

[
(−Δ)σ/2U

]
Cα(B1/2)

� (kr)σ−α

∫
Rn

∣∣∣(−Δ)σ/2u(x) − (
(−Δ)σ/2u

)
Bkr(x0)

∣∣∣
(kr)n+σ + |x − x0|n+σ

dx

+ (kr)−α‖f‖BMO(Rn). (3.9)

In addition, for any k ∈ [2, ∞) and any function g ∈ Cα(Bkr/2(x0)), we have

(|g − (g)Br(x0)|
)
Br(x0)

=
1

|Br(x0)|
∫

Br(x0)

∣∣∣∣∣g(y) − 1
|Br(x0)|

∫
Br(x0)

g(x) dx

∣∣∣∣∣ dy

� 1
|Br(x0)|

1
|Br(x0)|

∫
Br(x0)

∫
Br(x0)

|g(x) − g(y)|dxdy

� [g]Cα(Bkr/2(x0))r
α,

which, together with (3.8) and (3.9), further implies that (3.6) and (3.7) hold true.
This finishes the proof of lemma 3.5. �

Lemma 3.6. Let σ ∈ (0, 2), λ ∈ (0, ∞), k ∈ [2, ∞), f ∈ C∞
loc(R

n) ∩ BMO(Rn) and
u ∈ Jσ(L2(Rn)) ∩ Jσ(BMO(Rn)) ∩ C∞

b (Rn) be a solution of

Lu − λu = f

in Rn, where L is as in lemma 3.2. Then, for any α ∈ (0, min{1, σ}), x0 ∈ Rn, and
r ∈ (0, ∞), there exists a positive constant C, depending only n, σ, μ, Λ and α,
such that

λ
(|u − (u)Br(x0)|

)
Br(x0)

+
(∣∣∣∣(−Δ)σ/2u −

(
(−Δ)σ/2u

)
Br(x0)

∣∣∣∣
)

Br(x0)

� C

{
k−α

[
λ ‖u‖BMO(Rn) +

∥∥∥(−Δ)σ/2u
∥∥∥

BMO(Rn)

]
+ kn/2‖f‖BMO(Rn)

}
.

Proof. Let x0 ∈ Rn and r ∈ (0, ∞). Take η ∈ C∞
c (Rn) such that η ≡ 1 on

B2kr(x0), 0 � η � 1, and supp (η) ⊂ B4kr(x0). Then, we have η[f − (f)B4kr(x0)] ∈
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C∞
c (B4kr(x0)). By this, we find that η[f − (f)B4kr(x0)] ∈ Lp(Rn) ∩ Cs(Rn) for any

p ∈ (1, ∞) and s ∈ (0, 1). From lemmas 2.4 and 2.5, we deduce that there exists a
unique solution w ∈ Jσ(∩p∈(1,∞)L

p(Rn)) ∩ Λσ+s(Rn) for the equation (1.2) with f
replaced by η[f − (f)B4kr(x0)], and, for any p ∈ (1, ∞), w satisfies that

λ‖w‖Lp(Rn) +
∥∥∥(−Δ)σ/2w

∥∥∥
Lp(Rn)

� C
∥∥η [f − (f)B4kr(x0)

]∥∥
Lp(Rn)

, (3.10)

where C is a positive constant independent of λ, η, f and w. Furthermore, by
proposition 2.2(iii) and taking s ∈ (0, 1) small enough such that σ + s ∈ (0, 2), we
conclude that w ∈ L∞(Rn) and, for any x ∈ Rn,

|∂σw(x)| =
∣∣∣∣
∫

Rn

w(x + y) + w(x − y) − 2w(x)
|y|n+σ

dy

∣∣∣∣
�
∫
|y|�1

|w(x + y) + w(x − y) − 2w(x)|
|y|n+σ

dy

+
∫
|y|>1

|w(x + y) + w(x − y) − 2w(x)|
|y|n+σ

dy

� ‖w‖Λσ+s(Rn)

∫
|y|�1

1
|y|n−s

dy + ‖w‖L∞(Rn)

∫
|y|>1

1
|y|n+σ

dy

� ‖w‖Λσ+s(Rn).

Thus, w ∈ Jσ(BMO(Rn)). In addition, from the classical theory of the Fourier
transform (see, for instance, [2, remark 2.2]), it follows that w ∈ C∞

b (Rn).
Let v := u − w. Then, we have v ∈ Jσ(BMO(Rn)) ∩ Jσ(L2(Rn)) ∩ C∞

b (Rn) and

Lv − λv = (1 − η)
[
f − (f)B4kr(x0)

]
+ (f)B4kr(x0). (3.11)

By the fact that (1 − η)[f − (f)B4kr(x0)] + (f)B4kr(x0) is a constant in B2kr(x0),
similarly to the proof of lemma 3.5, we find that

(|v − (v)Br(x0)|
)
Br(x0)

� k−α(kr)σ

∫
Rn

|v(x) − (v)Bkr(x0)|
(kr)n+σ + |x − x0|n+σ

dx. (3.12)

Applying (−Δ)σ/2 to both sides of (3.11), we conclude that

L(−Δ)σ/2u − λ(−Δ)σ/2u = (−Δ)σ/2
(
(1 − η)

[
f − (f)B4kr(x0)

])
.

