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ON DIVISORS OF SUMS OF INTEGERS IV 

A. SÂRKÔZY AND C. L. STEWART 

1. Introduction. Throughout this article c0, q , c2, • . . will denote 
effectively computable positive absolute constants. Denote the cardinality 
of a set Xby \X\. Let TV be a positive integer and let A and B be non-empty 
subsets of {1 , . . . ,7V}. Put 

A0 = {a G A\(N/2) < a ^ TV} and 

B0= {b <E B\(N/2) < b â TV}. 

In [3], Balog and Sârkôzy proved that if TV > c0 and 

(1) (U 0 | |B 0 | ) 1 / 2 > C l JV 1 2 / 1 3 aogJV) 2 1 / 1 3 , 

then there exist a0 and b0 with a0 G ^40 and b0 G 1?0 and a prime number /? 
such that 

P2\(<*o + *o) 

and 

(2) p2 > c2( H0 | \B0\ f
2/(N\log N)1). 

If follows from this result that if\A\^>N and \B \ » TV then there exist a in 
A and /> in 2? and a prime /? such that p2\(a 4- Z?) with 

p2 » TV/(log TV)7. 

Let k be an integer with k ^ 2. We shall prove that if |̂ 4 | » TV and 
|J8| > TV then there exist > ^ TV1 + (1/ /c)/log TV pairs (a, b) with am A and & 
in 5 for which a + 6 is divisible by /? with /? a prime and 

/ » , N. 

This result is best possible, up to determination of constants, both with 
respect to the number of pairs (a, b) and also with respect to the lower 
bound for p . It follows from Theorem 1 below. 

The case k = 1 was considered by Balog and Sârkôzy in [2]. 
They proved, by means of the large sieve inequality, that if \A | » TV and 
\B\ > TV then there exist a in A and b in B and a prime p with /? |(a 4- b) 
and 
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DIVISORS OF SUMS OF INTEGERS 789 

p » TV/ log TV. 

In part II of this series [9] we showed, by means of the Hardy-Littlewood 
method, that if \A | » TV and \B\ > TV then there exist »TV2/log TV pairs 
(a, b) with a in A and b in B for which a 4- £ is divisible by a prime /? 
with 

/? > TV. 

Put 

R = 3N/(\A\\B\)l/2, 

and 

(3) 0k = (1 + 2 £ 4 / c - 1 r \ 

for & ^ 2. 

THEOREM 1. Let TV and k be positive integers with k ^ 2, /ef 4̂ #«<i B be 
subsets of {1, . . . ,N} and let e be a positive real number. There exist 
effectively computable positive absolute constants c3 and c4 and positive 
numbers C0, Cx and N0 which are effectively computable in terms of c and k 
such that if N > N0 and 

(4) (\A\\B\)l/2 > Nx~e^\ 

then there exist at least 

(5) C0( ((\A\\B\ )1/2)1 + (1//c)/log TV) exp(c3(log k log #)/ log log R) 

pairs (a, b) with a in A and b in B, (respectively pairs (ax, bx) with ax in A 
and bx in B), such that for each pair there exists a prime p for which 
p \(a +Z>), (respectivelyp \(ax — bx)), with 

( 6 ) 2C,(14| |J?I)1 / 2 

exp(c4(log k log R)/\og log R) 

^ p k > Cx{\A\\B\)xn 

exp(c4(log k log #)/ log log R) 

In particular if (4) holds then for TV sufficiently large there exist am A 
and b in B and a prime p such that p \(a + b) with 

(7) pk > Cx( \A\\B\ )1/2/exp(c4(log k log £)/ log log R\ 

Note that if k = 2, (4) is a more stringent requirement that (1), however 
the lower bound for p2 given by (7) is better than the one given by (2). In 
fact the lower bound for pk given by (7) is best possible apart from 
the factor 

exp(c4(log k log iO/log log R) 
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as the following example shows. Let A and B consist of all multiples of a 
positive integer / with t ^ jv1 / ( / :+1 ) . Then 

\A\ = \B\ = [N/t]. 

If pk\(a + b) with am A and b in B, (or indeed if pk\(a — b) with a in A, 
b in B and a ^ Z>), then either /?|f in which case 

pk ^ Nk/{k+\) ^ N/t ^2(\A\\B\ ) 1 / 2 

or p\t in which case 

/ ^ 2[N/t] = 2(\A\ \B\)l/2. 

We shall derive Theorem 1 from the following result of independent 
interest. For any real number x let [x] denote the greatest integer less than 
or equal to JC, let {x} = x — [x] denote the fractional part of x and let 

\\x\\ = min({*}, 1 - {x}). 

THEOREM 2. Let k be an integer greater than one and let e be a positive 
real number. Let N be a positive integer and let y be a real number with 

(8) 3 ^ y < Nyk~€ 

where yk = (2k4 ~ ) ~ . For any real number a with 

yk~x/N ^ a ^ 1 - (yk~x/N\ 

we have 

2 m i n ^ J l / a i r 1 ) 
pk^N 

< C2(N
l/k/log N) exp(c5(log k log y)/\o% log y\ 

for N > JVj, where c5 is an effectively computable positive absolute constant 
and C2 and Nx are real numbers which are effectively computable in terms of 
€ and k. 

In [10] we established the analogue of Theorem 2 for the case k = 1. 

2. Preliminary lemmas. For any real number x denote elmx by e(x). 

LEMMA 1. Let X and Y be positive integers with X < Y. Then for any real 
number a we have 

ZJ e(na) 
X<n^Y 

^ min(7 - X, 2 | |« | |_ 1). 

