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Abstract

Let F(z) be a continuous complex-valued function defined on the closed upper half plane H whose
generalized derivative 8F(z) is unbounded. In this paper, we discuss the relationship between the
increasing order of 13 F(x + iy) | when y - • 0 and that of XF(x, t) = \(F(x + t) -2F(x) + F(x -t))/t\,
(x,t e K), when? -> 0.

1991 Mathematics subject classification (Amer. Math. Soc): primary 3OC62.

1. Introduction

Let F(z) be a continuous complex-valued function defined on H = {z; Imz > 0}.
When ||3JF(z)||O0 < +oo, it is called (in the terminology of Ahlfors [1]) a quasicon-
formal deformation on H. Denote by Q*(H) the class of quasiconformal deform-
ations on H normalized by lmF{x) — 0 when x e R and F(0) = F(l) =
lim^oo F(z)/z2 — 0. The importance of the class Q*(H) lies in the fact that it
generates a family of quasiconformal mappings w = f,(z), t > 0, of H onto itself
with 0, 1, oo three fixed points, which is the solution of the differential equation

(1.1) d^ = F { w ) , weH
at

with initial condition iu(0) = z. In addition, the dilatations K,(z) of f,(z) are
controlled by K,(z) < e2fdF»»'.

A continuous real-valued function F(x) defined on R is said to belong to Zygmund
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class A, [9] if

F(x + t) - 2F(x) + F(x - t)
(1.2) kF(x,t) =

t

is bounded for all x e RL and t > 0. Define the Zygmund norm of F(x) by | |F| | , =
SUP* ieK ̂ F(X, t). It was proved independently by Gardinar and Sullivan [5] and Reich
and Chen [7] that the necessary and sufficient condition for a real-valued function F(x)
on R to have a quasiconformal deformation extension to H is that F(x) e A*. In [4]
and [5], the relationship between \\F\\Z and IISFUoo was discussed and estimations of
them were obtained. In this paper, we will discuss the situation when kF(x, t) and
dF(z) are unbounded. It is based on the following consideration: when dF(z) is
unbounded, equation (1.1) will not have a quasiconformal mapping solution, but it
might have as solution an orientation-preserving homeomorphism of H onto itself,
which is almost everywhere quasiconformal in the sense of Lehto [6] (see Section
4). So it is of interest to study the relationship between kF(x, t), where x, t e R,
and dF(z), where z e H. In Section 2, under the assumption that dF{z) e LP(H)
(p > 2), we obtain an estimate of the increase of XF(x, t) when t —> 0, which is
sharp in the order. In Section 3, using the Beurling-Ahlfors extension, we obtain an
estimate of the increase of \8F(x + iy)\ when y -*• 0, over that of kF(x, t) when
t ^ 0 .

2. The estimation of k F {x, t)

When F{z) e Q*{H), we know from [5] that

{2A)

where fi(z) = dF(z) e L°°(H). We firstly prove that when n(z) e L"(H) (p > 2),
(2.1) still holds.

Define

(2-2)
[n(z), ze L,

where L represents the lower half plane. Then jx{z) e LP(C) (p > 2). By an integral
operator P defined by Ahlfors [2],

(2.3) (P£)U) = - - /"/"
n JJc

we have
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LEMMA 2.1. [2]. For fi,(z) e L"(Q (p > 2), the relation

[3]

(2.4)

holds in the distributional sense.

= £(z)

LEMMA 2.2. Let F(z) be a continuous complex-valued function on H normalized
by ImF(x) = 0 when x e R and F(0) = F(l) = Mm^^ F(z)/z2 = 0. //
fi(z) = dF(z) G L"(H) (p > 2), then (2.1) still holds.

PROOF. Set

(2.5,

Then (2(0) = (2(1) = 0, and by Lemma 2.1, 3g(z) = £(z). Hence F(z) =
G(z) + 0(z)(z e / / ) , where cp(z) is aholomorphic function in// . Since ImF(A:) = 0
and Im Q(x) = 0 when x e R , 0(z) can be extended by the reflection principle to be
a holomorphic function in C with normalization </>(0) = 0(1) = 0. When z —»• oo,
we have

dat

= /i + h.

Let

(2.6) - + - = 1 (p > 2, 1 < q < 2).