For any x ∈ Bkr(x0), we have (1 − η) (x) = 0 and, if y ∈ Bkr/2(x), then (1 − η)
(x + y) = 0. By this, proposition 3.1, and the fact that, for any x ∈ Bkr(x0) and
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y /∈ Bkr/2(x), |y − x| � |y − x0|, we find that, for any x ∈ Bkr(x0),∣∣∣(−Δ)σ/2
(
(1 − η)

[
f − (f)B4kr(x0)

])
(x)

∣∣∣
= c

∣∣∣∣∣ lim
ε→0+

∫
|y|�ε

(1 − η)
[
f − (f)B4kr(x0)

]
(x + y)

dy

|y|n+σ

∣∣∣∣∣
�
∫
|y−x|�kr/2

∣∣f(y) − (f)B4kr(x0)

∣∣
|y − x|n+σ

dy

�
∫
|y−x|�kr/2

∣∣f(y) − (f)B4kr(x0)

∣∣
(4kr)n+σ + |y − x|n+σ

dy

�
∫
|y−x|�kr/2

∣∣f(y) − (f)B4kr(x0)

∣∣
(4kr)n+σ + |y − x0|n+σ

dy

� (kr)−σ‖f‖BMO(Rn).

This, together with lemma 3.3 and the scaling and shifting the coordinates argument
as in lemma 3.5, implies that(∣∣∣∣(−Δ)σ/2v −

(
(−Δ)σ/2v

)
Br(x0)

∣∣∣∣
)

Br(x0)

� k−α(kr)σ

∫
Rn

∣∣∣(−Δ)σ/2v(x) − (
(−Δ)σ/2v

)
Bkr(x0)

∣∣∣
(kr)n+σ + |x − x0|n+σ

dx + k−α‖f‖BMO(Rn).

(3.13)

From (3.13), we deduce that(∣∣∣∣(−Δ)σ/2u −
(
(−Δ)σ/2u

)
Br(x0)

∣∣∣∣
)

Br(x0)

�
(∣∣∣∣(−Δ)σ/2v −

(
(−Δ)σ/2v

)
Br(x0)

∣∣∣∣
)

Br(x0)

+ 2
(∣∣∣(−Δ)σ/2w

∣∣∣)
Br(x0)

� k−α(kr)σ

∫
Rn

∣∣∣(−Δ)σ/2v(x) − (
(−Δ)σ/2v

)
Bkr(x0)

∣∣∣
(kr)n+σ + |x − x0|n+σ

dx

+
(∣∣∣(−Δ)σ/2w

∣∣∣)
Br(x0)

+ k−α‖f‖BMO(Rn)

� k−α(kr)σ

∫
Rn

∣∣∣(−Δ)σ/2u(x) − (
(−Δ)σ/2u

)
Bkr(x0)

∣∣∣
(kr)n+σ + |x − x0|n+σ

dx

+ k−α(kr)σ

∫
Rn

∣∣∣(−Δ)σ/2w(x) − (
(−Δ)σ/2w

)
Bkr(x0)

∣∣∣
(kr)n+σ + |x − x0|n+σ

dx

+
(∣∣∣(−Δ)σ/2w

∣∣∣)
Br(x0)

+ k−α‖f‖BMO(Rn). (3.14)
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Moreover, by (3.10) and the equivalent characterization of ‖f‖BMO(Rn) (see, for
instance, [14, corollary 3.1.9]), we conclude that, for any p ∈ (1, ∞) and R ∈ [r, ∞),

(∣∣∣(−Δ)σ/2w
∣∣∣)

BR(x0)
�
(

1
|BR(x0)|

∫
BR(x0)

∣∣∣(−Δ)σ/2w
∣∣∣p dx

)1/p

� 1
|BR(x0)|1/p

(∫
Rn

∣∣η [f − (f)B4kr(x0)

]∣∣p dx

)1/p

�
(

kr

R

)n/p

‖f‖BMO(Rn). (3.15)

Furthermore, take p ∈ (1, ∞) small enough such that n/p + σ > 1. Then, from
(3.15), it follows that

(kr)σ

∫
Rn

∣∣∣(−Δ)σ/2w(x) − (
(−Δ)σ/2w

)
Bkr(x0)

∣∣∣
(kr)n+σ + |x − x0|n+σ

dx

� (kr)σ

∫
Rn

∣∣(−Δ)σ/2w(x)
∣∣

(kr)n+σ + |x − x0|n+σ
dx + (kr)σ

∫
Rn

∣∣∣((−Δ)σ/2w
)
Bkr(x0)

∣∣∣
(kr)n+σ + |x − x0|n+σ

dx

� (kr)σ
∞∑

j=0

∫
jkr�|x−x0|<(j+1)kr

∣∣(−Δ)σ/2w(x)
∣∣

(kr)n+σ + |x − x0|n+σ
dx + ‖f‖BMO(Rn)

� (kr)σ
∞∑

j=0

1
(jn+σ + 1)(kr)n+σ

∫
|x−x0|<(j+1)kr

∣∣∣(−Δ)σ/2w(x)
∣∣∣ dx

+ ‖f‖BMO(Rn)