Proof See [8], p. 189. 
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LEMMA 2. Let V be a positive integer. Then for any real number a 
we have 

v-\ 
2 e(na) ^ 4V2\al 

Proof. See [1], Lemma 2. 

For any positive integer n let co(n) denote the number of distinct prime 
factors of n. 

LEMMA 3. There exists an effectively computable positive real number c6 

such that 

(9) œ(n) < c6(log «)/log log n, 

for n î  3. 

Proof. This estimate is well known. It can be derived easily from the 
prime number theorem. In fact for any positive real number €, (9) holds 
with c6 = 1 + € provided that n is sufficiently large in terms of c. 

We shall next record four additional well known elementary results. For 
any positive integer n, denote the number of integers less than or equal to 
n and coprime with n by <t>(n). <j> is Euler's phi function. 

LEMMA 4. There exists an effectively computable positive real number c7 

such that 

<f>(n) > c7«/log log «, 

for n i^ 3. 

Proof. See [8], p. 24. 

For any positive integer n, denote the number of positive integers which 
divide n by r(n). 

LEMMA 5. Let q be a positive integer and let u and v be real numbers with 
v > 0. Then 

2J 1 - v<j>(q)/q 
u<afku + v 

^ 2<q). 

Proof. This is Lemma 4 of [9]. 

LEMMA 6. There exists an effectively computable positive real number c8 

such that for any integer b with b = 2, 

2 \ln < cs(<j>(b)/b) log b. 

(n,b)=\ 
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Proof. This is Lemma 5 of [9]. 

Let a, k and q be integers with k and q positive. We define the function 
f(a, k, q) by 

(10) f(a9 k,q)= 2 1. 

,(*,?)= 1 
jr = a(modq) 

LEMMA 7. Let a9 k and q be integers with k and q positive. 
(i) If {a, q) = 1 andf(a9 k9 q) ¥= 0 then 

(11) f(a9k9q) = f(l9k9q). 

(ii) If p is a prime number, r and k are positive integers and (a, p) = 1 
then 

( Ik forp = 2 

k forp > 2. 

(iii) There exists an effectively computable positive real number c9 such 
that for k ^ 2, q ^ 3 and (a, q) = 1, 

f(a, k, q) < exp(c9(log k log q)/log log q). 

Proof. Let x1? . . . , xt denote a complete set of incongruent solutions 
modulo q of 

xk == 1 (mod q), 

and let x0 be a solution of 

(13) xk = a (mod q). 

Then X0JC1? . . . , Xçpct is a complete set of incongruent solutions of (13) and 
this implies (11). 

(ii) follows easily from the theory of binomial congruences. 
Let 

q = P? • • • p? 
with rh . . . , A) positive integers and pl9 . . . 9pj distinct primes. By the 
Chinese Remainder Theorem 

f(a9k,q) = M k, p?) . . . f(a, k, p?). 

Thus by (ii) and Lemma 3 

f(a9 k9 q) ^ 2kl 

= 2 exp( (log k)co(q) ) < exp(c9(log k log q)/\og log q) 

as required. 
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Let /, n and q be integers with q ^ 2. Put 

(mod q) 

(mod q). 

(1 if i = n 
(14) S(i9n9q)= I 

[0 if i ^ n 

LEMMA 8. Let a, b, k and q be integers with k ^ 2, q i= 3 and (a, q) = 1 
and let u and v be real numbers with v > 0. Then 

2 2 «i , <wi* + b,q) - v<j>(q)/q 
u<i=u + v 0=n<q 

J/2 
< # exp(c10(log k log tf)/log log #), 

where cl0 is an effectively computable positive real number. 

Proof. We have, for (n, q) = 1, 

ft/,*,*) = ( i /<K<7))2x(0x(«), 

where the summation is taken over all characters x modulo q. We shall 
denote the principal character modulo q by Xo- Thus 

2 2 è(i, ank + b, q) 
u<i=u+v 0 = n<q 

= 2 2 &' - 6, an*, ?) 

(n,q)=\ 

= 2 2 &J9ank,q) 
u-b<j^u+v-b 0^n<q 

= 2 2 (i/^))2x0)x(^) 

= (!/*(?)) 2 x(a) 2 xO) 2 x*(«) 
X \ u — b<j7=ku+v—b n = 0 

q-\ 

= (l/</>0?))Xo(«) 2 XoO) 2 Xo(«) 
u—b<jtku+v — b n = 0 
j 9 - 1 

+ (1/<H<7)) 2 X(a) 2 xU) 2 X*(») 
X^Xo \ u—b<j^u-hv — b n = 0 

2 i + 2 (x(«) 2 xun 
^u+v — b X^Xo \ u—b<j1=ku+v — b J u~b<j 

Xk = Xo 
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Therefore 

2 2 &j, ank + b,q) - v<Kq)/q 
u<i = u + v 0 = n<q 

in,q) = \ 

1 - v<j>(q)/q 
u — b<j = u + v — b 

+ 2 
X^Xo 

2 xU) 
u — b<j = u + v — b 

which, by Lemma 5, the Pôlya-Vinogradov inequality [7], [11] and the 
1/2 trivial inequality r(q) ^ 2q , is 

< 2 T ( ? ) + 2 c l l 9
1 / 2 l o g 9 

X^Xo 
X* = Xo 

^ V / 2 + c l l9
1/2log« 2 1 

<?"! 

= Aqm + c u 9
, / 2 log 9 2 (!/*(?)) 2 X*(«) 

n=0 

9 - 1 

= V / 2 + cuq
U2 log 9 2 ( l /«?)) 2 X(nk) 

- V / 2 + c„« , /2iog« 2 i 
0^n<q 

nk=\(modq) 

= 4qU2 + cuq
V2 log q f(l, k, q). 

