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This study investigates the interaction between a freely rising, deformable bubble and a
freely settling particle of the same size due to gravity. Initially, an in-line configuration is
considered while varying the Bond, Galilei and Archimedes numbers. The study shows
that as the bubble and particle approach each other, a liquid film forms between them that
undergoes drainage. The formation of the liquid film leads to dissipation of kinetic energy,
and for sufficiently large bubble velocities, particle flotation takes place. Increasing the
Bond number causes the bubble to deform more severely, which may allow the particle to
pass through the bubble as it ruptures. This work also considers an offset configuration,
which shows that the bubble slides away from the particle, affecting its settling trajectory.
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1. Introduction

The transport and dynamics of rigid or deformable particles and their interaction
with surfaces are of considerable importance in various scientific and industrial fields
due to their potential for efficient, and sustainable applications. Understanding these
interactions is crucial for optimising processes ranging from wastewater treatment to
mineral beneficiation and food processing. In many engineering applications, a deformable
surface, or interface separating two fluids, affects the motion of rigid or deformable bodies.
Furthermore, in oceanography, particles and marine snow settle in a background fluid
that consists of large density gradients caused by variations in salinity and temperature
levels, which may greatly affect their fate. Bubbles rising in the ocean may also interact
with sedimenting particles, which may play a role in their transport (Masry et al. 2021).
Comprehensive reviews have been carried out on the motion in viscosity and/or density
stratified fluids by Govindarajan & Sahu (2014), Ardekani, Doostmohammadi & Desai
(2017), Magnaudet & Mercier (2020) and More & Ardekani (2023).

At the core of these interactions is the dynamic behaviour of bubbles. When a bubble
impacts and interacts with a horizontal (Klaseboer et al. 2014; Manica, Klaseboer & Chan
2015, 2016) or curved (Basařová, Zawala & Zedníková 2019; Esmaili et al. 2019) solid
surface, a hydrodynamic dimple (Ascoli, Dandy & Leal 1990) might form on the surface
of the bubble closest to the solid boundary. If the approach velocity of the interaction is
sufficiently high, the bubble may rebound, or bounce, after colliding with the solid surface
(Zawala et al. 2007; Chan, Klaseboer & Manica 2011; Zawala & Dabros 2013). If the
approach velocity is low, a trapped liquid film in the gap region between the bubble and
the solid surface will start to drain. Klaseboer et al. (2000) and Chan et al. (2011) have
studied the film drainage and coalescence of bubbles and drops, which present further
complexities. The deformation of these bodies can be characterised across six orders of
magnitude in length scales, which presents difficulties when studying the dynamic nature
of the interaction both experimentally and numerically. Moreover, as a bubble impacts
a solid wall, it exerts forces that can dislodge contaminants or biofilms (Gómez-Suárez,
Busscher & van der Mei 2001; Sharma et al. 2005a,b; Parini & Pitt 2006; Esmaili et al.
2019). Menesses et al. (2017) have shown that a continuous stream of single bubbles can
effectively prevent biofouling by generating consistent shear stress. This principle extends
beyond cleaning, influencing the behaviour of bubbles in different media and applications.
The adhesion behaviour of bubbles or droplets with solids is influenced by the properties
of the deformable interface and the surrounding fluid (Danov et al. 2016), the presence of
contaminants (Basarova, Soušková & Zawala 2018; Legawiec et al. 2023) and the surface
characteristics of the solid, such as its geometry or wettability (Krasowska, Zawala &
Malysa 2009). As a bubble adheres to a solid surface, it forms a three-phase contact
line, which is the interface where the bubble, solid and liquid meet. The dynamics and
stability of the contact line are crucial in understanding how bubbles interact with solid
surfaces.

In the context of mineral beneficiation, froth flotation relies on bubbles to separate
valuable minerals from waste material. The process of flotation depends heavily on
the characteristics of the separated particles, and the bubbles. Specifically, the surface
wettability of the solid particles is crucial for allowing the bubbles to selectively
separate hydrophobic from hydrophilic particles (Xie et al. 2021), and the bubbles
must be appropriately sized to enhance the probability of collision between the bubbles
and the particles (Yoon & Luttrell 1989). The main causes behind the detachment
of particles from bubbles during flotation separation systems were summarised by
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Klassen & Mokrousov (1963) and Wang et al. (2023). These include the sliding of the
particle on the bubble surface, the overall hydrodynamic behaviour of the bubble, such
as its lateral migration or deformation, or the collision of the aggregate with a solid wall.
When a bubble–particle aggregate collides with a solid horizontal wall, Wang et al. (2023)
have found that the detachment of the particle is dependent on the inclination angle of the
major axis of the bubble with the solid wall during the collision. Comprehensive reviews
of recent advancements in understanding the hydrodynamics and surface interactions in
froth flotation systems can be found in Wang & Liu (2021) and Xie et al. (2021).

In liquid–solid suspensions, the behaviour of bubbles is equally important. Bubbles
interact with the solid particles, affecting their rise velocity and overall dynamics.
Hooshyar et al. (2013) have considered the interaction between a rising bubble and a
neutrally buoyant particle suspension. The particles were characterised based on their
diameter, and when the size of the particles is sufficiently small, the bubble rises without
collision. The work has shown that as the rising bubble interacts with larger particles, the
bubble’s rise velocity decreases, its surface deforms, and it imparts momentum on the
surrounding particles. The bubble will then continue to rise until it interacts with another
particle, repeating the cycle of the interaction.

Many experimental (Clift, Grace & Weber 1978; Bhaga & Weber 1981) and
computational (Sussman & Puckett 2000; Dijkhuizen, van Sint Annaland & Kuipers 2010)
studies have considered the hydrodynamic behaviour of particles or bubbles settling or
rising in a quiescent background fluid. At small Reynolds number, Re = DpUtρl/μl,
the particle terminal speed is Ut = 2

9(ρp − ρl)gR2/μl where ρp is the particle density,
R = Dp/2 is the particle (bubble) radius, g is the gravitational acceleration, and ρl and
μl are the fluid density and viscosity, respectively. At larger Re, (Mordant & Pinton
2000; ten Cate et al. 2002) considered the inertial regime, where 1.5 < Re < 7700, such
that Ut is unknown a priori. An alternative way of characterising the particle motion
in a homogeneous fluid is through the Archimedes number, Ar = ρl(ζpg)1/2R3/2/μl,
where ζp = ρp − ρl/ρl, which corresponds to a particle Reynolds number based on a
gravitational velocity scale (Magnaudet & Mercier 2020). Tripathi, Sahu & Govindarajan
(2015) recently conducted three-dimensional direct numerical simulations of a rising
bubble in a quiescent, Newtonian fluid. The study found that the rising bubble has five
distinct regimes, governed by two non-dimensional parameters, which are the bubble
Galilei, Ga = ρlg1/2R3/2/μl, and Bond, Bo = ρlgR2/γ , numbers, where γ is the surface
tension. The computational study was in wide agreement with the experimental work
of Bhaga & Weber (1981), and the five distinct regimes are (i) axisymmetric bubble
geometry at small Ga and small Bo, (ii) skirted spherical cap bubble at small Ga and
large Bo, (iii) a spiralling bubble at large Ga and small Bo, and (iv) peripheral or
(v) central breakup at large Ga and Bo. The bubble dynamics can be further classified
based on surface mobility; mobile bubbles with low contamination, by the presence of
surfactants for example, achieve higher terminal velocities, while immobile, contaminated
bubbles rise more slowly due to the absence of tangential velocity (Esmaili et al.
2019).

