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Abstract

Let F(z) be a continuous complex-valued function defined on the closed upper half plane H whose
generalized derivative dF(z) is unbounded. In this paper, we discuss the relationship between the
increasing order of [0 F(x+ iy)wheny —> Oand thatof Az (x, 1) = |[(F(x +1) =2F(x)+ F(x —1))/1],
(x,t € R), whent — O.

1991 Mathematics subject classification (Amer. Math. Soc.): primary 30C62.

1. Introduction

Let F(z) be a continuous complex-valued function defined on H={z;Imz > 0}.
When [|d F(2)]l < +00, it is called (in the terminology of Ahlfors [1]) a quasicon-
formal deformation on H. Denote by Q.(H) the class of quasiconformal deform-
ations on H normalized by ImF(x) = 0 when x € R and F(0) = F(1) =
lim,_, ., F(z)/z> = 0. The importance of the class Q,(H) lies in the fact that it
generates a family of quasiconformal mappings w = f,(2), ¢t > 0, of H onto itself
with 0, 1, oo three fixed points, which is the solution of the differential equation

(1.1 W _ ) e H
. — = F(w),
dt v

with initial condition w(0) = z. In addition, the dilatations K,(z) of f(z) are
controlled by K,(z) < e1?Fl=t,
A continuous real-valued function F (x) defined on R is said to belong to Zygmund
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121 Functions with unbounded 3-derivative 101

class A, [9] if

Fx+1t)—2F(x)+ F(x —1)
t

(1.2) Ap(x, 1) =

is bounded for all x € R and ¢ > 0. Define the Zygmund norm of F(x) by || F||. =
sup, ,cg Ar(x, t). It was proved independently by Gardinar and Sullivan [5] and Reich
and Chen [7] that the necessary and sufficient condition for a real-valued function F (x)
on R to have a quasiconformal deformation extension to H is that F(x) € A,. In [4]
and [5], the relationship between || F||. and laF [lc was discussed and estimations of
them were obtained. In this paper, we will discuss the situation when Ax(x, t) and
dF(z) are unbounded. It is based on the following consideration: when 8 F(z) is
unbounded, equation (1.1) will not have a quasiconformal mapping solution, but it
might have as solution an orientation-preserving homeomorphism of H onto itself,
which is almost everywhere quasiconformal in the sense of Lehto [6] (see Section
4). So it is of interest to study the relationship between Ar(x, t), where x,¢ € R,
and O F (2), where z € H. In Secfion 2, under the assumption that oF (z) € LP(H)
(p > 2), we obtain an estimate of the increase of A.(x,t) when ¢+ — 0, which is
sharp in the order. In Section 3, using the Beurling—Ahlfors extension, we obtain an
estimate of the increase of |d F(x + iy)| when y — 0, over that of Ap(x, ) when
t — 0.

2. The estimation of A-(x, 1)

When F(z) € Q.(H), we know from [5] that

2z—1) // B©) ne3)
21) F(2)=-— — — do,,
D re 7 I (z(z “DE -2 IG-DE - z)) *

where p(z) = 8F(z) € L®(H). We firstly prove that when u(z) € L?(H) (p > 2),
(2.1) still holds.
Define

R s H;
2.2) iz) = {@ Le
u(2), z€L,

where L répresents the lower half plane. Then fi(z) € L?(C) (p > 2). By an integral
operator P defined by Ahlfors {2],

. 1 . 1 1
(2.3) (P)(z) = —— f/( (2) (;—_—Z - E) doy,

we have
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LEMMA 2.1. [2). For i(z) € L?(C) (p > 2), the relation

(2.4) (P):(2) = [1(2)

holds in the distributional sense.

LEMMA 2.2. Let F(z) be a continuous complex-valued function on H normalized
by ImF(x) = 0 when x € R and F(0) = F(1) = lim, F(z)/2> = 0. If
w(zx) =9F(z) € LP(H) (p > 2), then (2.1) still holds.

PROOF. Set

wg) do,.
-1 -2

~1
25 () = (PR - 2PR)(1) = —-& )//
T c¢(¢

Then Q(0) = Q(1) = 0, and by Lemma 2.1, 8Q(z) = fi(z). Hence F(z) =
0()+¢(2) (z € H), where ¢(z) is a holomorphic function in H. Since Im F(x) =

and Im Q(x) = 0 when x € R, ¢(z) can be extended by the reflection principle to be
a holomorphic function in C with normalization ¢(0) = ¢(1) = 0. When z - 00,

we have
|z(z = DI // 1)l p
@1 = T kl=iaz2 1§ — D& — 2)] %
4 2@ =Dl ff 9 .
T stz 18¢ = D& —2)|
- 1] + 12.
Let
1 1
(2.6) S+-=1 (p>2,1<q<?2).
P q

It follows from {¢&| < |z|/2 that | — z| > |z]/2. Hence

, 2|z—1|// MG
‘ e EEC =D

2 i/p
< 'Z (/ |u(§)lpd0;> (

=< Cl|Z|-

1
c -1

q 1/q
do;)
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(4] Functions with unbounded 3-derivative 103