It follows from |£| < |z|/2 that |f - z| > |z|/2. Hence

~ Dl
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• dOy

daK

Up

\J J\^>\i\/2 Kit-z)

Substituting zr for f in the last integral, we have

<
4 | z - daT

UP

Therefore we have Q(z) = O(\z\) whenz ->• oo. It follows from limbec F{z)/z2 = 0
that lim.^oo (p(z)/z2 = 0, which implies </> = 0. Hence

- D(4T -
dat.

THEOREM 2.3. Suppose F(z) satisfies the condition in Lemma 2.2; then for the
boundary function F(x), we have

(2.7)

where

XF(x, t) < cf"2/p,

•!(//.
c = —

TC

(//„
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PROOF. By [5], we have

F(x + t) - 2F(x) + F(x - t)

[5]

kF(x,t) =

2
n

2—
n

If. dat

1

- D(? + 1) (//„ ,)"'.
Substituting r for tt, in the last integral, we obtain

XF(x,t) <cr2/p.

The increasing order t~2/p when t —>• oo is sharp; because we can choose

(2.8)
[0,

where /? > 2, a < 2. Then //,(£) e LP{H). It is not difficult to show that

MO, 0 = -
7T <>0 S + 1)

Since a can approach 2 from below as close as we choose, the constant —2/p cannot
be improved.

Directly from this theorem we can easily obtain

COROLLARY 2.4. Let F(z) be a continuous complex-valued function on H normal-
ized by ImF(jc) = 0 when x e K and F(0) = F(l) = l i m , ^ F(z)/z2 = 0. //
fi(z) = ~dF(z) e L°°(H) 0 Lp(H) (p > 2), that is, /x(z) = /A,(Z) + fi2(z), where
Hi € L°°(H), M2 € L"(H) (p > 2), then

+ =-=-

and

(2.10) 0 < c,

c=-\\Hi\n
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3. The estimation of dF(x + iy)

Let F(x) be a continuous real-valued function on U. with limx_oo F(x)/x2 = 0.
Suppose \F{x, t) is unbounded; then for any extension of F(x) to H, its 3-derivative
must be unbounded. Let F(z) = u(x, y) + iv(x, y), where z e H, be the Beurling-
Ahlfors extension of F(x):

(3.1) u(x,y) = ̂ - I h(t)dt,
2y Jx-y

v(x,y) = - ( [ } h ( t ) d t - f h { t ) d t \ .

It is obvious that F(z) e C[(H), and

(3.2)

ux = —(F(x+y)-F(x-y)),

uy = - ~ j F(t)dt + ^-(F(JC +y) + F{x - y)),

vx = -(F{x - y ) - 2Fix) + Fix + y)),
y

(f ' F(t)dt-( F(t)dt] + -
y2 \Jx Jx-y ) y

Now we have

THEOREM 3.1. Suppose there exists 8 > 0, such that

(3.3)

holds for all x € Ram/0 < t < 8, where tkit) € L'(0, <5). Then for the d-derivative
of the Beurling-Ahlfors extension of Fix),

(3.4) |3F(*0 + iyo)\ < -k(y0) + aiy0)

holds for all x0 e U. and 0 < y0 < 8, where

(3.5) *(;*,) = 2 [ tk(2y0t)dt = - ^ f tkit)dt.
Jo 2yo Jo
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PROOF. Let F*(x) = F(2y0x + x0- yo)/2yo + ex + d, and denote the Beurling-
Ahlfors extension of F*(x) by F*(z). Then

(3.6) XF,(xJ)=X(2y0x+x0-y(h2y0t)<k(2yQt), 0 < t < S/2y0,

and

F*()(3.7) F*(z)
2y0

From the fact that dF*(z) = dF(2y0z + x0 - y0), we have

(3.8) dF* 0~Y^\ = dF(xo + iy0).

So to estimate dF(x0 + iy0), it suffices to estimate |9F(z)| at only one point z
(1 + /)/2 with the condition that

(3.9) kF(x, t) < k(2y0t)

holds for all x e K and 0 < t < 8/2y0.
Since the constants c and d can be chosen arbitrarily, we can also assume F(0)

F(l) = lirn^oo F(x)/x2 = 0. Then it follows from (3.2) that

(3.10) |3F((1 + /)/2)|2 = H(X, Y, Z) = 4(X - Y)2 + (X + Y + 2Z)2,

where

/

1/2

F(t)dt,

Y= I F(t)dt,
Jl/2

(3.11)

We now need the following lemma.