The aim of this paper is to investigate the interaction between a freely rising, deformable
bubble and a freely settling spherical particle in a quiescent, Newtonian fluid. This study
examines the impact of several parameters on the interaction behaviour, including the
Galilei number, the Bond number, the density contrast between the solid and the fluid
(ζp), the ratio of the particle radius to the bubble radius (Ω) and the surface wettability
characteristics of the particle. The paper implements a three-dimensional particle-resolved
direct numerical simulation using the level contour reconstruction method, which is a
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hybrid level-set/front-tracking method to accurately capture the motion and the interaction
of the bubble and the particle. The outline of the paper is as follows: § 2 contains the
methodology and the numerical technique; § 3 provides a discussion of the results; and § 4
contains the conclusions and future directions.

2. Methodology

This section contains the problem formulation, governing equations and the numerical
method used in this paper. We perform highly resolved numerical simulations of the
incompressible Navier–Stokes equations in a three-dimensional cubical Cartesian domain
with Lx = Ly = Lz = 16R, as shown in figure 1. The computational domain is divided into
parallel subdomains, which are each uniformly discretised by a 643 finite-difference mesh.
The equations governing Newtonian and incompressible two-phase flows correspond to
mass and momentum conservation, respectively, expressed in the present work using a
single-field formulation,

∇ · u = 0, (2.1)

ρ

(
∂u
∂t

+ u · ∇u
)

= −∇p + ρg + ∇ · μ(∇u + ∇uT) + F + F FSI, (2.2)

where u, ρ, p, μ, g, F and F FSI denote the velocity, density, pressure, viscosity,
gravitational acceleration, the local surface tension force at the interface, and the direct
forcing term for fluid–structure interaction, respectively. Here, F FSI can be computed
based on the work of Fadlun et al. (2000) as

F FSI = ρ

(
us − u

�t

)
, (2.3)

where us is the velocity of the immersed solid boundary. Direct forcing can be considered
as imposing the particle velocity directly on the boundary which is equivalent to applying
F FSI inside the solid structure (Pathak & Raessi 2016). (Feedback forcing (Goldstein,
Handler & Sirovich 1993) to obtain the necessary force to satisfy the desired velocity
of the particle is an alternative approach, however, direct forcing is found to be faster and
more efficient (Yang & Stern 2012; Pathak & Raessi 2016).)

We employ a hybrid formulation for the surface tension force, F (Shin et al. 2005; Shin,
Chergui & Juric 2017):

F = γ κHf Hf . (2.4)

Here γ is the surface tension, considered constant, Hf is the Heaviside function, and κHf
is twice the mean interface curvature calculated on the Eulerian grid using the following
equations:

κHf = F L · N
N · N

, (2.5)

F L =
∫

Γ (t)
κf nf δf (x − xf ) dS, (2.6)

N =
∫

Γ (t)
nf δf (x − xf ) dS. (2.7)

In (2.6) and (2.7), xf is a parameterisation of the interface, Γ (t), and δf (x − xf ) is a
three-dimensional Dirac delta function that is non-zero only at the interface, x = xf .
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(a) (b)

Figure 1. (a) The three-dimensional Cartesian cubic domain with a size of 16R × 16R × 16R, showing the
subdomain decomposition and the initial problem set-up; (b) the initial separation distance between the particle
and the bubble is shown.

Here nf is the unit normal vector to the interface, where the interface has an area element,
dS; κf is again twice the mean interface curvature, however, it is now obtained from the
Lagrangian interface structure (Shin et al. 2017; Kahouadji et al. 2018). The geometric
information in N , such as the unit normal nf and the interface infinitesimal area dS, are
directly computed from the Lagrangian interface, then distributed onto the Eulerian grid
using a discrete delta function and the immersed boundary method developed by Peskin
(1977). The Lagrangian elements of the interface are advected by integrating the following
equation using a second-order Runge–Kutta method:

dxf

dt
= V ; (2.8)

here, the interface velocity V is interpolated from the Eulerian velocity. Further details
on calculating the force, constructing the function field N and the Heaviside function,
and advecting the interface can be found in Shin et al. (2005), Shin & Juric (2007), Shin
(2007), Shin & Juric (2009a), Shin & Juric (2009b) and Shin, Yoon & Juric (2011).

The particle’s motion and interaction with the fluid are modelled using a fictitious
domain method, such that the Navier–Stokes equations are applied to the entire flow field.
Tracking the solid body’s motion is achieved by introducing a distance function φs. At the
start of the simulation, φ0

s is calculated at the cell centre of the Eulerian grid (x0
i , y0

i , z0
i )

to create the solid volume, which is then updated to calculate φn
s at (xn

i , yn
i , zn

i ) by tracking
the solid’s centre position and rotation over time. The solid object’s movement is updated
by its momentum-averaged translational and rotational velocities, which are calculated in
the following:

mpup =
∫
V

ρu dV, (2.9)

Ipωp =
∫
V

r × ρu dV, (2.10)

where mp is the mass of the solid, up is its translational velocity, V is the solid volume,
r is the radial vector from it’s centre, Ip is the moment of inertia and ωp is the
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rotational velocity. The moment of inertia can be calculated using

Ip =
∫
V

ρp|(r · r)I − r ⊗ r| dV, (2.11)

and the position of the solid can be tracked by the following velocity field:

us(x, y, z) = up + ωp × r. (2.12)

Utilising equation (2.12), the updated solid distance function can be calculated at the
current position (xn

i , yn
i , zn

i ) by tracing back to the original position (x0
i , y0

i , z0
i ) using

φs(xn, yn, zn) = φs(xn − us�t, yn − vs�t, zn − ws�t) = φs(x0, y0, z0). (2.13)

Rigid body constraints are applied to the solid volume for the momentum-averaged
translational and rotational velocities, and an additional high viscosity, i.e. 500 times that
of water, coefficient is utilised for the solid volume.

Within the single-fluid formulation, the material properties in the domain are calculated
as follows:

ρ(x, t) = [ρb + (ρl − ρb)Hf (x, t)]Hs(x, t) + ρp(1 − Hs(x, t)), (2.14)

μ(x, t) = [μb + (μl − μb)Hf (x, t)]Hs(x, t) + μp(1 − Hs(x, t)), (2.15)

where the subscripts (l, b, p) denote the background liquid, the bubble and the solid
phase, respectively. A smoothed three-dimensional Heaviside function Hf (x, t) for the
fluid phases is defined as zero in the bubble phase, and unity in the background liquid
phase. A similar approach has been used for defining the properties of the solid particle,
Hs(x, t) which is considered as zero in the solid phase and unity for both fluid phases
(the bubble and the surrounding liquid). The sharp transition between the two phases is
resolved numerically with a steep, yet smooth transition across three to four grid cells
(Shin et al. 2017; Kahouadji et al. 2018).

