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The dynamics of small-scale structures in free-surface turbulence is crucial to large-scale
phenomena in natural and industrial environments. Here, we conduct experiments on the
quasi-flat free surface of a zero-mean-flow turbulent water tank over the Reynolds number
range Re,) =207-312. By seeding microscopic floating particles at high concentrations,
the fine scales of the flow and the velocity-gradient tensor are resolved. A kinematic
relation is derived expressing the contribution of surface divergence and vorticity to the
dissipation rate. The probability density functions of divergence, vorticity and strain rate
collapse once normalised by the Kolmogorov scales. Their magnitude displays strong
intermittency and follows chi-square distributions with power-law tails at small values.
The topology of high-intensity events and two-point statistics indicate that the surface
divergence is characterised by dissipative spatial and temporal scales, while the high-
vorticity and high-strain-rate regions are larger, long-lived, concurrent and elongated.
The second-order velocity structure functions obey the classic Kolmogorov scaling in
the inertial range when the dissipation rate on the surface is considered, with a different
numerical constant than in three-dimensional turbulence. The cross-correlation among
divergence, vorticity and strain rate indicates that the surface-attached vortices are
strengthened during downwellings and diffuse when those dissipate. Sources (sinks) in
the surface velocity fields are associated with strong (weak) surface-parallel stretching and
compression along perpendicular directions. The floating particles cluster over spatial and
temporal scales larger than those of the sinks. These results demonstrate that, compared
with three-dimensional turbulence, in free-surface turbulence the energetic scales leave a
stronger imprint on the small-scale quantities.
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1. Introduction

From a cup of stirred coffee to the flow in rivers, lakes and oceans, free-surface turbulence
is ubiquitous in various natural and industrial environments. The dynamics of the free
surface affects the exchange of mass, momentum and energy with the bulk, and thus plays
an essential role at the global scale including the exchange of gas between the atmosphere
and ocean (Jahne & HauBecker 1998; Veron 2015), the transport of oceanic pollutants
such as microplastics (Zhang 2017; Mountford & Morales Maqueda 2019; van Emmerik
& Schwarz 2020) and the blooming of phytoplankton (Durham et al. 2013; Lindemann
et al. 2017). When the surface is significantly deformed or broken, strong energy exchanges
take place between the turbulence in the bulk and the free surface (Brocchini & Peregrine
2001; Deike 2022). Even when the deformation of the latter is negligibly small, however,
the dynamics is highly complex (Magnaudet 2003). Here, we focus on such a regime,
considering the fundamental case in which the turbulence below the quasi-flat free surface
is approximately homogeneous and isotropic. In particular, we focus on the fine-scale
structure, topological properties and the dynamics of the surface flow.

The study of free-surface turbulence can be traced back to Uzkan & Reynolds (1967)
and Thomas & Hancock (1977) who investigated grid turbulence adjacent to a solid wall
moving at the same velocity as the mean flow. Those experimental studies showed that
the surface-normal velocity fluctuations decay to vanishingly small levels over a near-wall
region (later termed the source layer) whose thickness is roughly one integral length scale.
Following these works, Hunt & Graham (1978) proposed a theoretical framework based
on rapid distortion theory (RDT), describing the inviscid response of homogeneous and
isotropic turbulence (HIT) to the insertion of an impermeable surface. They identified two
layers: the source layer, and a viscous layer where the shear stress along the wall is brought
to zero. Their predictions compared favourably with free-surface turbulence experiments
in stirred tanks (Brumley & Jirka 1987; Variano & Cowen 2013) as well as direct numerical
simulations (Walker et al. 1996; Shen et al. 1999; Guo & Shen 2010; Herlina & Wissink
2014) and large eddy simulations (Calmet & Magnaudet 2003). Perot & Moin (1995)
gave a different interpretation of the interaction between the turbulence in the bulk and
the non-deformable free surface, proposing that the imbalance between upwellings and
downwellings (carrying fluid to and from the surface, respectively) determines the net
intercomponent energy transfer. The issue was further examined by Magnaudet (2003)
who found that RDT is a correct leading-order approximation of the shear-free boundary
layer in the limit of large Reynolds number. The latter is typically defined as Rer =
2u’L/v, where u’, £ and v are the root mean square (r.m.s.) velocity fluctuation, the
integral scale of the turbulence in the bulk and the kinematic viscosity, respectively. The
validity of the Hunt & Graham (1978) theory for single-point statistics and sufficiently
high Rer was recently confirmed experimentally by Ruth & Coletti (2024).

The majority of the aforementioned studies focused on the evolution of the turbulence
below the free surface, while less is known regarding the dynamics on the flow along
the surface itself. Its topology has been explored mostly in open channel flows, both
experimentally (Komori ef al. 1989; Kumar et al. 1998; Nikora et al. 2007; Tamburrino
& Gulliver 2007) and numerically (Pan & Banerjee 1995; Nagaosa 1999; Lovecchio et al.
2013, 2015). Those studies emphasised the link between the structures generated in the
near-wall boundary layer and those observed along the surface. These showed similarity
to two-dimensional (2-D) turbulence, particularly the persistence of surface-attached
vortices, as well as some evidence of an inverse energy cascade.

The flow along the surface above HIT was considered in a series of seminal papers
(Eckhardt & Schumacher 2001; Goldburg er al. 2001; Boffetta et al. 2004; Cressman
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et al. 2004; Larkin et al. 2009). The authors explored features including the velocity
structure functions, which were found to scale approximately as in three-dimensional
(3-D) turbulence, and the velocity gradients, which were highly intermittent. Moreover,
they highlighted the compressible nature of the surface velocity field, leading to dense
long-lived clusters of floating particles. Comparisons between computer simulations and
laboratory observations were hampered by challenges associated with the free-surface
boundary condition. In the simulations, the free surface was treated as a rigid lid, which
Shen et al. (1999) demonstrated could cause significant misestimation of the pressurestrain
correlation even in the limit of small deformations. In the experiments, the floating
particles used to image the surface flow tended to create a layer of agglomerated particles
(Cressman et al. 2004; Turney & Banerjee 2013).

Simulations capturing the liquid interface above forced turbulent flows were conducted
by Shen et al. (1999) and Guo & Shen (2010), including regimes of low Froude number, i.e.
in which the surface tension allows only small deformations. They stressed the dynamic
importance of upwelling motions in connecting vortices to the free surface. There,
upwellings create hairpin structures whose head dissipates rapidly in the viscous layer with
the two legs connecting perpendicularly to the free surface. This suggested that upwellings
lead to the increase of the number of surface-attached vortices, as later confirmed by the
simulations by Babiker et al. (2023). These authors found a strong correlation between
the number of surface-attached vortices and the surface velocity divergence, which in turn
is related to the presence of upwellings/downwellings (see Guo & Shen (2010); Ruth &
Coletti (2024)). Herlina & Wissink (2014, 2019) used interface-resolving simulations to
investigate the gas transfer across the surface above HIT for a range of Rer. They found
that the increase of fine-scale structures at higher Rer determines a change in the scaling
of the gas transfer rate.

Another crucial aspect of the surface flow, especially relevant for the transport of
contaminants, is the relative velocity and dispersion of floating particles. This was
investigated by Cressman et al. (2004) who found experimentally a retarded dispersion
with respect to the super-diffusive regime proposed by Richardson (1926), while the latter
was approximately recovered by numerical simulations. Recently, using a large-scale jet-
stirred tank, we showed how the surface flow compressibility leads to anomalously large
relative velocities at small separations, causing the ballistic regime of pair dispersion to
extend over the inertial range of temporal separations (Li et al. 2024). This study was
the first to reach a sufficient scale separation for the emergence of the classic power-law
scaling of Kolmogorov’s (1941) theory in the surface velocity field. However, the flow
was imaged by following sparse floating particles, which did not allow us to resolve the
dissipative scales.