The result now follows from Lemma 7. 

LEMMA 9. Le/ h, a and q be integers with a > 0, q > 1 ««J (a, q) = 1. Le/ 
p(«) Z>e a rea/ valued function defined for those integers n with h = n = 
h + q and (n, q) = 1. Put 

X = max p(«) — min p(n) 
h%n<h+q h^n<h+q 

(n,q)=\ (n,q) = \ 

and 

i](n) = (an + p(n))/q. 

There is an effectively computable positive absolute constant cn such that if 
X = 1 and if E is a real number satisfying 2 ë E ^ q then 

2 min(L, \\n(n) | | _ 1 ) < cn<j>(q) log E. 
h^±n<h + q 

{n,q)=\ 
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Proof. This is Lemma 6 of [9]. 

LEMMA 10. Let k, h, a and q be integers with k ^ 2, a ^ \, q ̂  3 and 
{a, q) = 1. Let p(n) be a real valued function defined for those integers n with 
h â n < h + q, (n, q) = 1 and f(n, K q) > 0. Put 

X = max p(n) — min p(n) 
h^n<h+q h^n<h+q 

(n,q)=\ (n,q)=\ 
f(n,k,q)>0 f(n,k,q)>0 

and 

K)(n) = (an + p(n))/q. 

There exists an effectively computable positive absolute constant c13 and a 
positive real number C3 which is effectively computable in terms of k such 
that if X ^ 1 and if E is a real number satisfying 3 ^ E ^ q, then 

(15) 2 f(n,k,q)mm(E,\\V(n)\rl) 
h"â-n<h + q 

{n,q)=\ 

< C3<f>(q) exp(c13(log k log £)/log log E). 

Proof. If ql/3 ^ E ^ q then, by Lemmas 7 and 9, 

(16) 2* f(n, k9 q) min(£, ||TJ(H) 
h^n<h+q 

(n,q)=\ 

l) 

^ max /(/i, k,q)\ 2 min(£, |fo(n) I f 1 ) 
\0^n<q h^n<h+q 
\(n,q)=\ ) (n,q)=\ 

< exp(c9(log k log tf)/log log q)cn<j>(q) log E 

< <j>(q) exp(c14(log k log £)/log log E). 

Thus we may assume that 

(17) 3 ̂  E < qxn. 

Put 

r = I min p(n) 
h^n<h+q 

(n,q)=\ 
J(n,k,q)>0 

and Pi(n) = p(n) — r. Note that 

0 ^ Pl(/i) < X + 1 ̂  2. 

We have 

j)(n) = ((an + r) + px(n))/q 

and so 
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(an + r)/q â 17(72) < (an + r 4- 1)1 q, 

hence 

||il(*) H"1 â max( || (** + r)/q\\-\ \\ (an + r + l ) /?!!" 1 , 

||(fl/i + r + l y ^ i n 1 ) , 

subject to the convention that 

a ^ max(l/0, b) and 1/0 ^ max(l/0, a) 

for all real numbers a and Z>. Thus, on recalling (14), we find that 

2 An9k9q)r^{EA\i\{n)\rx) 
h^n<h+q 

(n,q)=\ 

2 

^ 2 An, k, q) 2 min(£, || (an + r + O/tflP1) 
h-â±n<h + q / = 0 

^ 3 max 2 / (« , fc, ?) min(£, || (aw + ^ / t f l F 1 ) 
y'eZ h^n<h + q 

(n,q) = \ 

q-\ 

= 3 max 2 /(/i, fc, ?) 2 £0", fl« + y, tf) min(E, | | / /^ | | _ 1 ) 
i G Z h^n<h + q / = 0 

(«,<7) = 1 

= 3 max 2 2 &/, aw* + 7, #) min(E, Hi/^H"1) 

[-7/2] 

^ 3 max 2 2 (£(*, <"** + 7, 4) + £(q - /', ÛTI* + 7, 4) ) 

X min(is, #//) = 3 max lis 2 2 

7 e Z I O^i^q/E 0^n<q 
\ (n,q)-\ 
( « / , a n * + 7, q) + £(<? - /, ank + 7, 4 ) ) 

[E] 

+ 2 (£/«) 2 2 («1, ank + 7, ?) 
w=l uq/E<i^(u+\)q/E 0^n<q 

(n,q)=\ 

+ « 0 - I, £WI* + 7, «) ) I 
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which, by Lemma 8, is 

^6E((\ + (q/E))(<j>(q)/q) 

+ qx/1 exp(c10(log k log <?)/log log q) ) 

[E] 

+ 6 2 (E/u)((\ + (q/E)M(q)/q) 
u=\ 

+ qxn exp(c10(log k log q)/\og log q) ) 

and, by (17), is 

% \2<j>(q) + 6q5/e exp(c10(log k log ?) / log log qr) 

+ 12(1 + log £)(<K?) 4- q5/6 exp(c10(logk log ^)/log log q) ), 

whence, by Lemma 4, is 

(18) < C4<j>(q) log £, 

where C4 is a positive number which is effectively computable in terms of 
k. Lemma 10 now follows from (16) and (18). 

LEMMA 11. Let 0 be a positive real number and let k be an integer larger 
than one. If a is a real number and a, q and N are positive integers with 
{a, q) = 1 and \a — (a/q) | < q~2 then 

2 e(apk) 
\p = N 

< C y v ' + V + N~]n + qN~k/ 

where C5 is a real number which is effectively computable in terms ofk and 6; 
the summation above is over primes p with p = N. 

Proof. This follows from Theorem 1 of [4] by partial summation. 

LEMMA 12. Let 8 be a real number satisfying 

0 < 8 ^ 1/2. 