To non-dimensionalise the governing equations, we introduce the following scaling:

(x, y, z) = R(x̃, ỹ, z̃), u =
√

gRũ, t =
(

R√
gR

)
t̃,

p = (ρlgR)p̃, μ = μlμ̃, ρ = ρlρ̃,

⎫⎬
⎭ (2.16)

where the tildes, introduced temporarily, designate dimensionless variables. After
dropping the tildes, the non-dimensional governing equations read

∇ · u = 0, (2.17)

ρ

(
∂u
∂t

+ u · ∇u
)

= −∇p − ρez + 1
Ga

∇ · [μ(∇u + ∇uT)] + F
Bo

+ F FSI, (2.18)

where ez denotes the unit vector in the z-direction (see figure 1), Ga is the Galilei number
and Bo is the Bond number. The non-dimensional material properties then read

ρ(x, t) =
[
ρb

ρl
+

(
1 − ρb

ρl

)
Hf (x, t)

]
Hs(x, t) + ρp

ρl
(1 − Hs(x, t)), (2.19)

μ(x, t) =
[
μb

μl
+

(
1 − μb

μl

)
Hf (x, t)

]
Hs(x, t) + μp

μl
(1 − Hs(x, t)). (2.20)

To mitigate the stress singularity at the contact line (Sui, Ding & Spelt 2014), the
generalised Navier boundary condition is employed in the framework of the level contour
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reconstruction method to model the contact line motion (Yamamoto et al. 2013; Shin,
Chergui & Juric 2018), which may be crucial for the interaction between bubbles and
particles over a certain range of parameters as will be discussed in the following section.
Derived from molecular dynamics simulations (Qian, Wang & Sheng 2003), the boundary
condition indicates that the interaction force in a thin layer adjacent to the solid wall
includes contributions from both viscous shear stress and an uncompensated Young’s
stress. The boundary condition thereby combines Navier slip, which relates the contact
line displacement to the shear stress at the wall, with the uncompensated Young’s stress.
This approach models microscale slip information at the macroscale, addressing the
infinite shear stress problem near the contact line observed under no-slip conditions. The
non-dimensional slip velocity ucl is defined as follows:

ucl = λs

(
∂u
∂n

∣∣∣∣
wall

+ cos θcont − cos θext

Ca�x

)
, (2.21)

where λs is the slip length, set at a quarter of the size of a grid cell in this work, Ca is the
capillary number defined as Ca = μl

√
gR/γ , θcont is the apparent contact angle governed

by the tangential component of the interface element tcont, and θext is the extended contact
angle (see Appendix B) for an extended interface inside the wall modelled by tracing a
new vector text in the extended surface. The extended interface contact angle θext is used
to account for the contact angle hysteresis, such that the hysteresis model is as follows:

θext =

⎧⎪⎨
⎪⎩

θext = θA if θcont > θA,

θext = θR if θcont < θR,

θR < θext < θA otherwise,
(2.22)

where θA and θR are the advancing and receding contact angles, respectively.
The numerical method involves temporally discretising equation (2.2) into the following

form:

un+1 − un

�t
= −(u · ∇u)n + 1

ρn [Gn − ∇p], (2.23)

where G contains the gravitational, surface tension, fluid–structure interaction and viscous
forces. The momentum solver computes the velocity and pressure variables on a fixed and
uniform Eulerian mesh by means of Chorin’s projection method (Chorin 1968). For spatial
discretisation, the well-known staggered mesh, MAC (marker and cell) method, is used
(Harlow & Welch 1965). The nonlinear term is spatially discretised using a second-order
essentially non-oscillatory scheme (Shu & Osher 1989; Sussman et al. 1998), whereas the
other terms are spatially discretised using standard second-order centred differences.

The time integration of (2.23) is split into two substeps. An intermediate unprojected
velocity, u∗, is first calculated neglecting the pressure gradient,

u∗ − un

�t
= −(u · ∇u)n + Gn

ρn , (2.24)

followed by the calculation of the final velocity, un+1,

un+1 − u∗

�t
= − 1

ρn ∇p, (2.25)
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where �t is the time step. By enforcing the divergence-free condition on un+1, the elliptic
pressure Poisson equation,

∇ ·
(

1
ρn ∇p

)
= ∇ · u∗

�t
, (2.26)

is solved using a multigrid iterative method whence un+1 is obtained:

un+1 = u∗ − �t
ρn ∇p. (2.27)

The temporal integration scheme for all the simulations performed is based on a
second-order Gear method (Tucker 2013), with implicit solution of the viscous terms of the
velocity components (Kahouadji et al. 2018). The time step, �t, at each temporal iteration
is set to satisfy the following criterion:

�t = min{�tcap, �tCFL, �tint, �tvis}, (2.28)

where �tcap, �tCFL, �tint, �tvis are the capillary, Courant–Friedrichs–Lewy (CFL),
interfacial and viscous time steps, respectively. These time steps are defined as follows:

�tcap ≡ 1
2

√
(ρb + ρl)�x3

min
πσ

, �tCFL ≡ min
j

(
min

domain

(
�xj

uj

))
,

�tint ≡ min
j

(
min
Γ (t)

(
�xj

‖V‖
))

, �tvis ≡ min
(

ρb

μb
,

ρl

μl

)
�x2

min
6

,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.29)

where �xmin = minj(�xj) is the minimum size x for cell j. The mesh size used in this
study is 5123, which corresponds to a resolution of R/�x = 32. No-penetration boundary
conditions are imposed on the lateral domain walls, and no-slip, no-penetration boundary
conditions are imposed on the top and bottom boundaries.

In this paper, the viscosity ratio λ = μl/μb = 100, and the density ratio β = ρl/ρb =
1000 between the bubble and the background fluid are kept constant. The bubble and
the particle radii are kept constant Ω = Rb/Rp = 1 unless otherwise stated, with an
initial distance of 6R from the centre of the bubble to the centre of the particle. The
non-dimensional parameters governing the problem are Ar, Bo and Ga. The parameter
Ar, governed by ζp, is used instead of Re as the particle terminal velocity is unknown a
priori. Unless otherwise stated, the particle Archimedes number (Ar = 10) is kept constant
by setting ζp = 1. This study explores the bubble parameter range of Bo = [0.5–5] and
Ga = [10, 20]; Ga is kept relatively low to explore the regime wherein the bubble follows
a rectilinear path and interacts with the settling particle.

The numerical method utilised in this study has been extensively validated with
experimental works found in the literature. In figure 2, two different validation results
are provided. Figure 2(a,b) show a bubble rising from rest in a quiescent Newtonian fluid,
approaching a terminal velocity and interacting with a solid, immobile and impermeable
wall. The results are compared with the experimental work of Kosior et al. (2014).
The bubble terminal velocity found using this numerical method is approximately
350 mm s−1, which is in excellent agreement with the terminal velocity found in the
experiments. Figure 2(a) shows the temporal evolution of the bubble horizontal over
vertical deformation, superposed with the results found in the experiments; figure 2(b)
shows a comparison between the bubble shapes obtained from the experiments (top-half)
and our numerical method (bottom-half); figure 2(c) shows the results of the numerical
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2.2

2.0
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1.6
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1.2
0 0.25 0.50 0.75 1.00

0 ms 3.8 ms

t

χh

(i) (ii) (iii)

(a) (b)

(c)