�
∞∑

j=0

(j + 1)n−n/p

jn+σ + 1
‖f‖BMO(Rn) + ‖f‖BMO(Rn) � ‖f‖BMO(Rn), (3.16)

which, together with (3.14), (3.15) and proposition 3.1, further implies that

(∣∣∣∣(−Δ)σ/2u −
(
(−Δ)σ/2u

)
Br(x0)

∣∣∣∣
)

Br(x0)

� k−α(kr)σ

∫
Rn

∣∣∣(−Δ)σ/2u(x) − (
(−Δ)σ/2u

)
Bkr(x0)

∣∣∣
(kr)n+σ + |x − x0|n+σ

dx

+ kn/p‖f‖BMO(Rn) + k−α‖f‖BMO(Rn)

� k−α
∥∥∥(−Δ)σ/2u

∥∥∥
BMO(Rn)

+ kn/2‖f‖BMO(Rn) + k−α‖f‖BMO(Rn)

� k−α
∥∥∥(−Δ)σ/2u

∥∥∥
BMO(Rn)

+ kn/2‖f‖BMO(Rn). (3.17)
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Similarly, by (3.10), (3.12) and proposition 3.1, we find that

λ
(∣∣u − (u)Br(x0)

∣∣)
Br(x0)

� λ
(∣∣v − (v)Br(x0)

∣∣)
Br(x0)

+ 2λ(|w|)Br(x0)

� λk−α(kr)σ

∫
Rn

|v(x) − (v)Bkr(x0)|
(kr)n+σ + |x − x0|n+σ

dx + kn/2‖f‖BMO(Rn)

� λk−α(kr)σ

∫
Rn

|u(x) − (u)Bkr(x0)|
(kr)n+σ + |x − x0|n+σ

dx

+ λk−α(kr)σ

∫
Rn

|w(x) − (w)Bkr(x0)|
(kr)n+σ + |x − x0|n+σ

dx + kn/2‖f‖BMO(Rn)

� λk−α ‖u‖BMO(Rn) + kn/2‖f‖BMO(Rn) + k−α‖f‖BMO(Rn)

� λk−α ‖u‖BMO(Rn) + kn/2‖f‖BMO(Rn),

which, combined with (3.17), further implies that lemma 3.6 holds true. This finishes
the proof of lemma 3.6. �

Let φ be a non-negative, real-valued function in C∞
c (Rn) with the property that∫

Rn φ(x) dx = 1 and supp (φ) ⊂ B1. For any ε ∈ (0, ∞), let φε(·) := 1
εn φ( ·

ε ). Let
u ∈ Lp(Rn) ∩ BMO(Rn) for some p ∈ (1, ∞). The mollification uε of u is defined
by, for any x ∈ Rn,

uε(x) := φε ∗ u(x) =
∫

Rn

φε(x − y)u(y) dy.

Then, we have the following well-known properties of uε (see, for instance, [32,
theorem 1.6.1]).

Lemma 3.7. Let p ∈ (1, ∞), u ∈ Lp(Rn) ∩ L∞(Rn) and uε be the mollification of
u. Then the following properties hold true.

(i) For any ε ∈ (0, ∞), uε ∈ C∞(Rn).

(ii) For any ε ∈ (0, ∞), uε ∈ Lp(Rn) and limε→0 ‖u − uε‖Lp(Rn) = 0.

(iii) For any ε ∈ (0, ∞), ‖uε‖L∞(Rn) � ‖u‖L∞(Rn).

In addition, when u ∈ BMO(Rn), we have the following property of uε.

Lemma 3.8. Let u ∈ BMO(Rn) and uε be the mollification of u. Then, for any
ε ∈ (0, ∞), uε ∈ BMO(Rn) and

‖uε‖BMO(Rn) � C‖u‖BMO(Rn),

where C is a positive constant independent of ε and u.

Proof. Let ε ∈ (0, ∞) and Br(x0) ⊂ Rn be a ball. By the equivalent characteriza-
tion of ‖uε‖BMO(Rn) (see, for instance, [14, proposition 3.1.2(4)]), to show lemma
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3.8, we only need to prove that, for any Br(x0) ⊂ Rn, there exists a constant c such
that

1
|Br(x0)|

∫
Br(x0)

|uε(x) − c|dx � C‖u‖BMO(Rn). (3.18)

We first assume that r � ε. In this case, let c := (u)B3ε(x0). Then, by the fact that,
for any x ∈ Br(x0) with r � ε and y ∈ Bε(x), y ∈ B3ε(x0), we have

1
|Br(x0)|

∫
Br(x0)

|uε(x) − c|dx

� 1
|Br(x0)|

∫
Br(x0)

1
εn

∫
Bε(x)

φ

(
x − y

ε

)
|u(y) − c|dydx

� 1
|Br(x0)|

∫
Br(x0)

1
εn

∫
B3ε(x0)

|u(y) − (u)B3ε(x0)|dydx

� ‖u‖BMO(Rn). (3.19)

Now, we assume that r � ε. In this case, let c := (u)B2r(x0). Then, from the fact
that, for any y ∈ Bε and x ∈ Br(x0 − y) with r � ε, x ∈ B2r(x0), it follows that

1
|Br(x0)|

∫
Br(x0)

|uε(x) − c|dx

� 1
|Br(x0)|

∫
Br(x0)