Then there exists a periodic function \p(x, 8), with period 1, such that 
(i) \f/(x9 8) ^ 1 in the interval —S^x^S, 

(ii) I/<JC, 8) ^ 0 for all x, 

(iii) \p(x, 8) has a Fourier series expansion of the form 

\f/(x9 8) = a0 + 2 cij cos lirjx, 
0</^(l/2«)-l 

where 

kl = A 
and 
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|o,. | < 2ir28, 

forO< j S (1/25) - 1. 

Proof. This is Lemma 4 of [10]. In fact in [10] it is shown that one may 
take 

Mx, 8) = 0r2/(4iV2))| (1 - e(Nx))/(l - e{x))\2 

where N = [1/(2S) ]. Of course results of this character are well known. 
They were introduced in this setting by Weyl and have often been used by 
Vinogradov and others. 

Let x be a real number and let / and k be positive integers. As usual we 
denote the number of primes less than or equal to x by TT(JC) and the 
number of primes less than or equal to x and congruent to / modulo k by 
7r(x, k, /). 

LEMMA 13. There exist effectively computable positive real numbers c15 

and cl6 such that if X and Y are real numbers with X > c15 and Y = 
X23m then 

<rr{X + Y) - TT(X) > c16y/log X. 

Proof This is the main theorem of [5]. 

In fact we only require Lemma 13 for the range Y ^ jf(5/8)+€ for € a n 

arbitrary positive real number and so Ingham's Theorem would suffice 
here. 

LEMMA 14. (Brun-Titchmarsh Theorem). Let x and y be positive real 
numbers and let k and I be relatively prime positive integers with y > k. 
Then 

TT(X + y, k, I) - TT(X, k, I) < 2y/(<#&) \og(y/k) ). 

Proof This is Theorem 2 of [6]. 

3. The proof of theorem 2. As before, C0, Ch . . . and N0, Nh . . . denote 
positive real numbers which are effectively computable in terms of e and k 
and c0, cx, . . . denote effectively computable positive absolute constants. 
We shall assume, without loss of generality, that 

0 < e < (2k4k~lyl. 

Put 

P = (yN€/2)4kl and Q = N/P. 

Let Tx denote the set of those a in the interval 

(yk~X/Ny 1 - (yk~l/N)) 
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for which for all integers n with 1 ^ n ^ y there exist positive integers rn 

and sn with (rn, sn) = 1, 

(19) \na - (r„/s„) \ < \ls\ 

and 

(20) P tk sn ^ Q. 

Put 

T = (yk~l/N, 1 - (yk~lIN)) - Tl9 

so that V consists of the real numbers a in (yk~l/N, 1 — (yk~~l/N)) 
which are not in Tx. If a e T then for some integer n* with 1 ^ AÏ* ^ y 
there exist no coprime positive integers rn*, sn* satisfying (19) and (20) with 
n* in place of n. By Dirichlet's Theorem there exist integers u and v 
with 

(21) \n*a - (u/v) \ < l / (vg), 

O ^ w , 0 < v ^ g and (w, v) = 1. Note that 

\n*a - (u/v) | < 1/v2, 

and therefore that v < P. It follows directly from (21) that 

\a - (u/n*v) | < \/(n*vQ), 

hence, on writing W/(AZ*V) in the form alb with a and 6 coprime a ^ 0 and 
Z? > 0 we see that 

(22) |a - (a/b)\ < U(bQ), 

with 

(23) b S «*v ^ 7P. 

To each a in Tr we shall associate a pair of coprime integers a and b with 
a ^ O and b > 0 satisfying (22) and (23) and we shall put 

P = a - {alb). 

Let us define subsets T2 and T3 of T7' by 

T2 = {a e r|Z> ^ ; , } , 

r3 = {« G r | j < z?}. 

Put 

S0(a) = 2 m i n ^ H / a i r 1 ) . 
pk^N 

Since 
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(yk~l/N, 1 - ( / l/N)) = Tx U T2 U T3 

it suffices to show that for N > Nl9 

(24) max S0(a) < C2(N
l/k/\og N) exp(c5(log k log y)/log log y\ 

a^Tt 

for / = 1, 2, 3. We shall establish (24) for / = 1, the case of the "minor 
arcs" in Section 4 and for / = 2, 3, the "major arcs" in Section 5. 

4. Minor arcs. Assume that a e Tx. For /? > 0, put 

Z(N9 a, jB) = 2 1. 

| | /a| |</? 

Then 

S0(a) = 2 m i n a i l A i r 1 ) 
/ ^ W 

2 min^JlAir1) 
pk^N 

\\pka\\<l/y 

[y/2]+\ 

+ 2 2 min(.y, H / a i r 1 ) 
y = 2 / ^ W 

( y - l ) / > ^ | | / a | | < y / y 

[>>/2]+l 

^ 2 y + 2 2 y/(j - i) 
pk^N j=2 pk^N 

\\pka\\<\/y (j-\)/y^\\pka\\<j/y 

= yZ(N, a, \/y) 

[y/2]+\ 

+ 2 ( J /O ' - 1) )(Z(N, a, y/y) - Z(N9 a, (7 - l)/y) ) 

[y/2] 

= y 2 z(#, a, 7/^x1/0* - l) - 1/7) 
7 = 2 

+ ( y [ ^ / 2 ] )Z(7V, a, ( [jV2] + l)/y) 

[y/2] 

^ y 2 Z(7V, a, y/y)/(./(./ ~ 1) ) + 3 2 1. 
y = 2 / = " # 

Thus, by the prime number theorem, 
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[y/2] 

