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GROUP RINGS OVER Z(P) WITH FC UNIT GROUPS 

H. MERKLEN AND C. POLCINO MILIES 

Introduction. Let RG denote the group ring of a group G over a 
commutative ring R with unity. We recall that a group is said to be an 
FC-group if all its conjugacy classes are finite. 

In [6], S. K. Sehgal and H. Zassenhaus gave necessary and sufficient 
conditions for U(RG) to be an FC-group when R is either Z, the ring of 
rational integers, or a field of characteristic 0. 

One of the authors considered this problem for group rings over infinite 
fields of characteristic p ^ 2 in [5] and G. Cliffs and S. K. Sehgal [1] com­
pleted the study for arbitrary fields. Also, group rings of finite groups 
over commutative rings containing Z(p), a localization of Z over a prime 
ideal (p) were studied in [4]. 

In this paper we prove the following: 

THEOREM. Let R = Z(P). Then, the group of units of RG is an FC-group 
if and only if one of the following conditions hold: 

(i) G is abelian. 
(ii) G is an FC group whose torsion subgroup T is central and the sub­

group T' of torsion units whose order is not divisible by p is either finite or 
has the form T' = C.H where C == Z(qœ) for a prime q 9^ p, [G, G] C C 
and H is finite. 

Proof of necessity. Let G be a non-abelian group such that U{RG) is an 
FC-group. Then U(ZG) is also FC, thus G itself is FC and Theorem 1 of 
[6] together with Theorem 2 of [4] showr that the torsion subgroup T of G 
satisfies one of the following conditions: 

(Ti) T is central in G. 
(T2) T is abelian non central and for x £ G, xtx~l = xô(x), ô(x) = d=l, 

for all / Ç T. 

We wTish to show first that in the present case T must always be central. 
This is a consequence of the following lemma. 

LEMMA 1. Let x, t be two elements in a group G such that xtx~l = t~\ 
with o(/) = n ?£ 2. Then U(RG) is not FC. 

Proof. Set a = lcm(p, n) and S = {x G Z | x = 1 (mod a)}. Then the 
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localization Rf = S - 1 . Z is such tha t R' C R and no divisor of n is inver-
tible in R'' ; thus, the units of finite order of R'(t) are trivial (see [7]). 

The element u — 1 + at + . . . + an~Hn~l is a uni t in i£'(2) whose 
inverse is u~l = (1 — an)~l(\ — at). Now, an easy computat ion shows 
tha t 

uxu = vx where 
I — a n _i 

-^u — at e u(R'(t)) i n 

.1 — a 

Since v is not trivial, it is of infinite order. Also, it is easy to see tha t 

umxu~m = vmx, for all m £ Z. 

Hence, x has infinitely many conjugates in RG, thus U(RG) is not an 
FC-group. 

To complete the proof of the necessity we shall now assume tha t G is 
not abelian. We shall denote by T' the set of all elements in T whose order 
is not divisible by p. We wish to show tha t if T' is infinite then T' — C.H 
where C = Z(qœ) for a prime q ^ p, [G, G] d C and H is finite. 

LEMMA 2. For each element t = [x, g] Ç [G, G], there is a finite set 
Ht C V such that for all t' G T', iff g Hu then t £ (/ '). 

Proof. Assume, by contradiction, tha t there exists an infinite set 
B C T' such tha t for a l l / ' £ B we have t ha t J g (/ '). We define a sequence 
{/J of elements in B inductively in such a way tha t 

tn HL \l) h, • • • , 4 - 1 / 

and consider the idempotents 

e„ = - (1 + *„ + . . . + C1"1) 
Sn 

where sn = 0(tn). 
Then, the elements un = enx + (1 — en) are units in RG whose respec­

tive inverses are Un~l = enx~l + (1 — en). Now, consider the conjugates 

gn = UngUn~
l = (ent + 1 - en)g. 

I t is easy to see tha t for i > j gt = gj if and only if et(t — 1) = e^t — 1) 
and this cannot happen because of the choice of the elements {tn}. Hence 
g has infinitely many conjugates in U(RG), a contradiction. 