1
εn

∫
Bε

φ
(y

ε

)
|u(x − y) − c|dydx

� 1
εn

∫
Bε

φ
(y

ε

) 1
|Br(x0)|

∫
Br(x0)

|u(x − y) − c|dxdy

� 1
εn

∫
Bε

φ
(y

ε

) 1
|Br(x0)|

∫
Br(x0−y)

|u(x) − c|dxdy

� 1
εn

∫
Bε

φ
(y

ε

) 1
|Br(x0)|

∫
B2r(x0)

|u(x) − c|dxdy

� ‖u‖BMO(Rn),

which, together with (3.19), further implies that (3.18) holds true. This finishes the
proof of lemma 3.8. �

To prove theorems 1.2 and 1.4, we also need the following convergence lemma on
the space BMO(Rn).

Lemma 3.9. Let p ∈ (1, ∞), {fk}k∈N ⊂ BMO(Rn) ∩ Lp(Rn) be a sequence of func-
tions and f ∈ Lp(Rn). Assume that limk→∞ ‖f − fk‖Lp(Rn) = 0 and limk→∞ fk = f
in the sense of almost everywhere. Then, f ∈ BMO(Rn) and

‖f‖BMO(Rn) � lim
k→∞

‖fk‖BMO(Rn).
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Proof. Let B ⊂ Rn be a ball. Then, by the Hölder inequality, we conclude that, for
any k ∈ N,

| |f − (f)B | − |fk − (fk)B | | � |f − fk| + 1
|B|

∫
B

|f − fk|dx

� |f − fk| +
(

1
|B|

∫
B

|f − fk|p dx

)1/p

.

Furthermore, from the assumptions that limk→∞ ‖f − fk‖Lp(Rn) = 0 and
limk→∞ fk = f in the sense of almost everywhere, we deduce that

lim
k→∞

|fk − (fk)B | = |f − (f)B | ,

which, together with the Fatou lemma, further implies that

1
|B|

∫
B

|f − (f)B | dx � lim
k→∞

1
|B|

∫
B

|fk − (fk)B | dx � lim
k→∞

‖fk‖BMO(Rn).

Since the ball B is arbitrary, it follows that

‖f‖BMO(Rn) � lim
k→∞

‖fk‖BMO(Rn).

This finishes the proof of lemma 3.9. �

Now, we prove theorem 1.2 by using lemmas 2.3, 2.4, 2.5, 3.3, 3.6, 3.7 and 3.9.

Proof of theorem 1.2. We first show (i). Let λ ∈ (0, ∞), u ∈ Jσ(Lp(Rn)) ∩
Jσ(BMO(Rn)) and f = −(−Δ)σ/2u − λu. Then, we have f ∈ Lp(Rn) ∩ BMO(Rn).
Let fε be the mollification of f . Then, by lemmas 3.7 and 3.8, we find that, for any
ε ∈ (0, ∞), fε ∈ Lp(Rn) ∩ BMO(Rn). From lemma 2.4, it follows that there exists
a uε ∈ Jσ(Lp(Rn)) such that

− (−Δ)σ/2uε − λuε = fε, (3.20)

moreover, there exists a positive constant C, independent of f , fε, u, uε and λ,
such that

‖Luε − Lu‖Lp(Rn) � C‖fε − f‖Lp(Rn). (3.21)

Let {χj}j∈N be a sequence of smooth functions satisfying that χj = 1 on the ball
Bj , supp (χj) ⊂ Bj+1, and 0 � χj � 1, where, for any j ∈ N, Bj := B(0, j). Then,
we have χjfε ∈ C∞

c (Rn) for any j ∈ N and

lim
j→∞

‖χjfε − fε‖Lp(Rn) = 0. (3.22)

Moreover, from lemma 2.4 and the theory of Fourier transform (see, for instance,
[2, remark 2.2]), we deduce that there exists a unique uε,j ∈ C∞

b (Rn) ∩ Jσ(L2(Rn))
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such that

− (−Δ)σ/2uε,j − λuε,j = χjfε, (3.23)

meanwhile, there exists a positive constant C, independent of fε, uε, uε,j , χj and λ,
such that

‖Luε,j − Luε‖Lp(Rn) � C ‖χjfε − fε‖Lp(Rn) . (3.24)

Take η ∈ C∞
c (Rn) such that η ≡ 1 on B2, supp (η) ⊂ B4 and 0 � η � 1. Then, we

have ηχjfε ⊂ C∞
c (Rn). By using lemma 2.4 and the theory of Fourier transform

again, we find that there exists a unique wε,j ∈ Jσ(∩q∈(1,∞)L
q(Rn)) ∩ C∞

b (Rn) such
that

−(−Δ)σ/2wε,j − λwε,j = ηχjfε

and, for any q ∈ (1, ∞),

‖Lwε,j‖Lq(Rn) � C ‖ηχjfε‖Lq(Rn) , (3.25)

where C is a positive constant independent of wε,j , η, χj , fε and λ.
Let vε,j := uε,j − wε,j ∈ Jσ(L2(Rn)) ∩ C∞

b (Rn). Then

− (−Δ)σ/2vε,j − λvε,j = (1 − η)χjfε. (3.26)

By applying L to both sides of (3.26), we conclude that

−(−Δ)σ/2Lvε,j − λLvε,j = L [(1 − η)χjfε] .