(25) S0(a) < y 2 Z(N, a, j/y)/(JU ~ 1)) + 4kNx,k/\og TV, 
7 = 2 

for TV > TV2. 
On applying Lemma 12 with 5 = j/y and 1 ^ 7 ^ y/2 we find that 

Z(TV, a, j/y) 

= 2 1 ^ 2 « A y/y) 
pk^N 

\\pka\\<j/y 
pk^N 

2 # 0 + 2 # m cos(27rmp a) 
k^N\ 0<m^(y/2j)-\ J 

2 fl^J 2 e(/w/«) 
w^(j>/2/)-l \ / ^ V / 

= a07T(Nl/k) + 

^ koKtf1 '*) + 
0<m^(y/2j)-\ 

2 e(w/? a) 
pk^N 

^ (7r2j/y)7T(Nl/k) + 2 (2ir2j/y) 
0<m^(y/2j)-\ 

Thus, by the prime number theorem, for TV > TV3, 

(26) Z(N,a,j/y) 

2 e(mp a) 
pk^N 

\/k, ^ (20kj/y)NUK/log TV 

2 e(mp a) 
pk^N 

+ max 
\0<m^(y/2j)-\ 

^ (20kj/y)Nl/k/log N + 10 max 
0<m^(jV2/ ' ) - l 

I 2 20j/y 
! 0<m^(y/2j)-\ 

2 e(p moL) 
pk^N 

If 0 < m ^ (y/2j) — 1 then, since (y/2j) — 1 ^ j , for a e 7̂  there exist, 
by (19), positive integers rm and sm with (rw, sw) = 1, 

\ma - (rjsm) \ < l/s2
m, 

and P ^ sm ^ TV/P. Thus, on applying Lemma 11 with 6 = e/2, we find 
that 

<C6N 2 e(pk(ma)) 

which, for TV > TV4, is, by (8), 

(l + (e/2))/*. ( (2 /P) + AT<1/2*>)4 
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< C7JV1/A7(>log7V). 

Therefore, by (26), for 1 ^ j: ^ yII and N > N5, 

Z(N,a,j/y)< C,(j/y)Nl/k/logN. 

Thus, from (25), for a e Tx, 

[y/2] 

(27) SQ(a) < Cs(N
l/k/logN) 2 \/(j - 1) + 4kNl/k/log N 

7 = 2 

< C9(N
]/k/log N) logy, 

provided that N > N5. 

5. Major arcs. For any real number a in Y and associated positive 
integer ft ^ N we put 

S0(a,6) = 2 min(j , l l / a i r 1 ) . 
pk^N 

Then, by Lemma 3, 

S0(a) ^ 2 Ĵ  + S0(«> *) = cxly log ft + S0(a, ft) 

^ c17>> log N + S0(a, ft). 

Thus, by (8), for TV > 7V6, 

(28) S0(a) < Nl/k/log N + S0(a, ft). 

In this section we shall establish (24) for a e T2 and a G T3. Assume 
first that a <= T2. Put 

L = min(7V, l/(2ft |£|)) , 

where min(7V, I/O) = N by definition. Then we have 

(29) N ^ L ^ Q/2 = N/(2P). 

Put 

Sx(a, ft) = 2 min(j>, l l / a l l " 1 ) and 

(p,b)=\ 

S2(ct,b) = 2 min(^, l l / a l l " 1 ) , 

(/?,/>)= 1 

so that 
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(30) S0(a, b) = Sx(a, b) + S2(a, b). 

Notice that the sum S2(a, b) is empty for N = l/(2b\f}\ ) hence for 

(31) |j8| = \/(2bN). 

We shall now estimate S}(a, b). Suppose that 6 = 1 . Then |/}| = ||a|| 
and since a €= r , \fi\ > yk~x/N. Thus L < TV//" 1 and so L\p\ = 1/2. 
We have, just as in our estimation (25) for S(a), 

[y/2] 

Sx(a, 1) = y 2 Z(L, a, y/jO/OO" - 1)) + 4kNl/k/log N. 
J = 2 

Now, since L|/?| = 1/2, we have, by Lemma 14, 

Z(L, a, y/y) = TT( (2jL/y)l/k) = Sk(jN)l/k/(y log JV). 

Therefore, 

(32) S,(a, 1) = Cl0(N
l/k/log N). 

Next suppose that 6 > 1. In this case we may assume, since a and b are 
cop rime, that a > 0. If (p, b) = 1 and pk ^ L then 

llAll = ii/((«/ft) + i8)ii = n^/ftii - P
k\p\ 

i= \\apk/b\\ - 1/(26) = ( l / 2 ) | | a / / 6 | | , 

since 6 > 1 and (ap , 6) = 1. Thus 

Si(«, I ) 

= 2 min(̂ , 2||^//6|r1) 

= 2 2 2 2IM/6IF1 

0</?</> 0<JC</> p^L]/k 

(h,b) = \ (x,b)=\ p = x(modb) 
xk = h(modb) 

= 2 2 2 7T(L]/k,b,x)\\ah/b\r] 

0<h<b 0<x<b 
(h,b)=\ (x,b)=\ 

x =h(modb) 

< l( max <7T(LUk, 6, x)\ 2 2 IIÛA/611"1 

0<x</> 0<h<b 0<x<b 
\(x,b)=\ J (h,b)=\ (x,b)=\ 

x =h(modb) 

= it max ir(Ll/k, b, x)\ 2 /(A, fc, JOHoA/ilP1 

0<x</> 0</i</> 
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^ 2 max TT(L1//C, b9 x) \ max f(h, k, b)\ 2 \\ah/b\\ l 

\0<x<b \\0<h<b 0<h<b 
\W>)=1 )\(h,b)=\ ) (htb)=\ 

^ 4/ max 7r(Ll/k, b, x) \l max f(h, k9 b)\ 2 fc//. 
0<*<Z> 0</*</> 0<l^[b/2) 