An important aspect of free-surface flows in general, and the ones involving
homogeneous bulk turbulence in particular, is represented by the effect of surface
contamination. Herlina & Jirka (2008) presented seminal experimental measurements of
near-surface flow velocity and dissolved gas concentration in a grid-stirred zero-mean-
flow tank. Despite extensive measures taken to keep the surface clean, the horizontal
velocity fluctuations decayed in the vicinity of the surface, signalling that trace amounts
of surfactants caused a departure from an idealised zero-shear-stress boundary condition.
Similar observations were made by Variano & Cowen (2013) in a jet-stirred zero-mean-
flow tank. They stressed how the cleaning of the surface was instrumental to contain those
effects, but that some contamination was unavoidable. The situation may be somewhat
different in channel flows where the free surface is only exposed to the ambient air
for a few seconds. However, even the careful channel flow study of Turney & Banerjee
(2013) reported and discussed the evidence of trace amounts of surfactants altering the
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surface motion. As those authors stated, residual amounts of surfactants ‘seem almost
impossible to remove fully’ even in well-controlled laboratory experiments. Clearly, such
trace amounts of surfactants are an important aspect of free-surface flows, especially those
involving the spatial and temporal scales relevant for fully developed turbulence.
Although producing completely uncontaminated free-surface turbulence remains an
unmet challenge, the value of well-controlled laboratory experiments cannot be overstated.

The above-mentioned experiments by Herlina & Jirka (2008) provided clear evidence

that, below a critical Reynolds number, the gas transfer velocity scales as Re}o'25 ,

in agreement with the model of Banerjee et al. (1968) and Lamont & Scott (1970).
This was confirmed by numerical simulations by Herlina & Wissink (2014) where the
idealised zero-contamination condition was applied. Later, Wissink et al. (2017) performed
numerical simulations in which the level of surface contamination was modelled and
systematically varied, and found that the scaling of the gas transfer velocity with Rer was
unaltered. What was strongly affected was its scaling with the Schmidt number Sc, related
to Marangoni effects. They showed that even small levels of contamination would lead
to a reduction of horizontal velocity fluctuations at the surface. Additionally, they found
that the gas transfer scaling with Sc derived in the absence of surfactants was no longer
accurate in the presence of even slight contamination. As discussed above, numerical
simulations of this class of flows necessarily apply simplifications. Beside imposing a
strictly flat surface, Wissink et al. (2017) considered insoluble surfactants. The effect
of soluble surfactants may be qualitatively different (Tsai & Yue 1995). In fact, recent
experiments on surface waves have found that the extended exposure of the surface to
ambient air has similar effects to the presence of soluble surfactants (Erinin et al. 2023).

The above clearly indicates how, despite the importance of fine-scale flow features
for a wealth of relevant processes, the detailed topology and dynamics of free-surface
turbulence have not been sufficiently documented to comprehensively describe their
behaviour. This is in stark contrast with 3-D turbulence, for which the properties of the
velocity-gradient tensor and velocity differences over dissipative and inertial scales, as
well as their role in the dynamics, have been explored in great depth in both the Eulerian
and the Lagrangian frames (Sreenivasan & Antonia 1997; Meneveau 2011; Johnson &
Wilczek 2024). Therefore, many fundamental questions remain to be clarified: What
are the spatial and temporal scales associated with the divergence, vorticity and strain
rate of the surface flow? Does the classic scaling of velocity differences hold in free-
surface turbulence? How do the upwelling and downwelling events affect the dynamics,
particularly the surface vorticity and strain rate? Addressing those and related questions
is crucial, e.g. to devise effective coarse-grained representations of the surface flow, in
particular considering the vast range of scales at play in nature.

Here, we conduct and analyse an experimental campaign in which the free-surface
flow above homogeneous turbulence is characterised using particle tracking velocimetry
(PTV). By imaging microscopic floating particles at high spatial and temporal resolution,
we capture velocity gradients along dense trajectories, which allows us to gain a
comprehensive view of the processes. The paper is organised as follows. In §2, the
experimental set-up and methodology are introduced, and the considered flow regime is
described. In § 3, kinematic relations between the surface divergence, vorticity and strain
rate are derived (§ 3.1); those quantities are described in terms of single-point statistics
(§3.2) and structure topology (§ 3.3). The two-point/two-time statistics are presented in
terms of velocity structure functions (§ 3.4), Eulerian and Lagrangian autocorrelations
(§3.5) and cross-correlations (§ 3.6). The clustering of floating particles is discussed in
§ 3.7. We summarise our findings and draw conclusions in § 4.
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Figure 1. (a) A schematic of the turbulent water tank and camera arrangement. The yellow shaded area
represents the FOV. (b) Profiles of surface-parallel and surface-normal r.m.s. fluctuation velocity (u,,s and
Wrms, respectively) along the vertical direction. (¢) A portion of a snapshot illustrating the floating micro-
particles. (d) An example of surface trajectories at Rej; = 312, colour coded by the velocity magnitude |u|.

2. Experimental set-up and method
2.1. Experimental set-up

Experiments are conducted in a turbulent water tank as illustrated in figure 1(a). The
tank has dimensions of 2 x 1 x 1 m3. In this tank, two 8 x 8 arrays of submerged pumps
are placed against each other, with adjacent pumps separated by 10 cm in the horizontal
and vertical directions. These pumps are controlled by programmable logic controllers
and are turned on and off in a random pattern following the algorithm proposed by
Variano & Cowen (2008). On average, one in eight pumps is on at any given time
and each jet emission lasts 3s. The turbulence generated in the centre of the tank is
approximately homogeneous over a region of approximately 0.5 m>. The intensity of
the velocity fluctuations and the dissipation rate of the turbulent kinetic energy € can
be adjusted by changing the power supplied to each pump. We denote with x and y the
horizontal directions parallel and perpendicular to the pump axes, respectively, and with
z the vertical upward direction, the origin being at the free surface; u, v and w are the
respective components of the velocity vector u. Further details regarding the facility can
be found in Ruth & Coletti (2024) and Li et al. (2024).

The water level is 8 cm (which is around one integral scale) above the axis of the top
row of jets. This is significantly smaller compared with most previous experiments in
which the turbulence was forced at depth (Brumley & Jirka 1987; McKenna & McGillis
2004; Herlina & Jirka 2008; Variano & Cowen 2008, 2013). Therefore, as discussed in
Ruth & Coletti (2024), the spatial decay of turbulence away from the forcing region is
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marginal and the evolution of the flow in the z direction is mostly caused by the free-
surface boundary condition. The latter impacts especially the surface-normal component
of the velocity, as illustrated in figure 1(b), which shows vertical profiles of surface-normal
and surface-parallel r.m.s. velocity fluctuations (w;,s and u,,s, respectively) obtained and
described by Ruth & Coletti (2024) using particles image velocimetry (PIV). During the
experiment, the surface remains essentially flat, with deformation amplitude <0.5 mm
as measured by planar laser-induced fluorescence (Ruth & Coletti 2024). The surface
is periodically skimmed to avoid accumulation of surfactants, and a surface tension of
0.07Ns~! is measured using a Du Noily ring at various points in time without seeding
particles. We note that the results presented in this work are not sensitive to the exact time
between the skimming and measurements, and they are robust once the free surface is
recently skimmed. Still, the effect of residual surfactants is visible in the decay of the
surface-parallel fluctuations approaching the surface. Similar trends were observed by
Variano & Cowen (2013) despite their efforts in cleaning the surface. Complete removal
of the residual surfactant requires chemical processes; their effect, however, would not last
a sufficiently long time for the completion of the present measurements.