Figure 2. Validation of the numerical technique: (a,b) show a comparison of our predictions with the
experimental data of Kosior, Zawala & Malysa (2014) for a freely rising bubble interacting with a solid wall;
(a) compares the bubble deformation as a ratio of the horizontal over the vertical bubble axis, and (b) depicts the
spatiotemporal evolution of the bubble–wall collision; (c i–iii) compare the results of a rising bubble shape with
the experimental results of Bhaga & Weber (1981). The top subpanel shows the three-dimensional illustrations
of the terminal bubble shapes, and the bottom subpanel illustrates a slice of the interface superposed on the
experimental results of Bhaga & Weber (1981). The parameter values are (i) (Ga, Bo) = (2.316, 29), (ii) (3.094,
29) and (iii) (4.935, 29).
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Figure 3. Validation of the numerical technique: comparison of the temporal evolution of the particle settling
velocity obtained from our predictions and published experimental data; (a–c) show results for Re = 11.6 and
31.9 (ten Cate et al. 2002), and Re = 41 (Mordant & Pinton 2000), respectively.

framework of a rising deformable bubble in a quiescent, Newtonian fluid compared with
the experimental results of Bhaga & Weber (1981). When comparing the terminal shape
of the bubble predicted by the simulations with that observed in the experiments, excellent
agreement is found. Furthermore, the numerical framework was validated against the
experimental works on settling solid particles (Mordant & Pinton 2000; ten Cate et al.
2002), as seen in figure 3. The particle velocity profiles obtained from our numerical
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method are in agreement with the results found in the experiments, which ultimately
inspires confidence in the accuracy and reliability of our computations. Additional
validation case studies are provided in Appendix B.

3. Results and discussion

The purpose of this study is to gain insight into the interaction between a freely
rising deformable bubble and a freely settling particle. We employed a hybrid
level-set/front-tracking method to capture the interaction dynamics between the bubble
and the particle. Unless otherwise stated, the particle and bubble radii are kept equal,
Ω = 1, and the particle and the bubble are released in-line, with a distance of 6R from
their relative centres. The results in this section will investigate the effect of the bubble
Bond and Galilei numbers on the interaction between a bubble and a particle. This work
will also consider the effect of varying the solid-to-fluid density contrast ζp, varying the
bubble-to-particle size ratio Ω , and the initial bubble position on the interaction dynamics.

3.1. In-line bubble–particle interactions
The first part of the discussion will consider the interaction between a rising bubble and
a settling particle with Ar = 10(ζp = 1) and Ga = 10. The bubble Bond number will be
varied between 0.5 and 5. At these conditions, the bubble trajectory is expected to follow
a rectilinear path as found by Zhang, Ni & Magnaudet (2021). Since the bubble and the
particle are initially released in line, they will interact through head-on collisions.

Figures 4(a) and 4(b) show the spatiotemporal evolution of a rising bubble interacting
with a settling particle with Bo = 0.5 and Bo = 5, respectively. As the bubble rises in a
quiescent Newtonian fluid, several different bubble-shape regimes were found by Tripathi
et al. (2015). Under the conditions considered in this study, the rising bubble has an
axisymmetric shape, as seen in figure 4(a,b).

Prior to the interaction with the settling particle, the bubble is found to rise in a spherical
shape when Bo = 0.5, and an ellipsoidal shape when Bo = 5. This is because when surface
tension forces dominate at lower Bo, the deformation of the bubble will be weak (Qin,
Ragab & Yue 2013). During the initial interaction process, the particle surface begins to
deform the bubble as seen in figure 4(a,b), such that a dimple forms at the bubble apex, the
part of the bubble closest to the particle; dimple formation at the bubble apex was observed
for all the parameters studied in the present work, which is expected due to the increase
of hydrodynamic pressure in the gap region between the bubble and the particle (Chan
et al. 2011). The dimple can be characterised by a negative mean curvature at the centre,
such that (κ1 + κ2)/2 < 0, indicating a concave deformation. A liquid film also begins to
develop between the bubble and the particle surface, which drains due to capillary and
gravitational forces, causing it to thin over time. The liquid film drainage described in
this work during the interaction between the bubble and the particle is observed until
they are at most one grid cell apart. In dimensional terms, one grid cell is of the order
of ∼O(10 μm), such that the drainage process is purely hydrodynamic and disjoining
forces from the interaction can be neglected (Lee, Rudman & Slim 2023). Furthermore,
the contact line dynamics between the bubble and the particle are considered for different
particle wettability parameters.

Upon increasing Bo to Bo = 2 or Bo = 5, the gravitational forces play a more significant
role compared with the surface tension forces. As the bubble and the particle approach
each other, two distinct observations can be made. Firstly, the onset of dimpling occurs at
a position where the bubble and particle are farther away compared with when Bo = 0.5.
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Figure 4. Spatiotemporal evolution of the rising bubble as it approaches the particle is shown in (a,b). The
snapshots of the bubble contours are shown for t = 1, 2, 3, 4, and the particle is only shown at t = 4. In
(a), a scale indicating the separation distance is provided between the bubble and the particle, indicating the
bubble and the particle’s initial centre positions at z0

b and z0
p, respectively. The non-dimensional parameters are

(a) Bo = 0.5, Ga = 10, Ar = 10, (b) Bo = 5, Ga = 10, Ar = 10; (d–f ) show the change in energy of the system
for three different Bo numbers and maintaining Ga = 10, and they are Bo = 0.5, Bo = 2.0 and Bo = 5.0,
respectively. Here, Em is the mechanical energy of the system, such that �Em = �Ep + Ek. A new time scale
is introduced here, t∗, which corresponds to the time for the reversal of kinetic energy due to the interaction.
Panel (c) showcases the relative velocity of the bubble and the particle when varying Bo and Ga at t∗, and also
showcases the difference in buoyancy force between the bubble and the particle when varying ζp.

This can be seen in figure 4(a,b) and by comparing the bubble aspect ratio χ and the
normalised distance S between the bubble and the particle as seen in figure 5(a,b),
respectively; here, χ is defined as the ratio of the bubble’s height to its width, and is a
measure of its deformation during its rise and interaction with the particle. The dimple
formed at the apex is also more pronounced compared with the case when Bo = 0.5, and
the deformation starts at the cap of the bubble, which leads to a change in the overall
bubble shape. The increase in Bond number leads to flattening of the side of the bubble
farthest away from the particle, as seen in the interaction between droplets and solid walls
at low Reynolds numbers (Ascoli et al. 1990). It proves instructive to carry out an energy
analysis of the system when considering the dynamics of the bubble–particle interactions.
The four contributions to the total system energy are the potential energy Ep, surface
energy Es, kinetic energy Ek and viscous dissipation Eη. The changes in the potential
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Figure 5. Temporal evolution of the aspect ratio, χ , and the distance between the bottoms of the bubble and
particle, S, shown in (a) and (b), respectively, for Bo = 0.5, Bo = 2.0 and Bo = 5, with Ga = 10, and ζp = 1.
Panel (c) showcases the minimum aspect ratio when varying Bo and maintaining Ga = 10, while also plotting
the change in interfacial surface area at that time step (tχmin ). The film thickness profile is presented for these
cases at tχmin in (d), and the temporal evolution of the dimple radius RD is presented in (e).

and surface energies, respectively, read

�Ep = ρVg(zc − z0), (3.1)

�Es = γ (A − A0), (3.2)

while the kinetic energy and viscous dissipation are, respectively, expressed by

Ek = 1
2ρ

∫
V
(u2 + v2 + w2) dV, (3.3)