From the fact that vε,j ∈ C∞
b (Rn) ⊂ Λs(Rn) for any s ∈ (0, ∞) and lemma 2.5, we

deduce that Lvε,j ∈ Λs(Rn) for any s ∈ (0, ∞). Then, by proposition 2.2, we find
that Lvε,j ∈ L∞(Rn) ∩ C2(Rn), which, together with lemma 3.3, further implies
that there exists α ∈ (0, min{1, σ}) such that

[Lvε,j ]Cα(B1/2)
� C

{
‖Lvε,j − (Lvε,j)B1‖L1(Rn,ω) + ‖L [(1 − η)χjfε]‖L∞(B1)

}
,

(3.27)
where C is a positive constant independent of vε,j , η, χj , fε and λ. For any x ∈ B1,
we have that (1 − η)χjfε(x) = 0, and if y ∈ B1/2, then (1 − η)χjfε(x + y) = 0.
Meanwhile, by f ∈ BMO(Rn) and lemma 3.8, we find that, for any ε ∈ (0, ∞),
fε ∈ BMO(Rn), which, combined with the characterization of pointwise multipliers
for functions of bounded mean oscillation (see, for instance, [21, theorem 1]), implies
that, for any j ∈ N and ε ∈ (0, ∞), (1 − η)χjfε ∈ BMO(Rn). Moreover, from [21,
lemmas 3.1 and 3.3] and the proof of [21, theorem 1] (see [21, pp. 215-216]), we
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deduce that

‖(1 − η)χjfε‖BMO(Rn) � ‖fε‖BMO+(Rn) ,

which, together with the fact that, for any x ∈ B1, ((1 − η)χjfε)B1/2(x) = 0,
proposition 3.1, and lemma 3.8, further implies that, for any x ∈ B1,

|L [(1 − η)χjfε(x)]| � C

∫
|y|� 1

2

|(1 − η)χjfε(x + y)|
|y|n+σ

dy

= C

∫
|y−x|� 1

2

|(1 − η)χjfε(y) − ((1 − η)χjfε)B1/2(x)|
|y − x|n+σ

dy

� C ‖(1 − η)χjfε‖BMO(Rn) � C ‖fε‖BMO+(Rn)

� C
[‖f‖BMO(Rn) + |(fε)B1 |

]
,

where C is a positive constant independent of η, χj , fε and λ. By this and (3.27),
we conclude that

[Lvε,j ]Cα(B1/2)
� C

[
‖Lvε,j − (Lvε,j)B1‖L1(Rn,ω) + ‖f‖BMO(Rn) + |(fε)B1 |

]
.

(3.28)
Then, similarly to the proofs of lemmas 3.5 and 3.6, by (3.25), (3.28), and a scaling

and shifting the coordinates argument, we conclude that, for any k ∈ [2, ∞),(∣∣Luε,j − (Luε,j)Br(x0)

∣∣)
Br(x0)

� C
{

k−α‖Luε,j‖BMO(Rn) + kn/2
[‖f‖BMO(Rn) + |(fε)B1 |

]}
,

where C is a positive constant independent of x0, r, k, uε,j , f and λ. Since x0 and
r are arbitrary, it follows that, by taking a sufficient large k such that Ck−α � 1

2 ,
we have

‖Luε,j‖BMO(Rn) � C
[‖f‖BMO(Rn) + |(fε)B1 |

]
, (3.29)

where C is a positive constant independent of f , uε,j and λ.
Furthermore, by (3.22) and (3.24), we find that there exists a subsequence of

{Luε,j}j∈N, still denoted by {Luε,j}j∈N, such that

lim
j→∞

Luε,j = Luε

in the sense of almost everywhere, which, together with lemma 3.9 and (3.29),
further implies that

‖Luε‖BMO(Rn) � C
[‖f‖BMO(Rn) + |(fε)B1 |

]
. (3.30)

Similarly, from (3.30), (3.21) and lemmas 3.7 and 3.9, we deduce that

‖Lu‖BMO(Rn) � C
[
‖f‖BMO(Rn) + |(f)B1 |

]

= C

[∥∥∥−(−Δ)σ/2u − λu
∥∥∥

BMO(Rn)
+
∣∣∣∣(−(−Δ)σ/2u − λu

)
B1

∣∣∣∣
]

.

(3.31)
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Since the constant C in (3.31) is independent of λ, by taking λ → 0+, we obtain (i).
This finishes the proof of (i).

Next, we prove (ii) by borrowing some ideas from [6] (see also [20]). We first
assume that σ ∈ (0, 1). From the proof of [6, proposition 4.1], it follows that

Lu =
∫

Rn

(u(x + y) − u(x))a(y)
dy

|y|n+σ

= lim
ε→0+

C0 P.V.

∫
Rn

(∫
Rn

kσ(z, y)aε(y)
dy

|y|n+σ

)
∂σu(x − z) dz,

where C0 := Γ((n−α)/2)
2απn/2Γ(α/2)

, ε ∈ (0, 1), aε(y) := a(y)1ε�1� 1
ε
, and kσ(z, y) := |z +

y|−n+σ − |z|−n+σ.
Let

kε(z) :=
∫

Rn

kσ(z, y)aε(y)
dy

|y|n+σ
.