As illustrated in figure 1(a), a downward looking CMOS camera is placed approximately
0.31 m above the surface to capture the surface motion within a 10 x 10 cm? field of
view (FOV) illuminated by two LED panels. The camera has a resolution of 1664 x 1600
pixels and is operated at 400 frames per second. The fluid motion on the surface is
characterised by seeding 63—75 m floating polyethylene microspheres with a density
of 0.31 gcm*3. To resolve the small-scale structures, the concentration of particles is
maintained at approximately 120 particles cm2, leading to a mean inter-particle separation
of around 1 mm. As the particles have a narrow size distribution and their mutual distance
is much larger than their diameter, aggregation is minimised and individual particles can be
clearly identified and tracked (figure 1c). This is done using an in-house PTV code based
on the nearest-neighbour algorithm (Petersen et al. 2019). Given the particle trajectories,
the velocity is obtained by convolving the trajectories with the first derivative of a temporal
Gaussian kernel. The width of the kernel is determined following the approach by Mordant
et al. (2004), and the resulting width (35-55 frames) is comparable to the smallest time
scales of the flow. An example of trajectories in the FOV over 25 frames is shown in
figure 1(d).

2.2. Velocity-gradient calculation

In order to probe the small-scale structure on the free surface, the surface velocity gradient
Vsu is calculated, where Vi = (0/0x)i + (3/dy)j is the surface gradient with i and j
being the unit vectors along the x and y directions, respectively. For a given particle
located at x° on the free surface, the velocity of surrounding particles located at x? within
a search radius R, around x° can be approximated by the leading terms in the Taylor
expansion

u(x?) ~ux% + Viu(x"x? — x9), 2.1

with p=1, ..., n. The value of Vyu at x° is uniquely determined from (2.1) when two
surrounding particles are found. In the case of more than two surrounding particles, V u
is calculated by minimising the squared residuals ) » [u (xP) —u(x% — Viu(x? — xo)]2
(Pumir ez al. 2013; Qi et al. 2022). We note that large R; leads to a coarse-grained velocity-
gradient tensor while small R; may cause larger uncertainty as only a limited number of
surrounding particles can be found. Here, R; is thus selected following a similar approach
to the one used to determine the width of Gaussian kernel in PTV: Ry is chosen as the
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Figure 2. The evolution of different quantities as a function of the search radius Ry: (a) the standard deviation
of one component of the velocity-gradient tensor ((du/dx)%)'/?; (b) the standard deviation of divergence
(D172 (¢) the standard deviation of vorticity (022 (d) mean dissipation rate on the surface (€;). The
green shading in panel (a) marks the range of exponential decay (R; > 2.5 mm).

smallest value above which the standard deviation of Vi u exhibits exponential decay, as
shown figure 2(a). Following this method, we use Ry = 2.5 mm, yielding on average 40
particles within the search radius. As shown in figure 2(b—d), the key differential quantities
evaluated along the surface, such as vorticity, dissipation rate and divergence, are only
weakly sensitive to the exact choice of the search radius. In this work, to further minimise
the uncertainty, velocity gradients calculated based on less than 5 particles are excluded
from the statistics.

2.3. Turbulence properties

We consider four cases in which turbulence of different intensity is forced. Table 1
summarises the key parameters of the turbulence in the bulk as characterised by PIV,
including the Kolmogorov length scale  and time scale 7,, as well as the Taylor-
microscale Reynolds number Re,. Moreover, to illustrate to which degree the surface flow
approximates HIT, we calculate from the surface PTV data the homogeneity deviation
HD =20,/ /u/, the isotropy factor IF = ((du/dx)/(dv/dy)) and the mean strain-rate factor
MSRF = ((0 (u) /0x)/{(0u/0x — 3 (u) /8x)2)%). Here, o,/ is the standard deviation of
the spatial field of u’ (Carter et al. 2016; Esteban ef al. 2019), and angled brackets indicate
ensemble averaging. The levels of HD and IF indicate a high level of spatial homogeneity
and small-scale isotropy for all considered cases, while the small MSRF demonstrates that
the mean velocity gradients are negligible compared with the instantaneous ones.

1007 A3-7


https://doi.org/10.1017/jfm.2025.139

https://doi.org/10.1017/jfm.2025.139 Published online by Cambridge University Press

Y. 0i, Y. Li and F. Coletti

Rey  Rer em?s™3)  p(mm) t,(s) L(m) HD IF MSRF C

207 2630 3.82x 1073 0.40 0.16 0.072 026 1.00 0.056 0.013
248 3427 831 x 1073 0.33 0.11 0076 024 1.00 —0.047 0.015
283 4292 1.44x107* 0.29 0.08 0.080 021 098 0.064 0.020
312 5224 221 x 1074 0.26 0.07 0.083 018  1.00 0.012 0.024

Table 1. The main turbulence properties for the considered cases. The Taylor-microscale Reynolds number
Re,, the large-scale Reynolds number Rer, the dissipation rate €, the Kolmogorov length scale n and time
scale 7, and the integral length scale L are evaluated in the bulk. The homogeneity deviation HD, the small-
scale isotropy factor IF, the mean strain-rate factor MSRF and the compressibility coefficient C are defined in
the text and are evaluated on the free surface.

3. Results
3.1. Kinematic relation for energy dissipation rate on the free surface

We first consider the mutual relations between vorticity, strain rate and divergence of the
surface velocity field. The surface divergence D is defined as

D=V, u=23u/dx+ dv/dy. 3.1)

Considering the incompressibility of the fluid, D can also be expressed by D = —dw/0z.
Given the no-penetration boundary condition, w =0 at z =0 (which is approximately
valid in the present case of weak surface deformation), positive/negative divergence
represents upwelling/downwelling events. The vorticity and the strain rate on the free
surface are, respectively,

w=Vy Xu=0v/dx —dou/dy, 3.2)

and

s =+/8s8;, 3.3)

where S = [Vsu + (Vsu)T] /2 is the symmetric 2-by-2 strain-rate tensor associated with
the 2-D velocity field along the surface.

To connect the surface dynamics with the local properties of turbulence, the energy
dissipation rate on the free surface also examined, i.e. €, =2v (SS). Note that, here,
S= [Vu + (Vu)T] /2 is the full 3-by-3 strain-rate tensor. As € is evaluated along the
free surface, the boundary conditions allow significant simplifications. In particular,
considering that the free surface is quasi-flat, w is identically zero along the surface.
This leads to dw/dx =dw/dy =0. Also, the zero-stress boundary condition imposes
du/dz =0v/dz =0. Therefore the (1, 2), (1, 3), (2, 1) and (3, 1) components of both
Vu and S are zero. It follows that €; can be written as

€ =2v ((SSSS) + <D2>) —2v <(s2) + (D2)> . (3.4)

We note that, in the current experiment, due to residual surfactant after skimming the
surface (as mentioned above), the zero-stress boundary condition might not be strictly
achieved. Therefore, € calculated based on (3.4) might be weaker compared with a surface
completely devoid of surfactants. Assessing this deviation, however, is difficult based on
the surface PTV and is beyond the scope of this study. Equation (3.4) can be further
expanded and rewritten as the summation of the quadratic terms of velocity gradient

> [ou\® _odud

e=2w(aZ) £ () 43220, (3.5)
ax dy dx dy
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Figure 3. (a) The comparison of turbulence energy dissipation rate on the free surface €, calculated based on
the definition (yellow symbols), (3.8) (purple symbols) and (3.9) (blue and green symbols). (») The joint PDF
of du/dx and dv/0y normalised by the Kolmogorov time scale 7, at Rey = 312.