Eη =
∫ t

0

∫
V

ξ dV dt, (3.4)
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Figure 6. Spatiotemporal evolution of the bubble–particle interaction dynamics shown for the same
parameters used to generate figure 4; the rows are associated with (a) Bo = 0.5, (b) Bo = 2.0 and (c) Bo = 5.
The contours on the left-hand part of each panel show the logarithm of the viscous dissipation function log10 ξ

in the fluid, and the contours on the right-hand part show the velocity magnitude in the fluid V . The bubble is
shown with glyphs of the velocity to illustrate the relative motion of the bubble at different time steps.

where A is the surface area, V is the volume, z0 is the bottom of the domain and
ξ is the viscous dissipation function. The temporal evolution of the energy budget
during the initial interaction process when Bo = 0.5, Bo = 2 and Bo = 5 are shown in
figure 4(d–f ), respectively. Here, �Em is the mechanical energy of the system, such that
�Em = �Etotal

p + Etotal
k , and the results are normalised to the total energy of the system

Et = Ep + Ek + Es + Eη. As the bubble rises and the particle settles, Ek is found to
increase up to a maximum, until the flow field of the particle and the bubble interact.
At this point, Ek starts to decrease as the gap distance between the bubble and the particle
thins. We introduce a new time scale t∗ which specifies the time of kinetic energy reversal
in figure 4(d–f ). For Bo = 0.5, t∗ ≈ 3.0 and for Bo = 2 or Bo = 5, t∗ ≈ 3.5. In figure 4(c),
the relative interaction velocity at the peak kinetic energy is presented for the case of
Ga = 10 and Ga = 20 when varying the Bo number. When Ga = 10, it can be seen
that the relative velocity does not vary significantly when increasing Bo, however, the
relationship between the relative velocity and Bo remains the same for both Ga. When
increasing Bo, the bubble rising velocity decreases, which allows the particle to attain a
larger velocity as it settles. However, this increase in particle velocity does not compensate
for the difference in bubble rise speed, which causes a decrease in the relative velocity
prior to the interaction. A similar trend is observed for Ga = 20, with a larger increase
in relative velocity when decreasing Bo. Furthermore, the difference in buoyancy force
between the bubble and the particle is also presented when varying ζp, where the buoyancy
force was taken as Fi

b = Vg(ρi − ρl), where i = (b, p) for the bubble or the particle,

999 A18-13

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

68
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.686


A.M. Abdal and others

respectively. When ζp = 1, the buoyancy force of the particle is comparable to that of
the bubble, however, decreasing ζp leads to a larger difference between the bubble and
particle buoyancy force. A larger difference in buoyancy force between the bubble and the
particle allows for the bubble to ‘push’ the particle upwards during the initial interaction,
rather than remain in the same vertical position during film drainage. For low Bo, the
particle kinetic energy is seen to decrease to zero at later times, which shows that the film
drainage process causes the bubble and the particle to remain at approximately the same
vertical position as the liquid film thins (see figure 4d). The formation of the liquid film
between the bubble and the particle causes an outward radial velocity of the background
fluid, which leads to the dissipation of kinetic energy, as seen at t = 3.5 in figure 6 (Zawala
& Dabros 2013).

As film drainage is a gradual process driven by pressure differences in the film region,
this allows time for the surface tension forces to help the bubble recover a semispherical
shape with a small dimple at the bubble apex. The dimple radius decreases during the
drainage of the liquid film, which can be seen at t ≈ 5 when Bo = 0.5 (see figure 6)
and by comparing the liquid film thickness profiles and the bubble interface shape in
figure 9(a,b). Yiantsios & Davis (1990) have considered the interaction between a droplet
and a solid surface and their numerical simulations showed that the terminal value of
the dimple radius scales with Bo as RD ∼ (2

3 Bo)1/2R, which is in excellent agreement
with the dimple radius found in this work when Bo = 0.5(RD ≈ 0.5). This result was first
obtained by Derjaguin & Kussakov (1939) by assuming the pressure in the dispersed phase
is approximately equal to the pressure in the dimple, and balancing the pressure with the
buoyancy force such that (2γ /R)πR2

D ∼ 4
3π(ρl − ρb)gR3. In figure 5(e), the dimple radius

is presented during the initial interaction period for different Bo numbers when Ga = 10
and ζp = 1, where the scaling of the dimple radius presents a good approximation of the
results.

Upon increasing the Bo number to Bo = 5, a significantly different interaction process
is observed at later times. As the particle deforms the bubble interface, the dimple that
forms interacts with the southernmost part of the bubble, such that the bubble will
rupture. Prior to its rupture, the bubble is seen to deform severely with a film thickness
larger than that associated with the Bo = 0.5 case (see figures 5d and 6 at t = 5). The
bubble topology resembles the splashing configuration found by Yoon & Shin (2021)
when considering the interaction between a droplet and a particle, with a liquid film
between the bubble and the particle in the present work. The minimum aspect ratio attained
during the interaction is presented when varying Bo in figure 5(c). The time of maximum
bubble deformation (minimum χ ) is taken as tχmin , and the change in interfacial surface
area �A/A0 is presented. At tχmin , the film thickness profile between the bubble and the
particle is plotted in figure 5(d). The profiles of the film thickness show that at larger
Bo, the minimum gap distance is found at the bubble centre, and when decreasing Bo,
the minimum gap distance shifts towards the bubble dimple. The aspect ratio χ reaches
a minimum of ∼ 0.2, and the normalised distance between the particle and the bubble,
S, continues to decrease. The distortion of the bubble surface caused by the particle
drives the increase in χ at later times, up to the point of bubble rupture. Figure 7(b)
shows the passage of the particle post-bubble-rupture. The particle’s kinetic (potential)
energy continues to increase (decrease) as seen in figure 7(d), which shows that the
particle continues to settle post-bubble-rupture. This bubble rupture mechanism was also
found by the two-dimensional, axisymmetric simulations of the interaction between a
rising bubble and a solid surface (Qin et al. 2013), where bubble rupture was observed
at large Bo numbers. As the bubble and the particle approach each other when Bo = 2,
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Figure 7. The spatiotemporal evolution of the bubble–particle interaction dynamics is shown in (a) for
Ga = 10, Bo = 2 and ζp = 1, where the contours depict the velocity magnitude. Panel (b) shows the
spatiotemporal evolution of the interaction dynamics when Ga = 10, Bo = 5 and ζp = 1. The time steps
presented are relative to t∗, such that t − t∗ varies from 2.5 to 7.0. When Bo = 2 and t − t∗ = 7, a top view of
the interaction between the bubble and the particle is presented to showcase that no contact is found between
them. In (c,d), the normalised energy budget Ẽ/Ẽ0 is presented for Bo = 2 and Bo = 5, respectively, where
Ẽ0 = Eparticle

p0 + Es0 .

the bubble is found to deform similarly to the Bo = 5 case (see figure 5a), however,
the bubble does not rupture. Therefore, the liquid film in the gap region between the
bubble and the particle starts to drain. As the liquid film drains, the bubble’s buoyancy
drives it to shift away from the particle, as seen in figure 7(a), interrupting the film
draining process. As the bubble moves away from the particle, we note that no contact
was found between the bubble and the solid surface, as seen from the presented top
view. The bubble then continues to rise, and the particle continues to settle, as seen
by considering the change in mechanical energy in the energy budget plot presented in
figure 7(c).
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Figure 8. Panels (a) and (b) show the temporal evolution of the minimum gap thickness h(t) for different Bo
when Ga = 10 and ζp = 1. Two different scaling are also provided, such that h ∼ (t − t∗/td)−α where α here
is either −4/5 or −1/2.