Then, we have

Lu(x) = lim
ε→0+

∫
Rn

kε(z)∂σu(x − z) dz =: lim
ε→0+

C0T
ε∂σu(x),

where T ε denotes the singular integral operator associated with the kernel kε. By [6,
lemmas 4.4 and 4.5], we conclude that the assumptions in lemma 2.3 are satisfied.
Thus, from lemma 2.3 and the Fatou lemma, we deduce that

‖Lu‖L1(Rn) � lim
ε→0+

‖T ε∂σu‖L1(Rn) � ‖∂σu‖H1(Rn) . (3.32)

For the case σ = 1 and σ ∈ (1, 2), (1.7) also holds true. Indeed, if σ ∈ (1, 2), Lεu
can be written as

n∑
i=1

∫
Rn

[Diu(x + y) − Diu(x)] (aε)i(y)
dy

|y|n+σ−1
=

n∑
i=1

L(aε)i(Diu)(x),

where

(aε)i(y) :=
yi

|y|
∫ 1

0

aε

(y

s

)
s−1+σ ds,

and L(aε)i denotes the non-local elliptic operator defined by

L(aε)iu(x) :=
∫

Rn

[u(x + y) − u(x)](aε)i(y)
dy

|y|n+σ−1
.

Then, by (3.32) and the boundedness of the Riesz transform on H1(Rn) (see, for
instance, [27, chapter III, theorem 4]), we conclude that

‖Lu‖L1(Rn) � lim
ε→0

n∑
i=1

∥∥∥L(aε)i(Di(u))
∥∥∥

L1(Rn)

�
n∑

i=1

∥∥∂σ−1Diu
∥∥

H1(Rn)
�‖∂σu‖H1(Rn) . (3.33)
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Thus, (1.7) holds true in the case of σ ∈ (1, 2).
If σ = 1, via using assumption 1.1(ii) and an argument used in [6, p. 18], we find

that

Lu(x) = lim
ε→0+

Lεu(x)

:= lim
ε→0+

C0 P.V.

∫
Rn

(
∂1/2u(x − z) − ∂1/2u(x)

)
mε(z)

dz

|z|n+σ−1/2
,

where, for any ε ∈ (0, ∞) and z ∈ Rn with z 
= 0,

mε(z) :=
∫
|y|� 1

2

[
1

|z/|z| + y|n−1/2
− 1 −

(
−n +

1
2

)(
z

|z| , y
)]

aε(|z|y)
dy

|y|n+σ

+
∫
|y|> 1

2

(
1

|z/|z| + y|n−1/2
− 1

)
aε (|z|y)

dy

|y|n+σ

satisfies that there exists a positive constant C, depending only on n, such that
|mε(z)| � C. Since σ − 1

2 ∈ ( 1
4 , 3

4 ) and |mε(z)| � 1 for any ε ∈ (0, ∞) and z ∈ Rn

with z 
= 0, similar to the proof of (3.32), it follows that

‖Lu‖L1(Rn) � lim
ε→0+

‖Lεu‖L1(Rn) �
∥∥∥∂1/2∂1/2u

∥∥∥
H1(Rn)

�
∥∥∂1u

∥∥
H1(Rn)

.

This, together with (3.32) and (3.33), implies that

‖Lu‖L1(Rn) � ‖∂σu‖H1(Rn) (3.34)

holds true for any σ ∈ (0, 2).
Furthermore, it is known that Jσ(L2(Rn)) ∩ Iσ(H1(Rn)) is dense in Iσ(H1(Rn))

(see, for instance, [30, chapter 5]). Therefore, for any u ∈ Jσ(H1(Rn)), there exists
a Cauchy sequence {uk}k∈N ⊂ Jσ(L2(Rn)) ∩ Iσ(H1(Rn)) such that uk converges to
u in Iσ(H1(Rn)). By lemma 2.4 and (3.34), we find that, for any k ∈ N, Luk ∈
L2(Rn) ∩ L1(Rn) and

‖Luk‖L1(Rn) � ‖∂σuk‖H1(Rn). (3.35)

Moreover, from the boundedness of the Riesz transform Rj on H1(Rn) and (3.34),
we deduce that, for any k ∈ N,

‖RjLuk‖L1(Rn) = ‖LRjuk‖L1(Rn) � ‖∂σRjuk‖H1(Rn)

= ‖Rj∂
σuk‖H1(Rn) � ‖∂σuk‖H1(Rn) ,

which, combined with (3.35), further implies that, for any k ∈ N,

‖Luk‖H1(Rn) � ‖∂σuk‖H1(Rn) .

By this estimate and the density of Jσ(L2(Rn)) ∩ Iσ(H1(Rn)) in Iσ(H1(Rn)), we
conclude that (1.7) holds true. Therefore, this finishes the proof of (ii) and hence
of theorem 1.2. �
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Next, we prove theorem 1.4 by using lemmas 2.4, 2.5, 3.6, 3.7 and 3.9, and
theorem 1.2.