Here, considering the properties listed in table 1, we have assumed the surface turbulence
to be small-scale isotropic, which implies du/dx = dv/dy and du/dy =0dv/dx, and
homogeneous, which implies ((du/dx)(dv/dy)) = ((du/dy)(dv/dx)) (see equation 16 in
George & Hussein (1991)). Those assumptions also allow us to write

au\> _ouo

pP=2 () 4220 (3.6)
ax dx dy

s du\? _ dudv

r=2(—) —2—=—. (3.7)
dy ax dy

By comparing (3.5), (3.6) and (3.7), it is evident that €; can be rewritten following
€= (4(1)2) + (a)2>) . (3.8)

This kinematic relation, which allows expression of the dissipation rate along the surface
from the strength of the divergence and vorticity on it, highlights the importance of
the non-solenoidal nature and surface-attached vortices to the local properties of free-
surface turbulence. In the case of vanishing divergence, this relation becomes the energy
dissipation rate in incompressible 2-D turbulence ¢, = v (a)2> Equation (3.8) agrees well
with the present data for all considered cases, as shown in figure 3(a). The surface
dissipation rate is found to be far smaller than the bulk value €. This is consistent with
previous theoretical and numerical studies (Teixeira & Belcher 2000; Guo & Shen 2010)
in which a significant decrease of dissipation at the surface was found. The surface
dissipation rate will be discussed further in § 3.4.

Equation (3.8) could be further simplified by assuming the compressibility ratio
C={(Vs- u)z)/((VSu)z) = (Dz)/((Vsu)z) ~ (0.5 as found in previous studies. Since this
can also be expressed as C =(D?)/[2((du/dx — dv/dy)?)] in the case of HIT, the
condition C = 0.5 is equivalent to a negligibly small correlation between du/dx and dv/dy
along the surface, i.e. |((du/0x)(dv/dy))| K ((du/dx)?) (Boffetta et al. 2004; Cressman
et al. 2004). If this is assumed, the cross-product terms in (3.5), (3.6) and (3.7) are dropped
and (3.8) simplifies to

€ = 50(D?) = 5v(w?). (3.9)
1007 A3-9
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Figure 4. The PDFs of surface divergence D (panel (a)) and vorticity w (panel (b)) at various Re,. In both
panels, darker colour represents higher Re, and vice versa.

Figure 3(a), however, indicates that the data deviate considerably from this relationship.
Indeed, the observed compressibility ratio (as reported in table 1) is much smaller than 0.5,
which in turn is rooted in a strong correlation between du/dx and dv/dy. This is clearly
illustrated in figure 3(b), which displays the joint probability density function (PDF) of
du/dx and dv/dy for the case Re) = 312, demonstrating strong anti-correlation between
both quantities. This strong anti-correlation and the small compressibility ratio (as well
as the weak surface divergence, which will be discussed in the following sections) might
be influenced by residual surfactants on the free surface. The role of the latter, even in
skimmed surface, was previously explored by Turney & Banerjee (2013). Here, and in the
following, this Reynolds number will be used as exemplary case, and the behaviour of the
other cases is analogous.

3.2. Divergence, vorticity and strain rate

Here, we examine the statistical distributions of the main velocity-gradient-based
quantities characterising the surface flow: divergence, vorticity and strain rate. Figure 4(a)
shows the PDF of divergence D non-dimensionalised by t, for the different Re,. The
symmetric distributions indicate that the upwellings (associated with D >0) and the
downwellings (D <0) occur with similar frequency and strength. The long tails signal
strong intermittency, as previously observed (Schumacher & Eckhardt 2002; Cressman
et al. 2004). In addition, the approximate collapse of the PDFs for the different Re,
suggests that the statistical behaviour of the divergence follows a dissipative scaling. This
is the case also for the PDFs of w (figure 4(b)) which, however, display a far greater
variance, i.e. (w?) > (D2>. The relatively small magnitude of D is consistent with the
small values of the compressibility coefficient, as discussed above. We remark that all
components of the velocity-gradient tensor display symmetric distributions. This is in
contrast with 3-D turbulence, where the skewness of the longitudinal velocity differences
is associated with the direct energy cascade (Davidson 2015).

To examine the strain rate, figure 5(a) shows the PDFs of the eigenvalues A1 and A, of
Ss, with A1 > A>. As S is a 2 x 2 symmetric tensor, both A; and Ay are real numbers.
The distributions of both eigenvalues are clearly antisymmetric. We remind the reader
that, in 3-D turbulence, two out of three eigenvalues tend to be positive, which indicates
bi-axial stretching (Betchov 1956; Davidson 2015). Cardesa et al. (2013) investigated the
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Figure 5. (a) The PDFs of the normalised eigenvalues 1; (blue lines) and A, (green lines) of S at various
Re,. Here, darker colour represents higher Re, and vice versa. (b) The joint PDF of 1] and A, for Re, = 312.
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Figure 6. (a) The PDFs of normalised surface divergence square D2, vorticity square w2, strain-rate square
52 and energy dissipation rate on the free surface €. The dashed lines mark the scaling of power-law tails.
The blue and green shaded areas illustrate the region where these quantities are smaller and larger than
10 % of their mean values, respectively. (b) The PDFs of two components of the velocity-gradient tensor
du/dx (yellow symbols) and du/dy (blue symbols) normalised by their r.m.s. The solid lines show the fitted
Gaussian distribution. The red shaded area from —0.3 to 0.3 marks the region where the PDFs are approximately
Gaussian.

reduced strain-rate tensor and the two associated eigenvalues along 2-D sections of 3-D
turbulence, finding predominance of compression over stretching. Along the free surface,
on the other hand, compression and stretching appear equally likely and intense, similarly
as the instances of positive and negative divergence (see figure 4a). The collapse of 44
and A, for different Re, indicates that Kolmogorov scaling again applies, as for D and .
The structure of the strain field is further clarified by the joint PDF of both eigenvalues
displayed in figure 5(b), the other Reynolds numbers showing analogous behaviour. The
strong anti-correlation indicates a high likelihood of 11 &~ — A5, i.e. comparable strength
of compression and stretching along perpendicular directions. This is consistent with
figure 3(b) displaying relatively small surface divergence, which can be expressed as
D=2+ A,.

The magnitude of the different quantities is compared in figure 6(a), showing the PDFs
of D?, w?, s* and €, normalised by their mean value. In the range of low intensity
events (blue shaded area), the distributions show power-law scaling with slopes of 1/2
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for s2 and €, and —1/2 for D? and w?. Power-law tails over the small-magnitude range
were also observed for PDFs of squared vorticity and strain rate in 3-D turbulence by
Yeung et al. (2012) and Carter & Coletti (2018), who explained them by the ansatz that
small-velocity-gradient events behave as random variables. This is also the case here, as
illustrated by figure 6(b), where PDFs of du/dx and du/dy are shown. It is evident that
both quantities (and other components of the velocity gradient, not shown) approximately
follow a Gaussian distribution when their magnitude is relatively small, e.g. less than
30 % of their r.m.s. values, as indicated in figure 6(b). As the quantities in figure 6(a)
are summation of squares of velocity-gradient components, we expect them to follow
chi-square distributions

P(X)~ xk2=1e=X/2 (3.10)

where X is the variable representing D2, w?, s2, and €, k is the order of the chi-square
distribution specifying the number of independent squared terms being summed and e is
the natural exponent. For small X, this yields a power-law tail with a slope of k/2 — 1.
For D? and w?, only one squared term is involved with k = 1, and the power-law slope
—1/2 is retrieved. The squared strain rate can be written as s> = (du/9x)? 4+ (3v/dy)* +
(du/dy + dv/9x)?/2, hence k =3, which yields the observed 1/2 slope. Finally, the
surface dissipation can be expressed by €, = 2v [s2 + (0 w/az)z], where dw/dz is not an
independent term considering the incompressibility condition. Therefore, kK = 3 is again
obtained, and the scaling of the low-range tail of €, follows the one of s2.