\ w o = i /\(M)=i / ( W L i 

Employing Lemmas 6 and 7 and recalling that since a ^ T2, b ^ y, 
we find 

(33) S ^ f t ) 

^ C n / max TT(L1//C, Z>, x) \ exp(c18(log k log y)/log log .y)<H£). 
0<x</> 

Now, by (29), 

Ll/k/b â Nl/k/(2yPl/h) 

hence by (8), 

/ , "* /* > j v i m , 

for iV > N7. Thus we may apply Lemma 14 to conclude that 

(34) max ir(Ll/k, b9 je) < C12L1/Â7(#6) log TV). 
0 < J C < 6 
(*,/>)= 1 

Thus, since L ^ TV, it follows from (33) and (34) that 

(35) Sx{a9 b) < Cl3(N
l/k/log N) exp(c18(log k log y)/log log y), 

for TV > 7V8. 
We shall now estimate S2(a, b). We may assume that 

(36) l/(2bN) < \0\ < V(bQ), 

since otherwise, recall (31), the sum is empty. Thus also 

(37) L= 1/(26 |j8|). 

We have 

S2(a, b) 

- 2 minUH/all"1) 
L<pk^N 

[N/L] 

2 2 min^llAin1) 
j=\ jL<pkfk{j+\)L 

(P,b)=\ 
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[N/L] [2>>]+l 

= 22 2 min(j, nAir1). 
7=1 h=\ jL<f^(j+\)L 

(h- l)/([2y] + \)^{pka}<h/([2y] + 1) 

Note that 

(h - l)/([2y] + 1) = {pka} < h/([2y] + 1) 

implies that 

H A H " 1
 = || (A - l)/([2y] + l ) ! ! " 1 + ||A/([2y] + l ) ! ! " 1 , 

where we write x ^ (1/0) + z and (1/0) ^ (1/0) + z for all real numbers 
x and z. Thus 

[N/L] [2y]+l 

(38) S2(a, Z>)^ 2 2 (min(j, || (A - l)/([2y] + l ) ! ! " 1 

7 = 1 A = l 

+ min(;;, ||/z/([2y] + l ) ! !" 1 ) ) 2 1. 
7L</^(7+l)L 

(pJ>)=\ 
(h- l)/([2y]+ l )^{/a}</z/([2y] + 1) 

If /70 and /?! are primes with 

jL < pk ^ (j + Y)L and 

(h ~ l)/([2y] + 1) = {^«} < /z/([2y] + 1) 

for / = 0, 1 then, by (37), 

l / ( 2 y ) > l/([2y] + 1) 

= II (Pi ~ Po)oc\\ = II (A* - />gX(fl/6) + 0 || 

= II (/>f " Po)a/b\\ - \p\ - pk\ |jS| > || (/>* - pk
0)a/b\\ - L\fi\ 

= \\(Pi~ Po)<*/b\\ - 1/(26). 

Thus 

|| (pk - pk
0)a/b\\ < l/(2y) + 1/(26) ^ 1/6, 

whence 

^ = pk (mod 6). 

Therefore 

(39) 1/(2)0 > ||/>fa - pk
0a\\ = || (/>* - pfoa/b + (/>,* - ^ ) £ | | 

= II (/>* - />o)fl|. 
Since 
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\(Pi ~ Po)P\ <W\ = 1/(26) ^ 1/2 

it follows from (39) that 

l/(2y) > |/>f - pk\ \P\, 

hence 

I/,, - pQ\ < ( W ï ^S"1"']) ' ^ (2liS|^"')~1 

<(2| j8b(yL)(*- ,> /*)-1 . 

Thus, by (37), 

\P] - p0\ < LUkb/(y/k-»/k). 

Therefore, either there are no primes p with 

jL <pk ^ (j + 1)L, (/>, ft) = 1 and 

(h - l)/([2y] + 1) ^ {pka} < h/([2y] + 1), 

or for some p0 with (/?0, />) = 1 we have 

(40) 2 1 
jL<pk^(j+\)L 

(P,b)=\ 
(h- l)/( [2y] + \)^{pka)<h/{ [2y] + 1) 

2; 2 i 
/=/>J(modft) 

^-/.oKL'^/C^/*-')'*) 

- 2 2 i 
0 S « 6 /) = r(modft) 

»*=pg(modfc) \p-p0\<Lvkb/(y/k-»/k) 

^ 2 (*(/><, + ( i l , * M / " l ) / i ) ) , U ) 
tk=pQ(modb) 

-v(p0-(L
Ukb/(y/k-V/k)),b,t)). 

Now, since 1 ^ ; ^ N/L and L > Q/2, 

(2LUkb/(yj(k-y)/k))/b ^ 2 L / ( ^ ( * ~ 1 ) / ^ ) 

> Q/(yN(k~Y)/k) = NUk/(yP), 

and, by (8), 

N]/k/(yP) ^ JV3/<8*). 
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Thus, the right hand side of (40) is, by Lemma 14, 

< 2 Cl4L
Vkb/(y/k-»/k4tb) log N) 

tk=pQ(modb) 

and, by Lemma 4, 

< Cl5(L
Vk log log b/(y/k-X)/k log N) ) 2 1 

0^t<b 
tk=pk

)(modb) 

= C15(L1//c log log b/(y/k~l)/k log N) )f(pk, k, b) 

and, by Lemma 7 and the fact that b = y, 

< C ^ L 1 ' * / ^ / * - 1 ) ' * log N) ) exp(c19(log fc log y)/log log ;/). 