In figure 8(a,b), the temporal evolution of h(t), defined as the shortest bubble–particle
distance at every time step, is presented for different Bo numbers. As the bubble rises at
early times, it assumes a spherical or ellipsoidal shape such that h(t) is measured along
centreline of the bubble and particle, which we define as h0(t). Figure 8(a) provides an
illustration of h0(t) and h(x, t), such that h(t) = min h(x, t). As the dimple forms on the
bubble surface, h(t) begins to deviate from h0(t). When comparing the minimum gap
distance for different Bo, it can be seen that for smaller Bo, the film drainage process
occurs fastest as the bubble deformations are less severe. This leads to the liquid in the
film to drain over a smaller surface area (Manga & Stone 1993). Furthermore, increasing
Bo leads to an increase in surface area in the gap region, which delays the film drainage
process. This is found to occur up to Bo = 2, because at Bo = 5, the bubble ruptures.
Comparing the difference between the gap thickness at the centre and the minimum gap
thickness when increasing Bo, two different conclusions can be made. First, at low Bo,
the development of the dimple occurs at earlier times when compared with the larger
Bo number cases. However, the dimple is much more pronounced with increasing Bo, at
later times. Nevertheless, when the bubble ruptures at Bo = 5, the minimum gap distance
is always found at the centreline as the particle continues to settle. Previous studies
(Jones & Wilson 1978; Yiantsios & Davis 1990; Chan et al. 2011; Quan 2012; Denner
2018) have shown that the film thickness during the interaction between a deformable
interface and a solid surface scales as t−α where 0 ≤ α ≤ 1. During film drainage, we
can assume that the outward radial velocity of the fluid is much greater than the vertical
velocity of the bubble or the particle. Therefore, a new characteristic velocity scale U
can be obtained by balancing the buoyancy and viscous drag (�ρR3g ∼ μbRU), such
that U = gρl(2R)2/6μlφ since ρl 
 ρb, and φ = (2 + 3/λ)/(1 + 1/λ) is a correction
factor for the viscosity ratio λ (Denner 2018). We introduce a new draining time scale,
td = 2R

√
μl/γ U, which can be obtained by assuming the film drainage is dominated by

the balance of surface tension and viscous stresses (Klaseboer et al. 2000; Chan et al.
2011; Denner 2018). At smaller Bond numbers, the liquid film thickness is found to scale
as h ∼ (t − t∗/td)−4/5, whereas when increasing the Bond number, the scale varies to
h ∼ (t − t∗/td)−1/2. This result can be seen in figure 8(b). We note that when Bo = 2,
the film drainage result presented is prior to the bubble sliding away from the particle.
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Figure 9. This figure showcases the film thickness and the bubble shape as it approaches the particle when
Ga = 10, ζp = 1 and Bo = 0.5 in (a,b). In (c,d), the temporal evolution of the kinetic energy and particle
velocity is presented for two cases, and they are when Ω = 1, which is the base case, and when Ω = 2. In
(e, f ), the film thickness profile and the bubble shape at different time steps during the interaction for Ω = 2
are presented.

Figure 9(c–f ) presents the interaction between a bubble and a particle when Ω = 2 when
Ga = 10, Bo = 0.5 and ζp = 1. As the bubble and the particle interact, the approach
velocity of the particle when Ω = 2 is smaller, such that the kinetic energy from the larger
bubble’s motion is transferred to the particle, allowing it to reverse its direction and float.
Here, t∗ was found to be around t ≈ 3.5. As this kinetic energy from the bubble’s motion is
transferred to the particle, the bubble’s second approach to the particle is at a substantially
smaller velocity, such that the total kinetic energy stabilises around t = 5 to t = 5.9. The
radius of the dimple on the bubble apex starts to decrease, as seen from the liquid film
thickness profiles in figure 9(e), and the liquid film ruptures at t − t∗ ≈ 2.5. It can be seen
that as opposed to the case where Ω = 1, decreasing the particle size leads to the bubble
continuing to rise during the film-draining process, which can be seen from the
bubble apex position in figure 9(b, f ) for the two cases. When the film ruptures, the larger
bubble continues to push the particle upwards, until reaching the top boundary.

We further consider the effect of increasing Ga and varying ζp on the interaction
dynamics in figure 10. Seven different cases are presented, which correspond to
(Bo, Ga, ζp) = (0.5, 20, 1), (1, 20, 1), (2, 20, 1), (5, 20, 1), (0.5, 20, 0), (0.5, 20, 0.25) and
(0.5, 20, 0.75). In figure 10(a), the temporal evolution of the particle velocity is presented.
Previously, at a Bond number of 0.5, a Galilei number of 10 and a particle-to-fluid
density ratio of 1, the bubble and the particle remained at relatively the same vertical
position throughout the film draining process. This indicates that the bubble and particle
experienced minimal vertical displacement relative to each other due to the difference in
buoyancy force between the bubble and the particle. When Ga is increased to 20 while
maintaining ζp = 1, the bubble approaches the particle with a greater velocity compared
with when Ga = 10. However, the interaction dynamics remain consistent with the case
when Ga = 10, where the magnitude of the particle velocity decreases, and the particle
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Figure 10. In (a–c), the particle settling velocity, total kinetic energy and the change in particle potential
energy are presented, respectively. These results correspond to when Ga = 20, Bo = 0.5 and varying ζp.
Temporal evolution of the minimum gap thickness h(t) is shown in (d) for ζp = 1, Ga = 20 and Bo = [0.5–5];
an enlarged view of the plot in (d) is shown in ( f ), for Bo = 0.5 and Bo = 1 as at these Bo numbers, the bubble
did not rupture. A scaling for the film drainage is provided such that h ∼ ((t − t∗)/td)−4/5. Panel (e) showcases
the film thickness profile at tχmin when varying Bo and maintaining Ga = 20 and ζp = 1.

remains at relatively the same vertical position during film drainage (see figure 10c). In
this investigation, we consider the effects of decreasing the particle-to-fluid density ratio
(ζp), which introduces new dynamics into the interaction process. Specifically, a lower
ζp makes the particle less dense relative to the fluid, increasing its susceptibility to the
forces exerted by the bubble. This increased sensitivity results in more pronounced motion
reversals and changes in velocity, demonstrating a critical dependence on the density ratio
for the overall behaviour of the bubble–particle interaction. When ζp is decreased, the
increased velocity of the bubble causes it to push the particle upwards as the gap distance
between them decreases. The extent of flotation of the particle increases as ζp decreases.
This can be verified by examining figure 10(a–c), which show the particle velocity, the
total kinetic energy and the change in potential energy of the particle, respectively. The
reversal of the particle’s motion is similar to the behaviour observed when Ω = 2. As the
particle reverses its motion due to its interaction with the bubble, the bubble’s velocity
decreases. This deceleration results from the transfer of energy from the bubble’s motion
to the particle, leading to a redistribution of momentum. The interaction process when
ζp = [0, 1], Ga = 20 and Bo = 0.5 can be seen in figure 10.