At the opposite end (green shaded area in figure 6a), we notice that the right tails
of the PDFs of w? and s follow similar patterns. This was also observed in 3-D
turbulence (Yeung et al. 2012), suggesting that intense events of strain and vorticity are
concurrent. The distribution of €; essentially matches that of s2, consistent with (3.4)
which results in €, ~ 2vs? for C « 1. Although the divergence is in general relatively
small, its intermittency is even higher than the other analysed quantities. The overall strong
intermittency of the velocity gradient as well as its associated quantities on the free surface
was recently found to be associated with the nonlinear self-amplification of the velocity
gradient (Qi et al. 2025), which also accounts for the strong intermittency in 3-D turbulent
flows (Meneveau 2011; Johnson & Wilczek 2024).

3.3. Topology of small-scale structures

We then examine the topology of small-scale structures; in particular, three sets of discrete
structures used to characterise the spatial organisation of events of high surface divergence,
vorticity and strain rate. Those structures are defined as contiguous regions satisfying

the conditions |D| > ozp(Dz)]/z, |w| > ozw(a)z)l/2 and s > a,(s), where ap, «, and o
are positive constants. To determine appropriate thresholds, we analyse the percolation
behaviour of the intense structures as first proposed by Moisy & Jiménez (2004). For high
threshold values, only a few small objects can be detected. As the threshold decreases, the
objects grow in size and number and eventually start merging. The optimal threshold is
obtained by identifying the intermediate value for which the objects are most numerous.
This procedure was used extensively to identify structures in various configurations
including channel flows (Lozano-Durén ef al. 2012), free shear flows (Dong et al. 2017)
and homogeneous turbulence (Carter & Coletti 2018).

Here, the velocity gradient measured at the position of each particle is first interpolated
on a Cartesian grid with size equal to half the mean inter-particle distance. Figure 7(a)
then shows how the number of detected objects varies as a function of threshold level,
yielding the choice ap = 0.4, o, = 0.6 and oy = 1.5. It is noted that the following results
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Figure 7. (a) The number of high-intensity objects found in the FOV as a function of thresholds. (b) The
PDFs of the normalised area of high-intensity objects. The dashed line marks the power-law scaling of —2.
(c) The PDFs of the aspect ratio of high-intensity events. In all of the panels, the purple, green and blue symbols
represent high-divergence, high-vorticity and high-strain objects, respectively. Only the data for Re, = 312 are
included.

are not sensitive to the exact values of thresholds. Moreover, objects that touch the FOV
boundary are discarded. Although this may lead to underestimation of the number of large
structures, it will be shown that the vast majority of the identified objects are much smaller
than the FOV.

Figure 7(b) shows the PDFs of the area of high-divergence, high-vorticity and high-
strain-rate structures, normalised by the Kolmogorov scale. The size of the structures is
widely distributed over four decades. The high-vorticity and high-strain objects follow
a similar trend, confirming the correlation between events of intense w and s. These
structures are on average larger compared with the regions of high divergence. Over
some size range, the distributions appear compatible with a power-law decay, which may
suggest a link with the scale-invariant properties of turbulence (Sreenivasan 1991; Moisy
& Jiménez 2004; Carter & Coletti 2018). The limited range of scales over which this is
evident, however, does not allow any conclusive statement in this sense.

In order to characterise the geometry of these structure, we also consider their aspect
ratio AR = R;/R>, where R and R, are the major and minor axes of an ellipse that
has the same second central moments as the structure. To ensure an accurate AR
calculation, objects with area smaller than 5 grid cells (corresponding to around 5,?)
are not considered in these statistics. It is found the results do not display discernible
dependence on the cutoff value between 3 and 9 grid cells. Figure 7(c) shows the PDFs
of AR for the three types of structures. Again, the curves for the high-vorticity and high-
strain objects largely overlap. Those structures have generally larger AR, indicating that
high-vorticity and high-strain-rate structures are more elongated compared with those of
high divergence.

These properties are confirmed by the visual observations of instantaneous fields,
samples of which are reported in figure 8(a—c): the high-divergence events are relatively
small scale and spotty whereas the high-vorticity and high-strain regions are larger and
more elongated. This divergence snapshot is consistent with the numerical simulation at a
lower Reynolds number (Re7 ~ 1800) by Herlina & Wissink (2019), in which the surface
divergence also appears to have a smaller length scale compared with the integral scale in
the bulk. Moreover, the vorticity and strain-rate fields follow similar patterns, with high-
vorticity magnitude (both positive and negative) events also overlapping with high-strain
regions. This concurrence of intense vorticity and strain is also found in 3-D turbulence
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Figure 8. (a—c) Snapshots of surface divergence field (a), vorticity field (b) and strain field (c) on the free
surface Re, = 312. (d) Overlap coefficients as a function of Re,. The purple, green and blue symbols represent
divergence—vorticity, divergence—strain and vorticity—strain overlap, respectively.

(Yeung et al. 2015). To quantify the topological connection between such objects, we
define the overlapping coefficients between D, w and s, based on a procedure similar
to the one used by Berk & Coletti (2023). For example, the overlap between high-vorticity
and high-divergence structures is characterised by

R Arov{(Ape)
Do=—"—"
(ADAQ)>

where A Foy is the total area of the FOV. Here, Ap and A,, are the area of high-divergence
and high-vorticity regions, respectively and Ap, denotes the overlapping area between
these regions. If both types of structures are spatially uncorrelated, Rp,, = 1. Similarly,
the divergence/strain-rate and vorticity/strain-rate overlapping coefficients are defined as

, (3.11)

Arov(Apy)
Rpy=——"7—, 3.12
Ds (ADAs) ( )

AFOV<Aws>
Ryy=——"7080—, 3.13
ws (AL AL (3.13)

where Agrepresents the area of high-strain structures, and Aps and A, are overlapping
areas defined similarly. Figure 8(d) shows Rp,, Rps and R, for the different Re,. In
all cases, high-vorticity and high-strain structures show significant correlation, consistent
with the previous observations. Here, Rp,, and Rpg are much weaker than R, but the
high-divergence events are more likely to be concurrent with high strain rate than high
vorticity.

3.4. Second-order velocity structure functions

After exploring the small-scale properties of the surface flow field, we consider how the
turbulent kinetic energy is distributed across the spatial scales as described by the second-
order longitudinal structure function. This is defined as

D= <(u, (x+ré) —u, (x))2> , (3.14)

where r is the separation distance, &, represents the unit vector along the separation and u,
is the velocity component in the same direction. Figure 9(a) shows Dy as a function of
r/n for the different Re,. In all cases, a clear scaling D7z ~ r*/3 is visible for r/n > 20,
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Figure 9. (a) The longitudinal second-order structure function Dy as a function of the separation distance.
The dashed line denotes 2/3 power-law scaling. (b) Value of Dy normalised by (re)*3. (¢) Value of Dyp
normalised by (res)?3. The orange dashed line marks Cps ~3.5. In all of the panels, the darker colour
represents high Re, and vice versa. The green shaded area marks the inertial range.

consistent with the classic theory of Kolmogorov (1941) in the inertial sub-range. This
was also observed in the laboratory experiments by Goldburg et al. (2001) and Cressman
et al. (2004), and in outdoor water streams by Chickadel er al. (2011) (who reported the
equivalent scaling of the energy spectrum with k—/3, k being the wavenumber) and by
Sanness Salmon et al. (2023).