Therefore, by (38), 

(41) S2(a,b) 

[NIL] [ïy)+\ 

=i 2 2 (min(>>, || (h - l)/([2y] + 1) II"1) 
j=\ h=\ 

+ min(^| |A/([2y] + 1) 11 ~ m> > 

X Cl5(L
uk/(y/k-])/k log N) ) exp(c19(log k log y)/\og log y) 

ë C]6(L
]/k/(y log AT) ) exp(cl9(log k log j ) / log log ^) 

[NIL] [2y]+l 

x ^ y - (* - iV* 2 min(^, ||/z/([2j] + 1)11"') 
7 = 1 A=0 

S Ci7(L
]/k/(y log TV) ) exp(c19(log k log ̂ )/log log y){N/L)Uk 

I [y\+\ \ 
x\y + 2 (2y + \)/h\ 

^ C^(Nuk/log N) exp(c20(log k log y)/log log y). 

Appealing to (28), (30), (32), (35) and (41) we find that for a e T2, 

(42) S0(a) < C{9(N
Uk/log N) exp(c21(log k log / ) / log log y), 

provided that N > N9. 
Finally, we assume that a is in T3. Put 

M = mm(N,(\p\yy
]). 

Then 
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[N/M] 

(43) S0(a,b)^ 2 2 min(j , H / a i r 1 ) . 
y = 0 jM<pk^(j+\)M 

(P,b)=\ 

Now if H/Axir1 < y W l t h jM < pk ^ 0" 4- 1)M, and n is defined by 
pk = n (mod 6) with (7 + \)M - b < n ^ (j + 1)M, then 

l lAl l = \\pk((a/b) + 0 ) | | = ||(fl»/*) -f /ijB + ( / - *)j8|| 

^ ||(fl» + /iftj8)/ft|| - | / - n\\P\. 

Note that TV > b and 

( lySlj,)"1 >bQ/y ^ Q>b 

by (8) and (23). Thus \pk - n \ < M and so 

1 / - * I |jS| < M | j 8 | ^ \/y< \\pka\\. 

Therefore 

2||All = ll(«« + nbp)/b\\, 
whence 

min(_y, \\pka\\~x) ^ 2 min(^, || {an + /i6j8)/6||~!). 

Consequently, by (43), 

[#/A/] 

(44) S0(a, Z>) ^ 2 2 
j = 0 {j+\)M-b<n^(jJc\)M 

(«,/>)= 1 

X 2 min(>>, || (an + «ôiSVèir1) 2 1. 
jM<pk^(j+\)M 

pk = n(modb) 

By (22), ( \P\y)~l > Qb/y and by (23), TV ^ gft/y hence M ^ Qb/y. Thus, 
since 6 > y, 

((( . / + 1)M)17* - (JM)l/k)/b 

^ MUk/(k(j -h 1)Z>) ^ M]/k/(2bk(N/M)) 

= M]^l/k^/(2bkN) ^ Q™kWk/(2kNyx + ^k^) 

S Nl/k/(2kyPl + «/k>) 

which is, by (8), 

(45) â iV1^8*), 

for N > Nl0. Therefore, by (45) and Lemma 14, 
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(46) 2 1 
jM<pk^(j+\)M 

pk = n(modb) 

= 2 2 i 
0^t<b (jM)l/k<p^((j+ \)M)vk 

r = n(n\oàb) p = t(moàb) 

< 2 (16*( ( U + \)M)vk - (jM)l/k)Wb) log TV) ) 

r = «(mod&) 

< (C20M1//c( (j + l)17* - jx,k)Wb) log iV) ) 2 1. 
o^/</> 

r* = «(mod£) 

But the sum in the expression on the right hand side of inequality (46) is 
f(n, k, b) and so on combining (44) and (46) we obtain 

S0(«9 b) 

[N/M] 

^ 2 (C20M
uk(U + I)1 '* - jl/k)/(<Kb) log N)) 

j = 0 

X 2 / (« , K b) min(j>, || (aw + nbp)/b\\~x). 
{j+\)M-b<n^(j+\)M 

(n,b)=\ 

We may estimate the inner sum above by means of Lemma 10 with 
h = (j -f \)M - b + 1, q = b and p(n) = nbp. Then, by (8), (22) 
and (23), 

À = max nbfi — min «6/? 
0 + \)M-b<n^(j+ \)M (j+ \)M-b<n^(jJt- \)M 

(n,b)=\ (n,b)=\ 

S Z>2|£| < b/Q < 1. 

Thus 

(47) S0(a,b) 

[N/M] 

S 2 C 2 1(M 1 /^((y+ l ) 1 / * - . / 1 / * ) / l o g t f ) 
7 = 0 

X exp(c13(log k log j ) / log log J 0 

= C2l(M
vk/\og N) exp(c13(log k log y)/log log j;) 

[V/M] 

x 2 (u+\)m-juk) 
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= C2](M
uk/\og N) exp(c13(log k log y)/\o% log y) 

X ([N/M] + \)X/k 

< C22(N
l/k/log N) exp(c13(log k log y)/\og log y). 

By (28) and (47), for a in T3, 

(48) SQ(a) < C23(N
vk/log N) exp(c13(log k log y)/log log y), 

provided that N > N]0. 
Thus (24) follows from (27), (42) and (48) and this completes the proof 

of Theorem 2. 

6. Further preliminaries to the proof of theorem 1. Let e be a positive 
real number less than 0k and let C0, C1? . . . denote positive real numbers 
which are effectively computable in terms of € and k and c0, cx,. . . denote 
effectively computable positive absolute constants. Let C and c be real 
numbers, with C ^ 20 and c ^ 1, to be specified later and let Nu, Nl2, . . . 
denote numbers which are effectively computable in terms of C, c, e and k. 
We shall choose C and c later so that C is effectively computable in terms 
of e and k and so that c is an effectively computable positive absolute 
constant. Put 

y = CR exp(c(log k log R)/log log R). 