When considering the temporal evolution of the gap thickness between the bubble and
the particle for Ga = 20 and ζp = 1, a similar general trend is found compared with that
shown in figure 8. Increasing Bo leads to an increase in the surface area between the
bubble and the particle, delaying the process of film drainage. However, when comparing
figure 10(d) with 8(a), the bubble ruptured for both Bo = 2 and Bo = 5 when increasing
the impact relative velocity by varying Ga. Figure 10(e) shows the film thickness when
varying Bo and maintaining Ga = 20 and ζp = 1 at tχmin . As seen in figure 5(d), the film
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Figure 11. This figure showcases the dynamics of the interaction after the formation of the contact line, when
Ga = 10, Bo = 0.5 and ζp = 1. In panel (a), the particle’s vertical velocity is presented for different particle
wettability parameters, which correspond to a base case with θe = 105◦, and two additional cases with θe = 55,
and θe = 125. Panel (b) showcases the aspect ratio χ for the three different cases, and the pentagram indicates
reaching the top boundary. Lastly, (c) showcases the temporal evolution of the radius of the contact line RTPC
when varying θe and Ω . Note that the x-axis is scaled with the contact line time tTPC. The subpanels in (d)
correspond to t − t∗ from 8 to 11 for the base case and t − t∗ from 5 to 7 when θe = 55◦.

thickness profile indicates an increase in distance between the bubble and the particle
when increasing Bo, and the minimum thickness shifts from the bubble dimple to the
centreline. Following a similar scaling method to figure 8, the minimum film thickness
when Bo = 0.5 and Bo = 1 scales as h ∼ (t − t∗/td)−4/5.

For head-on collisions at relatively small Bo numbers, a contact line forms between the
bubble and the particle after liquid film drainage. In figure 11, the evolution of the contact
line dynamics and the effect of particle wettability on the overall dynamics is studied.
Three different equilibrium contact angles are considered, and they are θe = (55, 105, 125)

for Ω = ζp = 1, Ga = 10 and Bo = 0.5. First, figure 11(a) showcases the particle vertical
velocity for the three cases. When θe = 55, the particle velocity is seen to increase
significantly post-contact-line formation, which indicates that the bubble has attached to
the particle and is pushing it upwards. When increasing θe to 105◦ or 125◦, the particle
velocity is not as significantly affected, indicating the bubble is attempting to minimise its
contact area with the particle. In figure 11(c), the radius of the contact line RTPC is shown
when varying θe and Ω . When θe = 55◦, the contact line initially expands, and during
the expansion, the bubble vertically deforms which leads to a peak in the aspect ratio χ
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Figure 12. Spatiotemporal evolution of off-centre bubble–particle interaction dynamics with Ar = 10,
Ga = 10, and an initial bubble location offset of δ = 1. The results shown in (a) and (b) were generated with
Bo = 0.5 and Bo = 5, respectively. The contours are of the logarithm of the viscous dissipation function log10 ξ

in the fluid. The bubble is shown with glyphs of the velocity to illustrate the relative motion of the bubble at
different time steps. The snapshots are shown between t = 2.5 and t = 6 in time increments of δt = 0.5.

at t − t∗ ≈ 4.8 (figure 11b). The contact line radius then maintains the same size as it
floats with the particle until reaching the top boundary. When increasing θe, the contact
line radius initially expands, however, the bubble ‘slides’ across the particle and attempts
to minimise the contact area. This leads to a decrease in the contact line radius as the
bubble moves to the particle’s apex, and the bubble then detaches due to buoyancy and
continues to rise. The bubble detaches at t − t∗ ≈ 11 when θe = 105◦ and θe = 125◦, with
a small part of the bubble still attached to the particle surface. When decreasing the particle
size (Ω = 2) and maintaining θe = 105◦, the radius of the contact line expands during
contact. However, due to the particle’s upward velocity induced by the bubble during
the initial interaction, the bubble and the particle continue to rise and the contact line
remains relatively the same size. It is crucial to note that the initial radius of the contact
line indicates the position at which the contact line forms, such that the dimple radius has
a direct influence on the dynamics of the contact line.
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Figure 13. Temporal evolution of the total kinetic energy, and the change in bubble surface area are shown in
(a) and (b), respectively, for off-centre bubble–particle interactions with (Bo, Ga, Ar, δ) = (0.5, 10, 10, 1) and
(5, 10, 10, 1). Panels (c) and (d) show the temporal evolution of the settling velocity, and the x-component of
the particle velocity, respectively. In (e, f ), the side view of the particle trajectory with respect to the x-axis and
the y-axis are presented, respectively.

3.2. Off-centre bubble–particle interactions
Here we consider bubble–particle interactions that do not correspond to head-on
collisions. These are initiated by introducing a horizontal deviation δ in the initial bubble
position. In this section, we study the dynamics associated with δ = [0.25, 0.5, 1] and
keep (Ga = 10, ζp = 1) fixed. In figure 12, the spatiotemporal evolutions of the interaction
between the bubble and the particle are presented for Bo = 0.5 (figure 12a) and Bo =
5 (figure 12b), and δ = 1. The background field shows the logarithm of the viscous
dissipation function ξ in the fluid. When initiating an offset between the bubble and the
particle, it can be seen in figure 12 that for Bo = 0.5, the bubble initially rises in a similar
fashion as observed with the in-line collisions, but the dimple at the apex of the bubble
forms on the side of the bubble rather than at the centreline. This causes the bubble to
shift its velocity towards the other side (as seen in the glyphs) as it deforms during the
interaction process. A liquid film forms between the bubble and the particle at the side
of the bubble, at which point we have the largest dissipation of energy. The bubble tends
to exhibit a ‘sliding’ motion, which is similar to the drafting–kissing–tumbling regime
found by Zhang et al. (2021) between two bubbles rising in line. The bubble is then seen
to continue its rise as it recovers its original spherical shape, which can be seen at t = 5.5
and t = 6. This can also be observed by the change in surface area plot in figure 13(b),
where the change in surface area decreases after the interaction with the particle.

Upon further increasing Bo to Bo = 5, a similar initial interaction process is observed
such that the bubble rises with an ellipsoidal shape, and a dimple forms at the side of the
bubble rather than at the centreline. However, due to the large deformations associated with
this Bo value, it can be seen that although a drafting–kissing–tumbling scenario is found,
the side of the bubble associated with the impact forms a ‘tail’ (t = 4.5–5.5). As the tail
forms, we have a sharp increase in the bubble interfacial area and energy dissipation, while
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the centre of mass of the bubble continues to rise as the total kinetic energy increases (see
figure 13a). The tail of the bubble then retracts to its centre of mass (t = 6 in figure 12)
and continues to rise, and the particle continues to settle.

From figure 13(d) it can be seen that upon increasing Bo, the deviation in the particle
settling trajectory is not as affected as for low Bo. This is associated with the significant
deformation of the bubble, which tends not to affect the x-component of the particle
velocity as much as the sliding motion of the bubble observed for Bo = 0.5. Furthermore,
when fixing Bo = 0.5 and varying δ between 0.25 and 0.5, figure 13(e, f ) shows that the
particle trajectory is affected more by decreasing the value of δ. For δ = 0.25 and δ = 0.5,
the particle’s settling velocity (see figure 13c) decreases during the initial interaction
process. Although the decrease in settling velocity is more pronounced as δ decreases,
i.e. approaching the case of in-line bubble–particle interactions, the variation in the
x-component of the velocity is more pronounced when δ = 0.5 compared with δ = 0.25
(see figure 13f ). This leads to the particle trajectory being rather similar when δ = 0.25
and 0.5 (see figure 13e).