At smaller separations, the structure functions do not transition to the scaling Dy j ~r
expected for smooth flows in the dissipation range, and instead their slopes become much
shallower than in the inertial sub-range. This behaviour was recently reported by Li ef al.
(2024) using much sparser particle concentrations. Here, the finer spatial resolution allows
us not only to confirm this finding, but also to reveal that the anomalously large relative
velocities persist down to millimetric separations. As discussed in Li ef al. (2024), this
behaviour is similar to the formation of caustics in the velocity fields described by inertial
particles in turbulence: such fields are also compressible, with intermittently large relative
velocities and thus anomalous scaling exponents of the structure functions at small scales
(Bec et al. 2010; Bewley et al. 2013; Berk & Coletti 2021; Bec et al. 2024). We note that,
as the floating particles follow the fluid motion, their relative velocity must ultimately
recover the scaling u, ~ r (and thus Dy ~ r2) in the limit of vanishing separations. This,
however, may happen at scales only slightly larger than the particle diameter, not accessible
even in the present high-resolution imaging system.

Besides the scaling with the separation 7, a crucial prediction of Kolmogorov’s theory
is the dependence of the structure function with the dissipation in the inertial sub-range. In
3-D turbulence, the theory predicts Dy = C» (er)z/ 3 where Cy ~ 2.1 is the Kolmogorov
constant (Sreenivasan 1995). The compensated plots Dy / (er)?/ in figure 9(b) show
that this relation does not hold in free-surface turbulence: the lines are not close to the
value of 2.1 in the inertial range and, more importantly, they do not collapse. In fact, the
dynamics on the free surface expected to be determined by the energy dissipation rate on
the free surface €, rather than by the one in the bulk water €. Indeed, the compensated plots
Dyy/ (€sr)*/3 in figure 9(c) show a much better collapse which indicates that the classic
scaling still holds for free-surface turbulence when the dissipation rate on the surface is
considered, i.e. Dy = Cas(e,r)?/3. Here, a distinct factor Cag ~ 3.5 is obtained.

2

3.5. Scales of surface divergence, vorticity and strain rate

As seen in §3.3, the surface divergence, vorticity and strain rate exhibit different
length scales. This aspect is further investigated by examining the spatial autocorrelation
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Figure 10. The Eulerian autocorrelation functions of divergence (a), vorticity (b) and strain (c) at different
Re,. In all of the panels, the darker colour represents higher Re,.

functions of each quantity

(D' (x)D' (x +ré,))

E_
Pk = e , (3.15)
pE — (@ (x) o (x + rer))’ 316
(@)
ps = (@) (x +rer)), (3.17)
(s2)

where the superscript E stands for Eulerian and the prime denotes fluctuations around the
ensemble average. Figure 10 shows the autocorrelation for the various Re,. The divergence
field (figure 10a) exhibits a characteristic length scale around (5-10)n, while the vorticity
and strain-rate fields are characterised by somewhat larger correlation scales ~ 20n and
~ 30n, respectively. This observation is consistent with the result in figures 7(b) and 8.
Beyond some experimental scatter, the autocorrelation functions show no discernible
dependence on Re,, with Kolmogorov scaling providing a fair collapse of the curves.

As the velocity gradient is obtained along floating particle trajectories, the temporal
scales can also be investigated by calculating the temporal autocorrelation functions of
divergence, vorticity and strain rate, respectively,

L (DDt +1))
= , 3.18
IOD <D/2> ( )
paL) _ (o' ()" (t + r))’ (3.19)
(@?)
LSO+ 1)
= —(S/2> . (3.20)

Here, the superscript L stands for Lagrangian, ¢ represents the generic temporal abscissa
and t is the time delay. Figure 11 shows the temporal autocorrelation functions for the
different Re,, with the Kolmogorov scaling that again provides a reasonable collapse of
the curves. The surface divergence shows a time scale comparable to 7,, confirming it is
driven by small-scale processes. On the other hand, the time scales of both vorticity and
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Figure 11. The Lagrangian autocorrelation functions of divergence (a), vorticity (b) and strain (c) at different
Re,. In all of the panels, the darker colour represents higher Re,.
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Figure 12. (a) The Eulerian autocorrelation functions for positive divergence (purple line) and negative
divergence (green line). (b) The Lagrangian autocorrelation functions for positive divergence (purple line)
and negative divergence (green line).

strain rate are significantly larger and comparable to the integral time scale, suggesting
that surface-attached vortices and surface-parallel stretching and compression are long-
lived compared with the lifetime of sources and sinks. These time scales, in fact, are also
larger than their characteristic time scales in 3-D turbulence, which are expected to scale
with 7,.

Givgn the importance of the imbalance between upwellings and downwellings (Perot &
Moin 1995; Guo & Shen 2010; Ruth & Coletti 2024), it is useful to distinguish between
the scales associated with both types of events. Figures 12(a) and 12(b) plot the Eulerian
and Lagrangian autocorrelation functions ,oIE) and ,oé, respectively, conditioning on D > 0
and D < 0. It is clear that upwellings are associated with larger spatial and temporal
scales along the surface flow compared with downwellings. This is consistent with the
observation by Ruth & Coletti (2024) in the same facility and by Guo & Shen (2010)
based on numerical simulations.
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Figure 13. (a) The Eulerian cross-correlation functions between divergence and vorticity magnitude at
different Re,. (b) The Lagrangian cross-correlation function between divergence and vorticity magnitude at
different Re,. This panel shares the same legend with panel (a). The yellow shaded area marks the vortex-
stretching process, and the green shaded area marks the diffusion process of surface-attached vortices. The
schematic illustrates the vortex-stretching process. The green spiral marks the surface-attached vortex, the red
arrows represent the negative divergence, and the blue plane shows the free surface.

3.6. Cross-correlation among divergence, vorticity and strain rate

Having characterised the spatial and temporal scales of divergence, vorticity and strain
rate of the surface flow, we investigate its dynamics by considering the mutual correlation
between those quantities, which will prove insightful towards a mechanistic understanding
of the processes. We first consider the Eulerian cross-correlation between divergence and
vorticity pgl ol

e (D@l (x+ré))
PDlw] = (D12 (|w|2)1/2

where the absolute value of the vorticity is used as the rotational direction of surface-
attached vortices is immaterial. Figure 13(a) shows the cross-correlation for various Re,,
with Kolmogorov scaling providing again a fair collapse of the different curves. For all
cases, pgl ol X —0.03 at » =0 is observed. This suggests that, although the correlation
between these two quantities is weak, strong vorticity is more likely to be associated with
negative surface divergence; i.e. surface-attached vortices are stronger when downwelling
events occur. Moreover, figure 13(a) indicates a characteristic correlation scale & 10y. This
is close to the length scale of the divergence as the latter decorrelates from itself faster than
the vorticity (see figure 10).

To further probe the interaction between divergence and vorticity, we also examine the
Lagrangian cross-correlation, which is defined as

L (D'®Wlel't+1))
PDlw| = (D)2 (|w|2)1/2°

(3.21)

(3.22)

As shown in figure 13(b), this cross-correlation remains around zero before 7 <O,
suggesting that strong vorticity events do not affect the divergence at later times. However,
for t >0, pél ol becomes negative and dips during a few Kolmogorov time units. This
anti-correlation between D and w, corroborating the observation in figure 13(a), indicates
that sinks in the surface flow are statistically associated with the enhancement of surface-
attached vortices at a later time. This can be explained by considering the physical
picture illustrated in the inset of figure 13(b): when a sink (marked by a red arrow) is
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Figure 14. (a) The spatial-temporal cross-correlation between the divergence and vorticity magnitude as a
function of separation distance. The colours represent the time delay t. (b) The PDFs of the vortex-stretching
term. The darker colour represent the higher Re,.

formed, the correspondent downwelling flow stretches downwards surface-attached vortex
filaments (marked as a green spiral). As a result, the vorticity magnitude grows and pé‘ ol
decreases significantly (yellow shaded area in the plot). The typical duration of the vortex
stretching, around 217,, is consistent with the time scale of the events of negative divergence
highlighted in figure 12(b). When the surface sink has dissipated, the vorticity diffuses
and pgl ol approaches zero (blue shaded area). We note that this picture should hold for
different Re,, as indicated by the good collapse of the lines in figure 13(b).