Proof of theorem 1.4. We first show (i). Let p ∈ (1, ∞), f ∈ Lp(Rn) ∩ BMO(Rn)
and fε be the mollification of f . Then, for any ε ∈ (0, ∞), fε ∈ Lp(Rn) ∩
BMO(Rn) ∩ C∞(Rn). From lemma 2.4, it follows that there exist solutions u, uε ∈
Jσ(Lp(Rn)) for the equation (1.1) with respect to f and fε, respectively, with
satisfying that

λ‖u‖Lp(Rn) + ‖∂σu‖Lp(Rn) � C‖f‖Lp(Rn),

λ‖uε‖Lp(Rn) + ‖∂σuε‖Lp(Rn) � C‖fε‖Lp(Rn),

and

λ‖u − uε‖Lp(Rn) + ‖∂σu − ∂σuε‖Lp(Rn) � C‖f − fε‖Lp(Rn), (3.36)

where C is a positive constant independent of u, f , uε, fε and λ.
Let {ηj}j∈N be a sequence of smooth functions satisfying that ηj = 1 on the ball

Bj , supp (ηj) ⊂ Bj+1 and 0 � ηj � 1, where, for any j ∈ N, Bj := B(0, j). For any
j ∈ N, we have ηjfε ∈ C∞

c (Rn) ∩ L2(Rn) ∩ Lp(Rn) ∩ BMO(Rn) and

lim
j→∞

‖ηjfε − fε‖Lp(Rn) = 0. (3.37)

By lemma 2.4, we find that there exists a unique solution uε,j ∈ Jσ(L2(Rn)) ∩
Jσ(Lp(Rn)) for the equation (1.1) with f replaced by ηjfε, moreover, there exists
a positive constant C, independent of uε, fε, uε,j , ηj and λ, such that

λ ‖uε,j − uε‖Lp(Rn) + ‖∂σuε,j − ∂σuε‖Lp(Rn) � C ‖ηjfε − fε‖Lp(Rn) . (3.38)

Since ηjfε ∈ C∞
c (Rn), it follows that ηjfε ∈ Cs(Rn) for any s ∈ (0, 1). Then,

by lemma 2.5, we conclude that uε,j ∈ Λs+σ(Rn), which, together with propo-
sition 2.2(iii), further implies that uε,j and ∂σuε,j belong to L∞(Rn). Thus,
uε,j ∈ Jσ(BMO)(Rn). From the fact that ηjfε ∈ C∞

c (Rn) and the theory of Fourier
transform, we deduce that uε,j ∈ C∞

b (Rn). Then, by lemma 3.6, we find that

λ
(∣∣uε,j − (uε,j)Br(x0)

∣∣)
Br(x0)

+
(∣∣∂σuε,j − (∂σuε,j)Br(x0)

∣∣)
Br(x0)

� C
{

k−α
[
λ ‖uε,j‖BMO(Rn) + ‖∂σuε,j‖BMO(Rn)

]
+ kn/2 ‖ηjfε‖BMO(Rn)

}
,

where C is a positive constant independent of uε,j , fε, ηj , x0, r, k and λ. Since
x0 ∈ Rn and r ∈ (0, ∞) are arbitrary, it follows that

λ ‖uε,j‖BMO(Rn) + ‖∂σuε,j‖BMO(Rn)

� C
{

k−α
[
λ ‖uε,j‖BMO(Rn) + ‖∂σuε,j‖BMO(Rn)

]
+ kn/2 ‖ηjfε‖BMO(Rn)

}
.

Via taking a sufficient large k such that Ck−α � 1
2 , we then obtain that

λ ‖uε,j‖BMO(Rn) + ‖∂σuε,j‖BMO(Rn) � C ‖ηjfε‖BMO(Rn) .
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By the characterization of pointwise multipliers for functions of bounded mean
oscillation (see, for instance, [21]) and lemmas 3.8, we conclude that

λ ‖uε,j‖BMO(Rn) + ‖∂σuε,j‖BMO(Rn) � C
[‖f‖BMO(Rn) + |(fε)B1 |

]
. (3.39)

Moreover, from (3.37) and (3.38), we deduce that there exists a subsequence of
{uε,j}j∈N, still denoted by {uε,j}j∈N, such that

lim
j→∞

uε,j = uε

and

lim
j→∞

∂σuε,j = ∂σuε

in the sense of almost everywhere, which, combined with (3.39) and lemma 3.9,
further implies that

λ ‖uε‖BMO(Rn) + ‖∂σuε‖BMO(Rn) � C
[‖f‖BMO(Rn) + |(fε)B1 |

]
. (3.40)

Similarly, by (3.36), lemma 3.7(ii), (3.40) and lemma 3.9, we find that (1.9) holds
true. This finishes the proof of (i).