4. Conclusion

This paper considered the interaction between a freely rising deformable bubble and
a freely settling particle in a quiescent, Newtonian background fluid. The considered
non-dimensional parameters were the bubble Bond and Galilei numbers, the particle
Archimedes number, governed by the solid–fluid density contrast, and the size ratio
between the bubble and the particle. The results highlighted the spatiotemporal evolution
of the bubble shape during the interaction process, the bubble aspect ratio as a measure
of its deformation, the liquid film thickness and an energy analysis of the system. When
considering the bubble shape, it was found that increasing the Bond number led to more
severe bubble deformations, leading up to bubble rupture and its penetration by the
particle. When the Bo number is relatively low, the interaction includes the formation of
a liquid film between the bubble and the particle, which is associated with the dissipation
of kinetic energy. When decreasing ζp, the buoyancy force of the bubble exceeds that
of the particle, and the bubble can lift the particle upwards if the approach velocity of
the bubble is considerably larger than that of the particle. However, if the particle and
the bubble approach velocities are similar in magnitude, the initial interaction process is
associated with the dissipation of kinetic energy which causes the bubble and the particle
to remain at their interaction position as the liquid film drains. The study also considered
the temporal evolution of the minimum gap thickness (h(t)) between the bubble and the
particle and found that increasing Bo led to an increase in surface area in the gap region,
further delaying the film-draining process. The effect of particle wettability on the contact
line dynamics was also considered, such that the bubble remains attached to the particle
surface at lower θe and slides away at larger θe.

A complex situation arises when introducing an offset between the bubble and the
particle initial positions. In this study, an offset is only considered for the bubble initial
position in the horizontal direction at constant Archimedes and Galilei numbers. For low
Bond numbers, a sliding motion of the bubble was observed as it approaches the particle,
causing the bubble to push the particle away from its original settling trajectory. However,
with increasing Bond number, the bubble deformation is seen to be much more severe such
that the bubble centre of mass continues to rise with the formation of a tail in the particle’s
proximity. The tail then retracts, the bubble continues to rise and the particle trajectory is
not as significantly affected.
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This work has considered one viscosity and density ratio between the bubble and the
background fluid λ = μl/μb = 100 and β = ρl/ρb = 1000. Possible avenues for future
work may include the effects of varying the viscosity and density ratios, considering a
larger difference between the particle and bubble sizes, introducing asymmetric particle
shapes, and the effect of density stratification in the background fluid. Furthermore,
the effects of surface mobility of the bubble on the interaction process, by introducing
surfactants to the system for example, presents an interesting avenue for future work due
to its relevance for industrial processes. All of these configurations may lead to different
interaction dynamics between the bubble and the particle. Lastly, this work has considered
the interaction between a single rising bubble and a single settling particle, however, the
collective effect of the interaction between a rising bubble, or a group of bubbles, in the
presence of a particle suspension remains an area for further exploration.
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Appendix A

In this section, a resolution test is presented for the case when (Bo, Ga, Ar) = (0.5, 10, 10)

in figure 14. Two different mesh resolutions are considered, and they correspond to
�x/R = 1/24 and �x/R = 1/32. When considering the distance between the particle
south pole and the bubble south pole, and the total kinetic energy of the system, an
excellent agreement is found between the two mesh resolutions. The most difficult part
to resolve is the film thickness. The lower resolution root mean square error compared
with the higher resolution is approximately 0.5 %, which is acceptable considering the
higher resolution is the coarsest mesh utilised in this study. In figure 14(c), a domain size
independence test is performed when Bo = 0.5 and Ga = 10, by increasing the domain
size to 24R × 24R × 24R. The results show that when increasing the domain size, there
is no difference in the attained result, further increasing our confidence in the numerical
set-up. In figure 14(d), a mesh size independence considering three different grid cell
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Figure 14. Panels (a,b) show the total kinetic energy of the system and the distance between the particle south
pole and the bubble south pole (S), at two different resolutions for Ga = 10, Bo = 0.5 and ζp = 1, respectively.
Panel (c) shows the temporal evolution of the total kinetic energy when increasing the domain size for the same
case. It can be seen that increasing the domain size leads to no difference in the results. Panel (d) shows the total
kinetic energy for different mesh sizes for Ga = 10, Bo = 5.0 and ζ = 1, up to a resolution of �x/R = 1/64.
The results show that the domain size and mesh resolution utilised in this work is sufficient to capture the
dynamics of the interaction between the bubble and the particle.

sizes is presented for the case of Bo = 5.0 and Ga = 10, where a resolution of up to
�x/R = 1/64 is presented.

Appendix B

This section presents additional validation case studies for the numerical method utilised
in this work. At first, figure 15 presents illustrations for the contact line methodology that
is utilised in our in-house solver code BLUE. Furthermore, the adhesion of a bubble on
a solid wall is presented and qualitatively compared with the experiments of Basarova
et al. (2018). The bubble is initialised close to the flat wall (0.1R from surface to surface),
and as the contact line forms, the deformation of the bubble is accurately captured when
compared with the results of the experiment. The bubble size is 0.705 mm, and the
viscosity and density ratios correspond to an air/water system. The equilibrium contact
angle θe was set at θe ≈ 100◦, which corresponds to the surface wettability characteristics
utilised in the experiments.
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Figure 15. Panel (a) provides an illustration of the contact line numerical methodology between a bubble
and a solid wall or solid particle. Panel (b) showcases the temporal evolution of the south pole of the bubble
as it adheres to a solid wall with negligible inertia. The contact angle for this case was θA = 102, θR = 99.
A qualitative comparison with the experimental results of Basarova et al. (2018) is provided at different time
steps.
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Figure 16. This figure showcases the experimental results of Pierson & Magnaudet (2018a,b) for a spherical
particle crossing an immiscible interface under different configurations. The plots showcase the performance
of this numerical method compared with the experimental results in estimating the entrained fluid volume Ve
and the particle velocity. Qualitative results from the simulations are also provided.

Furthermore, additional validation cases are presented in figure 16 for a solid particle
settling through an initially unperturbed interface with different fluid and particle
properties. The particle was initially placed a distance of 6R away from the unperturbed
interface (from the centre of the particle) and is allowed to settle due to gravity. The
results attained from the numerical method are in close agreement with the results of the
experiments of Pierson & Magnaudet (2018a,b), where a few differences were found in the
case of a top fluid of V500 silicone oil with water as the bottom fluid and a steel sphere.
The differences are mainly in the development of axisymmetric corollas near the particle
surface as the particle penetrates the bottom fluid. The reason behind the difference may be
attributed to the different initial position of the particle in the experiments as this parameter
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was not exactly specified, or due to the utilised resolution of the case study, which was
�x/R = 1/32. Nonetheless, the quantitative results of the entrained volume of the first
fluid into the second fluid (Ve) is in close agreement with the experimental results, and the
particle settling velocity is accurately captured. We note that in this case study, no contact
line forms between the solid and the background fluids, such that an oil film coats the
solid surface at all times, which is in agreement with the results found in the experiments
of Pierson & Magnaudet (2018a).
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