This picture of the connection between vortex stretching and surface divergence is
corroborated by figure 14(a), plotting the spatio-temporal cross-correlation between the
divergence and vorticity

(D' (x,0) || (x +re,, t+1))
(D)2 (|12

The cross-correlation is again weak for t < 0; whereas, during the initial stage of the
downwelling (0 < T < 21,), the vorticity intensifies and the cross-correlation dips into the
negative range. The anti-correlation extends spatially to r &~ 107, i.e. the characteristic
length scale of the divergence; while after > 27,, when the sink dissipates, the diffusion
of the vorticity leads to an increase of the cross-correlation length scale.

The connection between the surface divergence and surface-attached vortices has been
explored by several authors. Banerjee (1994) proposed that a correlation must exist
between the surface divergence and the number of surface-attached vortices, which
was recently demonstrated by Babiker et al. (2023). Shen et al. (1999) used numerical
simulations to provide a mechanistic interpretation of such correlation, showing how
upwellings bring hairpin vortices close to the surface, where their surface-parallel section
is dissipated, leaving vortex filaments that connect to the surface. The present analysis
has emphasised the relation between surface vortices and downwellings, rather than
upwellings. The former are naturally associated with vortex stretching, which in turn is
classically attributed a key role in the energy cascade. However, the picture appears to be
the completely different in free-surface turbulence, as we now show.

The evolution of vorticity under the action of the strain field is often characterised by
examining the vortex-stretching term w - S - @ in the enstrophy transport equation, where
 is the vorticity vector. On the free surface, this term reduces to w?(dw/dz) = —w?>D.
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Figure 15. (a) The Eulerian cross-correlation function for the divergence and the larger eigenvalue of the
strain-rate tensor on the surface A; for different Re,. This panel shares the same legend with panel (b). The
inset illustrates the relation between the positive/negative divergence (red arrows) and the strength of stretching
(yellow arrows) and compression (green arrows) on the free surface. The length of the arrows marks the
magnitude of stretching and compression. (b) The Lagrangian cross-correlation for the divergence and A; for
different Re,. The green shaded area which covers a time scale of 107, marks the time range when A increases
and decreases.

Figure 14(b) shows the PDF of this terms normalised by Kolmogorov scales for all Re,.
The distribution is symmetric and strongly intermittent. The symmetry is in stark contrast
with the behaviour of 3-D turbulence, in which vortex stretching is predominant (Mullin
& Dahm 2006; Buxton & Ganapathisubramani 2010; Bechlars & Sandberg 2017). The fact
that the free surface ts to suppress the vortex stretching is also observed in Qi et al. (2025)
by examining the asymmetry of the joint PDF of velocity-gradient invariants. This result
may provide clues regarding the energy cascade along the free surface, which has been
found to show inverse energy transfer from small to large scales (Pan & Banerjee 1995;
Lovecchio et al. 2015).

As shown in § 3.3, the surface divergence is associated with vorticity as well as with
strain rate, and in fact somewhat more significantly with the latter. To quantify this aspect,
we consider the Eulerian cross-correlation between the surface divergence and 44

g (D'(x) A (x +ré))
IO'D/ll - (D/2>]/2 (/1/12> 1/2

(3.24)

Figure 15(a) plots this quantity for all cases, showing a positive correlation. This indicates
that a larger positive surface divergence (stronger source) is likely to be associated with
large (i.e. above average) strain rate along the surface stretching direction. As 4; and A
are highly anti-correlated (see figure 5b), a compression of comparable magnitude is also
likely to occur in the surface-parallel direction perpendicular to the one of stretching (with
the compression slightly weaker than the stretching to satisfy incompressibility). This flow
pattern is illustrated by the upper schematic in figure 15(a). On the other hand, a negative
divergence is likely associated with weak (i.e. below average) strain rate along the surface
accompanied by a weak compression perpendicular to it, as also sketched in the lower
schematic of figure 15(a). The cross-correlation has a characteristic scale comparable to
the length scale of divergence, similar as pg‘ ol (figure 13a), although the magnitude of

pg 2, is somewhat larger. This is consistent with the observation that divergent regions

overlap slightly more with high-strain-rate regions compared with high-vorticity regions
(figure 7d).
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Finally, we examine the Lagrangian cross-correlation between divergence and A4
(figure 15b)

L (DAt + 1))
oL = gz

(3.25)

Before a strong divergence event occurs (i.e. T < 0), D and A; grow together, as indicated
by the increasing correlation ,07’5 1,- Considering the strong anti-correlation between 4
and Ay, this implies that the formation of a source is preceded by an increase in magnitude
of the stretching—compression saddle along the surface. After A; reaches its maximum at
7 =0, it decreases and slowly approaches its mean with the stretching—compression saddle
recovering to its average magnitude. For all Re,, the duration of significant correlation is
approximately 107, (green shaded area), which is consistent with the lifetime of high-
strain-rate events (figure 11c¢).

3.7. Clustering on the free surface

We finally examine the clustering of the floating particles along the surface. This process,
originating from the compressible nature of the free surface, differs from the clustering
of inertial particles in incompressible turbulence (Balachandar & Eaton 2010; Brandt
& Coletti 2022). The latter results from the fact that inertial particles depart from
the pathlines of fluid parcels whose fluctuations they cannot follow, thus leading to a
compressible field (Maxey 1987). On the other hand, floating particles cannot follow the
surface pathlines entering the bulk.

Figure 16(a) shows the radial distribution function (RDF) of floating particles defined
as g(r)=(N,/A;,)/(N:/AFov), where N, is the number of particles within a narrow
circular ring with radius r and area A,, and N; is the total number of particles in the FOV.
The RDF quantifies the local concentration around a generic particle, and thus values
larger than unity indicate the formation of clusters over a certain length scale. In the present
case, the values indicate moderate degree of clustering. This is compatible with the weak
compressibility we observe. An exponential fit to the data yields a characteristic length
scale of the clustering around 307, close to the length scale ~ 205 found in the simulations
by Schumacher & Eckhardt (2002). The fact that the cluster length scale is significantly
larger than that of divergence (figure 10a) suggests the clustering is also affected by the
large-scale motion on the free surface. The inset of figure 16(a) displays the same RDF
in logarithmic scale. While the range is not sufficient for a conclusive statement, the data
are compatible with a power-law decay, which would indicate spatial self-similarity of the
concentration field. This would be in turn consistent with previous works that show how
floating particles cluster over fractal sets (Boffetta et al. 2006; Larkin et al. 2009).

The clustering of floating particles is also characterised using the Voronoi tessellation
method (Monchaux et al. 2010). Figure 16(b) displays the PDF of the area of the Voronoi
cells Ay for Rey =312, compared with the PDF that approximates the distribution of
scattered particles in a random Poisson process (Ferenc & Néda 2007). We note the data
only cover a limited range down to Ay / (Ay) =~ 0.3. This corresponds to 5 x 5 pixels in
raw images, slightly larger than the particle size. Voronoi cells smaller than this criterion
tend to have larger uncertainty. Nevertheless, the area PDF clearly shows higher probability
at Ay/ (Ay) <0.83 and Ay/ (Ay) > 2, indicating the occurrence of clusters and voids,
respectively. The degree of clustering is quantified by calculating the standard deviation of
the PDF, o4y, and comparing with that of the random Poisson process, o;,, ~ 0.53. The
ratio o gy /orpp ~ 1.6 confirms the moderate intensity of the clustering.
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Figure 16. (a) The RDF of floating particles on the free surface for various Re,. The inset shows the same
figure with the horizontal and vertical axes in logarithmic scales. This panel shares the same legend with panel
(¢). (b) The PDF of the area of Voronoi cells around floating particles for the case Re; = 312. The purple line
shows the PDF for a random Poisson process. The black dashed line at Ay /{Ay) = 0.83 marks the crossing
point between both curves. (¢) The Lagrangian autocorrelation of the partile concentration for various Re,.