/ 212‘1|// |M(§)|
2 =< do;
1112172 ¢ — D& —2)
§4|2—1|/f ()] do,
n is1z2 166 — 2)|
4|Z—1|(//' . , )l/l’(/f dO’;
d
= b 4 C @) do -2 186 —2)
Substituting zt for ¢ in the last integral, we have
4|z
L < (f ()P ddz) (/ﬁ1>_ |22~ ZIT(T _ l)lq)
< —4 (/ a@Hrd (
= wiepe A ‘”) //c Tz — 1)!4)

< ozl

Q>1/q

Therefore we have Q(z) = O(|z|) whenz — oco. Itfollows fromlim,_, o, F(z)/z°> =0
that lim,_, o, ¢(z)/z*> = 0, which implies ¢ = 0. Hence

N _z2z=1) AE)
F@=0@=-— //cz(c—n(z-z) 4o

:_z(z—l)// O Jo
™ A\SC-DC -2 IE-DC-2) °

THEOREM 2.3. Suppose F(z) satisfies the condition in Lemma 2.2; then for the
boundary function F(x), we have

2.7 Ap(x, 1) < ct™,

where

(/ '“(E)'pd“§> (/f IC(C—I)(€+1)Iq)

= ;”“f”p

et
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PROOF. By [5], we have

Ap(x,t) =

1F(x+t)—2F(x)+F(x——t)

// _ px+1g)
do;
Z(é’ -DE+1

1/p
’d .
:(z—l)(u (/] Iplx + )] U‘)

Substituting t for ¢£ in the last integral, we obtain

o
2

Ap(x, 1) < ct™P,

The increasing order ¢ %7 when t — ©0 is sharp; because we can choose

¢ger, s el{lgl =1in{Im¢ > 0},

2.8 =
&9 we) {0, ¢ e (il > 1) {Img > 0},

where p > 2, ¢ < 2. Then u(¢) € LP(H). It is not difficult to show that
d
20, 1) = E // : O e
T tl<iLimz=0 &P (& — )& + 1)

Since « can approach 2 from below as close as we choose, the constant —2/p cannot
be improved.

Directly from this theorem we can easily obtain

COROLLARY 2.4. Let F(z) be a continuous complex-valued function on H normal-
ized by In F(x) = O when x € Rand F(0) = F(1) = lim_, F(z)/z? = 0. If
u(z) = 0F(z) € L°(H) & LP(H) (p > 2), that is, ju(z) = wi(z) + ia2(2), where
U, € L*(H), u, € LP(H) (p > 2), then

2z — 1) ff 1) 1@
29) F(z)=— + == = d
@ ra==m= ], (c@ —DE -0 IC -1 —z)) %

and

(2.10) Ap(x, 1) <¢ +ct™¥P

where
S PN N S S P N S
Tl S e+, BE i )

q
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3. The estimation of 9 F (x +1iy)

Let F(x) be a continuous real-valued function on R with lim,_,, F(x)/x* = 0.
Suppose A (x, t) is unbounded; then for any extension of F(x) to H, its d-derivative
must be unbounded. Let F(z) = u(x, y) + iv(x, y), where z € H, be the Beurling—
Ahlfors extension of F(x):

1 [t
(3.1) u(x, y) = —f h(t)dt,
2y Jiey

x+y X
v(x,y) = % (/ h(t)dt——/ h(t)dt).

It is obvious that F(z) € C'(H), and

3.2)
1
u, = 2—(F(X+y)— Fx —y),
y

1 x+y 1

—5;—2— - F(t)dt—l—E(F(x-{-y)-l-F(x—y)),

u,,=
vxzi(F(x—y)—2F(x)+F(x+y)),

. 1 X4y x 1

v,,=—P</ F(t)dt—/ lF(t)dt)Jf-;(F(x—!—y)——F(x—y)).

Now we have

THEOREM 3.1. Suppose there exists § > 0, such that
(3.3) Ap(x, 1) < A1)

holds for all x € R and 0 < t < §, where tA(t) € L'(0, 8). Then for the d-derivative
of the Beurling—Ahlfors extension of F (x),

= 1
(3.4) 18 F (xo +iyo)| < El(yo) + 0 (30)

holds for all x, € Rand 0 < yy < 8, where

1/2 1 Yo
(3.5) o(yy) = 2/ IAQyot)dt = — / tA(t)dt.
0 2}’0 0
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PROOF. Let F*(x) = F(2yox + xo — Y0)/2¥0 + ¢x + d, and denote the Beurling—
Ahlfors extension of F*(x) by F*(z). Then