LEMMA 3.2. For the expressions in (3.11), we have

(3.12) -a(y0) <Y-3X <a(y0),

(3.13) -a(yo)<X -3Y <a(y0),

(3.14) ~-Hyo) < Z < -A.(y0).
4 4 '
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PROOF. Let JC e (0, 1/2), then by (3.9),

-xk(2y0x) < F(2x) - 2F(x) + F(0) < xk(2y0x).

Integrating the above inequality with respect to x from 0 to 1/2, we obtain (3.12).
Letx e (1/2, 1), then by (3.9)

- (1 - x)X(2yo(l - x)) < F(l) - 2F(x) + F(2x - 1) < (1 - x)X(2yo(l - x)).

Integrating the above inequality with respect to x from 1/2 to 1, we obtain (3.13).
The inequality (3.14) follows directly from the inequality XF(1/2, 1/2) < A.(_y0).

Now we continue the proof of Theorem 3.1. By Lemma 3.2, we know that the
point (X, Y, Z), where X, Y, Z are denned by (3.11), lies in the closed parallelepiped
bounded by planes X - 3Y = ±o(y0), Y - 3X = ±a(y0) and Z = ±X{yQ)/A. It is
easy to see that H{X, Y, Z) is convex, and hence reaches its maximum at one of the
eight vertexes of the parallelepiped.

After some computation, we obtain

H(X, Y, Z) < H(a(yo)/2, a(yo)/2, X(yo)/4) = (a(y0) + k(yo)/2)2.

Hence

\dF(x0 + iyo)\ < k(yo)/2 + a(y0),

which completes the proof of Theorem 3.1.

The following corollaries follow directly from the above theorem.

COROLLARY 3.3. Let F(x) be a continuous real-valued function on OS with l im^^
F(x)/x2 = 0. //

(3.15) XF(x,t)<M\\ogt\

holds for all x e R andO < t < 8, then for the 3 -derivative of the Beurling-Ahlfors
extension of F{x),

(3.16)

holds for all x eKandO < t < S, where c = M(\ + 41og2)/8.
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COROLLARY 3.4. Let F(x) be a continuous real-valued function on K with lim^oo
F(x)/x2 = 0. / /

(3.17) kF(x,t) <M/ta (a < 2)

holds for all x G RandO < t < S, then for the d-derivative of the Beurling-Ahlfors
extension of F(x),

(3.18) \dF(x + iy)\<c/ya

holds for allx eRandO <y<8, where c = (3 - a) A//(2 (2 - a)).

4. An example

In Section 1, we stated that if dF(z) is unbounded in H, where F(z) is continu-
ous on H and is normalized by Im F(x) — 0 (x e K) and lim^oo F(z)/z2 = 0,
equation (1.1) might have as solutions a family of almost everywhere quasiconformal
homeomorphisms of H onto itself. The following is an example:

(4.1) F ( z ) = z { \ o g \ z \ ) v \ zeH.

Then

(4.2) 8F(z) = ^ ( l o g |z|)-' /3 G L

where 2 < p < 3.
From dw/dt = F(w), w(0) = z, we have

(4.3) ^ o g | . l + ^ a r g W = ^ ^
(log | to |)2/3

which is equivalent to the system of equations

(4.4)
arg w = arg z

f
Jo

dlog\w\

(log 110

The solution is

(4.5) w.= f,(z) = — e0U' '\ t > 0
\z\

where 0(z,r) = [(log |
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It is obvious that for any t > 0, w = f,(z) is a homeomorphism of H onto itself.
After some computation, we have

(4.6) 3/.U) [(log |z|)I/3 + ir]2/(log Izl)2'3 - 1
< l

and \df,(z)/df,(z)\ -> 1 only when \z\ -> 1. Hence {w = f,(z), t > 0} is a
family of almost everywhere quasiconformal homeomorphisms of H onto itself. But
there remains an open problem: under what general conditions o n 3 f e L°°(H) ©
LP(H) (p > 2), does equation (1.1) have solutions which are almost everywhere
quasiconformal homeomorphisms.
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