The time scale of the clustering is further characterised by calculating its Lagrangian
autocorrelation function
L (Cy (Tt + 1))

= , 3.26
Pcy (C/‘%) ( )

as shown in figure 16(c), where Cy = 1/Ay denotes the local concentration of particles.
Results for different Re, collapse and exhibit a similar time scale around ~ 407,,. This is
significantly larger than the characteristic time scale of the divergence and is close to the
integral time scale, highlighting again the role of the large-scale motions. This result is
consistent with the observation by Lovecchio et al. (2013), who reported clusters evolving
over a time scale similar to and even larger than the integral time scale of the underlying
turbulence.

It is worth mentioning that, although the formation of clusters is associated with the
compressible surface velocity field, the distribution of clusters is not expected to exhibit a
strong connection with the instantaneous divergence field. Instead, clusters (voids) emerge
where persistent sinks (sources) are present, i.e. the time history of the surface divergence
needs to be considered. This mechanism potentially elucidates the distinct temporal and
spatial scales exhibited by the clusters compared with the divergence.

4. Conclusions

In this work, we experimentally studied the small-scale dynamics of the free surface above
homogeneous and isotropic turbulent water. We focus on a regime of negligible surface
deformation. The experiment is conducted in a zero-mean-flow turbulent water tank in
which the turbulence is forced by two opposingly placed jet arrays. A Taylor Reynolds
number Re, = 207-312 is achieved and high-speed/high-resolution imaging is used to
measure the free-surface flow. By seeding high-concentration floating particles, the surface
velocity field is obtained by PTV and the velocity-gradient tensor is calculated along each
trajectory by a local least-square approach.

We first derive a kinematic relation for the energy dissipation rate on the free surface. By
applying the free-surface boundary conditions and assuming small-scale homogeneity and
isotropy of the flow, the dissipation rate can be written as a function of surface divergence
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and vorticity, highlighting its connection with the non-solenoidal nature of the surface and
surface-normal vorticity.

The PDFs of divergence, vorticity and strain rate collapse once normalised by the
Kolmogorov scales over the considered range of Re,. The symmetry of the PDF of
divergence indicates that sources and sinks have similar strengths. The two eigenvalues
of the strain-rate tensor show clear anti-symmetry and anti-correlation, suggesting the
stretching and compression along the free surface are equally likely and intense, in contrast
with the 3-D turbulence case in which stretching is predominant. The magnitude of these
quantities is examined by plotting PDFs of the squares of them, in which power-law tails
at small magnitude are evident. We show that this is due to the Gaussian core of the
velocity-gradient PDF. As a result, these squared quantities follow chi-square distribution
of different orders based on their definitions.

The intense-divergence, intense-vorticity and intense-strain-rate structures are identified
by a percolation technique. The PDFs of the area of the structures show power-law scaling
(although over a limited size range) suggesting that these structures are self-similar. The
intense-divergence structures have smaller area, whereas the intense-vorticity and intense-
strain structures are more elongated. These observations are further confirmed by their
instantaneous fields. Moreover, strong overlap between the intense-vorticity and intense-
strain regions is also observed.

To examine the energy at different scales, the second-order structure function along
the free surface considered. A clear r2/3 scaling is evident, consistent with the classic
Kolmogorov theory. The scaling for the dissipation rate, on the other hand, is only

preserved when the energy dissipation rate on the free surface used, i.e. Dy ~ 63/ 3. This
leads to a factor Cp; & 3.5 which deviates from the one for 3-D turbulence. The plateau
of Dy at millimetric separation signals anomalously large relative velocities which are
attributed to the compressible nature of the free-surface flow.

The scales of divergence, vorticity and strain are examined by calculating the Eulerian
and Lagrangian autocorrelation functions. The results collapse after normalising by
Kolmogorov scales. The time scale and length scale of divergence are close to Kolmogorov
scales, suggesting the divergence is driven by small-scale processes. On the other hand, the
vorticity and strain rate have larger length scales and are much longer lived compared with
divergence. This behaviour emphasises the difference between the free-surface turbulence
and 3-D turbulence, in which the time scales of vorticity and strain rate are of the order of
the Kolmogorov time scale.

The mutual correlation among the divergence, vorticity and strain rate is explored
by calculating the cross-correlation functions. Negative divergence events (sinks) are
found to increase the magnitude of vorticity through a vortex-stretching process during
which the surface-attached vortex is stretched by the downwelling. After this downwelling
dissipates, the vortex diffuses and the vorticity decays. The evolution of the surface
vorticity is characterised by the term @*D, whose PDF is symmetric, in stark contrast
with 3-D turbulence where vortex stretching prevails. Moreover, upwelling events are
likely to be associated with strong stretching/compression saddles along the free surface,
while downwellings are associated with weak surface-parallel stretching/compression. The
growth and decay of the saddle intensity during upwelling events is clearly illustrated by
Lagrangian autocorrelations

Finally, the clustering of the floating particles due to surface divergence is examined.
The RDF and the Voronoi tessellation method indicate moderate clustering, consistent
with the weak compressibility we observe. The clusters exhibit characteristic spatial and
temporal scales greater than those of the divergence, suggesting the former is directly
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affected by the large-scale motions. Taken together, the results of this study indicate that,
in free-surface turbulence, the energetic scales leave a clearer imprint on the small-scale
quantities compared with what is usually observed in 3-D turbulence.

We note that the surface contamination in the experiment could potentially affect
the surface dynamics, including the surface-parallel fluctuation and surface divergence.
However, this applies to other free-surface flows even when great care is taken in cleaning
the surface. Our results are robust in that they do not change significantly with the time
after the surface skimming. Still, it will be interesting to quantify differences in behaviour
with respect to situations in which the surface is completely devoid of surfactants. Such
a study poses evident challenges for large-scale set-ups such as the present one, and is
beyond the scope of this work. Additionally, novel experiments are needed to determine
the nature and the extent of surfactant-driven effects. Indeed, assessing the degree of
contamination sufficient to alter the flow is also an unmet challenge. Recent measurements
by Erinin et al. (2023), highlighted by Lohse (2023), indicated that the effect of surface
contamination on plunging waves is controlled by the surface tension gradient rather than
by the bulk value of surface tension in the undisturbed fluid. This might apply also to
free-surface motion driven by bulk turbulence; this would explain the evidence of surface
contamination, even though the measured bulk value of surface tension agrees with that
of contaminant-free water. Verifying this picture warrants future investigations.

This work probes several fundamental aspects of free-surface flows, including the free-
surface dissipation rate, the statistics and topology of velocity gradient, the Kolmogorov
scaling in the inertial range and the effect of divergence on surface properties. The results
may further shed light on other associated physical processes. In particular, the enhanced
intermittency of the velocity gradient is found to be associated with the nonlinear self-
amplification (Qi et al. 2025); the balance of vortex stretching and compression might
explain the direction of energy cascade (Pan & Banerjee 1995; Lovecchio et al. 2015;
Ruth & Coletti 2024); and the new scaling in the second-order structure function might
account for the distinct dispersion behaviour of floating particles (Eckhardt & Schumacher
2001; Li et al. 2024). Several questions that are outside the scope of this work may
be better understood leveraging the present findings, such as the exchange of mass and
energy between the surface and the bulk, the inter-scale energy flux and the role of surface
deformation in the dynamics of free-surface flow. Dedicated experiments that acquire data
on the surface deformation, surface flow and flow in the bulk are required to tackle such
problems.
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