(3.6) Areeny = A2yox + X9 — Yo, 2¥0t) < A(2y01), 0<t<d/2y,
and

1

3.7) F*(z) = gF(2yoz+xo—yo)+CZ+d-
0

From the fact that d F*(z) = E_)F(Zyoz + X9 — yo), we have

(3.8) aF* (1—;1) = F (xo + iyo)-

So to estimate 3 F(xy + iyp), it suffices to estimate IE_)F ()| at only one point z =
(1 + i)/2 with the condition that

(3.9) Ap(x, 1) < A2yot)

holds forall x € Rand 0 < ¢t < §/2y;.
Since the constants ¢ and d can be chosen arbitrarily, we can also assume F(0) =
F(1) = lim,_,o F(x)/x*> = 0. Then it follows from (3.2) that

(3.10) PFQ+D/DP=HX,Y,Z)=4X —-YV +(X+Y +22),

where
1/2
X = / F(t)dr,
0
1
(.10 Y = /F(t)dt,
12
Z= F()2).

We now need the following lemma.

LEMMA 3.2. For the expressions fn (3.11), we have

(3.12) —0o(yy) <Y —3X <a(y),

(3.13) —0(y) < X —3Y <a(w).

(3.14 Lo <z <L
14) —Z (,YO) = = Z (}o)-
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PROOF. Let x € (0, 1/2), then by (3.9),
—xAR2yox) < F(2x) —2F(x) + F(0) < xA(2ygx).

Integrating the above inequality with respect to x from 0 to 1/2, we obtain (3.12).
Let x € (1/2, 1), then by (3.9)

—(1 =0)A2y(1 =x)) < F(1) =2F(x) + F2x — 1) = (1 = x)AQ2yo(1 — x)).

Integrating the above inequality with respect to x from 1/2 to 1, we obtain (3.13).
The inequality (3.14) follows directly from the inequality A(1/2, 1/2) < A(y,).

Now we continue the proof of Theorem 3.1. By Lemma 3.2, we know that the
point (X, Y, Z), where X, Y, Z are defined by (3.11), lies in the closed parallelepiped
bounded by planes X — 3Y = to(y), ¥ —3X = 20 (y) and Z = £A(y)/4. Itis
easy to see that H(X, Y, Z) is convex, and hence reaches its maximum at one of the
eight vertexes of the parallelepiped.

After some computation, we obtain

H(X,Y,Z) < H(0(3)/2,0(5)/2, A(y)/4) = (0 (3) + 2(3)/2)*.
Henqe
18 F (xo + i¥0)| < A(30)/2 + 0 (3o,
which completes the proof of Theorem 3.1.

The following corollaries follow directly from the above theorem.

COROLLARY 3.3. Let F(x) be a continuous real-valued function on R with lim, _,
F(x)/x*=0.1If

(3.15) Ap(x,t) < M|logt|

holds for all x € R and 0 < t < 6, then for the d-derivative of the Beurling—Ahlfors
extension of F(x),

(3.16) [0F (x +iy)| < 2M|logy| + ¢

holds forall x e Rand 0 <t < §, where c = M(1 + 4log?2)/8.
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COROLLARY 3.4. Let F(x) be a continuous real-valued function on R with lim, _, o,
F(x)/x*=0. If

(3.17) Ap(x,t) < M/t* (¢ < 2)

holds for all x € R and 0 < t < 8, then for the 3-derivative of the Beurling—Ahlfors
extension of F(x),

(3.18) 10F (x +iy)| < c/y”

holds forall x e Rand 0 < y < §, wherec = 3 —a)M/(2(2 — a)).

4. An example

In Section 1, we stated that if 3 F (2) is unbounded in H, where F(z) is continu-
ous on H and is normalized by Im F(x) = 0 (x € R) and lim,,, F(z)/z*> = 0,
equation (1.1) might have as solutions a family of almost everywhere quasiconformal
homeomorphisms of H onto itself. The following is an example:

4.1) F(z) = z(log |z])*?, z€ H.
Then
3 1z —1/3 o0
(4.2) dF(z) = 55(102; lz)™"" € L™(H) & L (H),

where 2 < p < 3.
From dw/dt = F(w), w(0) = z, we have

dlog|w|+idargw

@3 (log [w])*?

=dt, w(0) = z,

which is equivalent to the system of equations

argw =argz
(4.4) " dloglw| /
dt.
o (og le)z/3
The solution is
4.5) w= f(z) = —e?@", t>0

1 |
where ¢(z, 1) = [(log |z|)"/* + 1 /3]°.
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It is obvious that for any r > 0, w = f,(z) is a homeomorphism of H onto itself.
After some computation, we have

_ |[Qog|z))!” + 521 /(log |z} — 1
~ |[dog [z + 1112/ (log 213 + 1

6) ' 3 f(2)

afi(2)

and IE_)f,(z)/af,(z)} — 1 only when |z| — 1. Hence {w = fi(z), t > O} isa
family of almost everywhere quasiconformal homeomorphisms of H onto itself. But
there remains an open problem: under what general conditions on dF € L*(H) &
LP(H) (p > 2), does equation (1.1) have solutions which are almost everywhere
quasiconformal homeomorphisms.
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