Next, we prove (ii). We first assume that f ∈ H1(Rn) ∩ L2(Rn). Let L∗ be the
non-local operator associated with the kernel a(−·). Then, we observe that a(−·)
also satisfies assumption 1.1. For any g ∈ L∞(Rn) ∩ L2(Rn), by (i) and lemma 2.4,
we conclude that there exists a unique u ∈ Jσ(BMO(Rn)) ∩ Jσ(L2(Rn)) such that

L∗u − λu = g,

moreover, there exists a positive constant C, independent of u, g and λ, such that

λ‖u‖BMO(Rn) + ‖∂σu‖BMO(Rn) � C
[‖g‖BMO(Rn) + |(g)B1 |

]
� C‖g‖L∞(Rn). (3.41)

Furthermore, from lemma 2.4, it follows that there exists a unique v ∈ Jσ(L2(Rn))
such that

Lv − λv = f. (3.42)

Then, we find that

∫
Rn

vg dx =
∫

Rn

v(L∗u − λu) dx =
∫

Rn

(Lv − λv)u dx =
∫

Rn

fu dx,

which, together with (3.41) and the characterization of the norm of L1(Rn) (see,
for instance, [12, theorem 6.14]) and the fact that BMO(Rn) is the dual space of
H1(Rn) (see, for instance, [14, theorem 3.2.2] and [27, p. 142, theorem 1]), further
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implies that

λ‖v‖L1(Rn) � sup
‖g‖L∞(Rn)�1

g∈L∞(Rn)∩L2(Rn)

∣∣∣∣
∫

Rn

λvg dx

∣∣∣∣ = sup
‖g‖L∞(Rn)�1

g∈L∞(Rn)∩L2(Rn)

∣∣∣∣
∫

Rn

λfu dx

∣∣∣∣
� sup

‖g‖L∞(Rn)�1

g∈L∞(Rn)∩L2(Rn)

λ‖u‖BMO(Rn)‖f‖H1(Rn) � ‖f‖H1(Rn). (3.43)

Similarly, for (−Δ)σ/2v, we have∫
Rn

(−Δ)σ/2vg dx =
∫

Rn

(−Δ)σ/2v(L∗u − λu) dx

=
∫

Rn

(Lv − λv)(−Δ)σ/2u dx =
∫

Rn

f(−Δ)σ/2u dx,

which, combined with (3.41) and the characterization of the norm of L1(Rn), implies
that ∥∥∥(−Δ)σ/2v

∥∥∥
L1(Rn)

� sup
‖g‖L∞(Rn)�1

g∈L∞(Rn)∩L2(Rn)

∣∣∣∣
∫

Rn

(−Δ)σ/2vg dx

∣∣∣∣
= sup

‖g‖L∞(Rn)�1

g∈L∞(Rn)∩L2(Rn)

∣∣∣∣
∫

Rn

f(−Δ)σ/2u dx

∣∣∣∣
� sup

‖g‖L∞(Rn)�1

g∈L∞(Rn)∩L2(Rn)

∥∥∥(−Δ)σ/2u
∥∥∥

BMO(Rn)
‖f‖H1(Rn)

� ‖f‖H1(Rn). (3.44)

By applying the Riesz transform Rj to the two sides of (3.42), we obtain that

LRjv − λRjv = Rjf.

Since the Riesz transform Rj is bounded on both L2(Rn) and H1(Rn), it follows
that Rjf ∈ L2(Rn) ∩ H1(Rn). Then, by using an argument similar to that used in
(3.43) and (3.44), we conclude that

λ ‖Rjv‖L1(Rn) +
∥∥∥Rj(−Δ)σ/2v

∥∥∥
L1(Rn)

= λ ‖Rjv‖L1(Rn) +
∥∥∥(−Δ)σ/2Rjv

∥∥∥
L1(Rn)

� ‖Rjf‖H1(Rn) � ‖f‖H1(Rn),

which, together with (3.43), (3.44) and (1.4), further implies that

λ‖v‖H1(Rn) +
∥∥∥(−Δ)σ/2v

∥∥∥
H1(Rn)

� ‖f‖H1(Rn). (3.45)

Finally, for any f ∈ H1(Rn), it is known that there exists a Cauchy sequence
{fk}k∈N ⊂ L2(Rn) ∩ H1(Rn) such that fk converges to f in H1(Rn) (see, for
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instance, [14, proposition 2.1.7] and [27]). Then, from (3.45) and lemma 2.4, we
deduce that, for fk and fm with k, m ∈ N, there exist vk, vm ∈ Jσ(L2(Rn)) ∩
Jσ(H1(Rn)) such that

Lvk − λvk = fk

and

Lvm − λvm = fm,

moreover, we have

λ‖vk‖H1(Rn) +
∥∥∥(−Δ)σ/2vk

∥∥∥
H1(Rn)

� ‖fk‖H1(Rn)

and

λ‖vk − vm‖H1(Rn) +
∥∥∥(−Δ)σ/2vk − (−Δ)σ/2vm

∥∥∥
H1(Rn)

� ‖fk − fm‖H1(Rn).

Therefore, {vk}k∈N is a Cauchy sequence in Jσ(H1(Rn)), and there exists a v ∈
Jσ(H1(Rn)) such that vk converges to v in Jσ(H1(Rn)). Then, by theorem 1.2(ii),
we conclude that

‖Lvk − Lv‖L1(Rn) � ‖∂σvk − ∂σv‖H1(Rn) ,

and Lvk converges to Lv in L1(Rn). Furthermore, v is a solution of Lv − λv = f
and

λ‖v‖H1(Rn) +
∥∥∥(−Δ)σ/2v

∥∥∥
H1(Rn)

� ‖f‖H1(Rn).

Meanwhile, the uniqueness follows from the above estimate. This finishes the proof
of theorem 1.4. �
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