Now we can finish our argument : 
Since Tf is central, we can always find a commuta tor a of prime order 

q 9e p. Applying Lemma 2 to this element it follows readily t ha t the 
g'-part of Tf must be finite, and the #-part infinite. 

Sett ing C = {/' Ç T'\ a Ç (/')} we see tha t C is an infinite abelian group 
which is torsion and indecomposable. By a result of Kulikov (see [3, 
27.4]) it must be C = Z(qœ). Also J1 = C X H where H is finite. 
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Proof of sufficiency. If G satisfies (i), U{RG) is trivially an FC-group. 
So, we shall assume G satisfies (ii) and consider first the case where T' 
is infinite. 

Since T is abelian, the £-Sylow subgroup of T, which we shall denote 
by Tp, is a direct factor. Wri t ing T = Tp X Tf we have t h a t RT = ST' 
where S = RTV. We remark t ha t S is a commuta t ive ring and, by the 
theorem in [2], it contains no non-trivial idempotents . 

We wish to show tha t each conjugate class in U(RG) is finite. Let 2) 
be a transversal of T in G, which we may choose such tha t if x Ç 2 then 
x _ 1 £ 2 . Since T is central, it will be enough to prove t ha t conjugate 
classes of elements in 2 are finite. 

For each positive integer m we shall denote by Qm the subgroup of C 
of order qm, so tha t Qm X H is an increasing chain of subgroups, whose 
union is T'. 

As in [6, Lemma 2.4] we see tha t any unit v in RG can be writ ten in 
the form: 

v = Y, *(h)h with a(h) G ST', h £ 2 
h 

where a (h)a (h') = 0 whenever h ^ /&'. 
Given v, we pick m such tha t Qm X H contains the suppor ts of all a(h) 

in the above expression of v (note tha t , since a(h) Ç ST' we consider 
supp (a(h)) C T'). Let {^} be a complete set of primitive orthogonal 
idempotents in Q(Qm X H). Since p \ \Qm X H\ all these idempotents 
belong to R(Qm X H). 

Writ ing v~l in the form v~l = J2 fi(h)h~l we obtain 

X) <*(h)p(h) = 1 and eMh) = e.aQtffiQi). 
h 

If we choose h G 2 such tha t 6ia{h) ^ 0 it is easy to see tha t the ele­
ment ei(x(h)l3(h) is an idempotent in S(Qm X H)et. Since this ring con­
tains no non-trivial idempotents , it follows tha t 

e = a(h)P(h) = et 

and, for each i, there is only one element ht £ 2 such tha t eta{hi) ^ 0. 
Hence, sett ing at = eta (hi), we have 

v = X ccihu v~X = ^ (^i~1hi~
1 and a^a/ - 1 = £*• 

i i 

Since G is an FC-group, the set of all commuta tors of the form 
[h, g], h £ G, g fixed in G, is finite; thus we may find a finite group Q in C 
such t ha t Q contains all these commuta tors . 

For a given unit v = J2 a(h)h in RG, we may now choose a finite sub­
group Qv X H oî T which contains both Qm and Q. 
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If we consider QQ as included in Q(QV), it is easy to see that 

QQV^QQ® (@tKt) 

where each Kt is a cyclotomic extension of 0- Also if we denote by ft the 
idempotents such that Kt = (QQv)fi and set 

e = ŒXZQX)/\Q\ 

for all ft we have that ef, = ft. 
This means that we may index the idempotents of Q(QV X H) in such 

a way that 

ete = etif 1 ^ i ^ t 
e{e = 0 if t + 1 S i ^ r 

where et+i, . . . , er are fixed, independently of v. 
Now, we are ready to complete the proof. We have: 

t T 

[v,g]= Jl [hi,g]et= X) [hi,g]eet+ ^ [hug]et. 
i i=\ i=t+l 

Since [hu g] G Q, we see tha t [hiy g]e = e, and so 

T 

[v, g] = e + X) [hi,g]et. 

Consequently, the set of commutators [v, g], v Ç U(RG), is finite. 
Finally, we note that in the case where T' is finite the previous argu­

ment may be repeated in a much simpler form, because it is possible to 
use a fixed family of idempotents. 
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