Since R â 3 we have ^ = 3 and if (4) holds and N > Nu then 

(49) j < N9k~{€/2\ 

We shall first establish Theorem 1 for the case of sums a + Z>; the case 
a — & is treated in a similar way. To do so it suffices to show that there 
exist at least 

C24\A\\B\(N/yf/k)-]/log N 

pairs (a, b) with a in A and b in B for which there exists a prime /? with 
pk\(a + Z?) and 

(50) 4N/y ^ / > 2A7j>. 

We now introduce the following notation. Put 

\ = y
k/N and U = [ iV / / + 1 ] 

and, for each positive integer n, 

( 1 if n = w/7 with 1 ^ m ^ y, p a. prime and 

2JV/y < pk ^ AN/y 

0 otherwise. 
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Next put 

AN 

S (a) = 2 dne(na), 
n=\ 

AN 

s = s(0) = 2 dn9 

n=\ 

U-\ 
U(a) = 2 e(na), 

n = 0 

and, since dn = 0 if n < 1 or n > AN, write 

AN+ U- 1 n 

S(a)U(a) = 2 V?(«a) where vn = 2 d,. 
n=\ j = n-U+\ 

Further, put 

F(a) = 2 e{aa\ G(a) = 2 e(ba) 

and 

IN 

H(a) = F(a)G(a) = 2 e( (a + *)a) = 2 A^(»a) 
a^A,b^B n=\ 

where 

A„ = S 1. 
a<=A,b(=B 

Finally, define J by 

/ = J QF(a)G(a)S(-a)da. 

Observe that 

IN AN 

/

j P IIS 47V 

0H(a)S(-a)da = J Q 2 2 hndme((n - m)a)da 
n— 1 w=1 

2V 

= 2 hndn. 
n=\ 

Note that dn > 0 implies that /?*|w with 2JV/y < pk ^ 4N/y, while Aw > 0 
implies that n = a + b, for a ^ A, b ^ B. Thus to establish our result it 
suffices to show that 
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(51) / > C24\A\ \B\(N/yf/k)~l/log N. 

In order to prove (51) we first require some estimates for S, S (a) and vn 

We remark 
therefore that 

We remark that by (49), y < (2N/y)]/k, provided that N > Nu and 

(52) S (a) = 2 2 e(mpka). 
m^y 2N/y<pk^4N/y 

LEMMA 15. For N > Nn, 

(53) S < C25y(N/y)Uk/log N. 

Proof. By (52), 

S = 2 dn = ( 2 l)( 2 l)*MHN/y)l'k), 
w=l \\^m^y !\2N/y<pk^4N/y J 

which, by (49) and Lemma 14, is 

< C25y(N/y)l/k/logN. 

LEMMA 16. If N > Nl2, then for X ^ a ^ 1 - A, 

(54) \S(a) | < C26( (N/y)l/k/log N) exp(c5(log k log y)/log log y). 

Proof By (52), for TV > Nn, 

\S(a) | < 2 
2W/y</?/ 

which, by Lemma 1, is 

2N/y<pk^4N/y 
2 e(mp a) 

m=y 

mm(y92\\pka\rl) 
2N/y<pk^4N/y 

^2 2 m i n U HAH" 1 ) . 
pk^4N/y 

The lemma now follows from Theorem 2. 

LEMMA 17. 7/TV > N]3 and n is an integer satisfying 30N/y < n ^ 27V 

(55) v„ > C21(N/y){Vk)~xU/log TV. 

Proo/. If n satisfies 30A7y < n ^ 2N then, for N > Nu, 

n 

\ = 2 4 = 2 i 
y = w-£ /+ l n- U<mpk^n 

m=y 
2N/y<pk^4N/y 
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= 2 2 i. 
m^y max((«— U)/m,2N/y)<pk^min(n/m,4N/y) 

Notice that if m ^ Uny/(30N) then 

(/i - IT)Im ^ 3(W/(lly) - Vim â 3(W/(lly) - JV/ /+ 1 

and, since .y = 3, 

(/i - IT)Im > 2Nly. 

Further, if 9nyl(30N) < m then nlm < 30NI(9y) < ANIy. Since 

\lnyl(30N) ^ 22yl30 < y 

we conclude that 

(56) vn> 2 2 1 
9ny/Q0N)<m^\\ny/(30N) (n- U)/m<pk^n/m 

2 <n((nlm)vk) - 7r(((n - U)lm)vk)). 
9ny/(30N)<m^ l\ny/(30N) 

We may now apply Lemma 13 with 

X = ((n - U)lm)x/k and Y = (nlm)l/k - ( (n - U)lm)x/k 

for 

9nyl(30N) < m ^ ll«y/(3(W). 

For we have 

(57) X = ((/i - £/)/m)1/ / : < («/m)1 / / : < ( 3 (W/ (9JO )1//c 

while 

(58) Y = (nlm)l/k(l - (1 - (l///i) )1//c) > C28(A7y)(1//c)£///z, 

since Uln < .y"* < 1/2 for TV > Nl4. By (57) and (58) 

(X3/5IY)5k/2 < C29y
l^5k^l^IN, 

which, by (49), is 

< C29/N
mi. 

Thus for N > AT15, X
3/5 < Y whence, by Lemma 13, 

v„ > 2 C30(A7.F)(1/*)t//(« log iV) 
9«>>/(3(W)<m£ 1 \ny/(30N) 

> ( (2ny/(30iV) ) - \)C30(N/yf/k)U/(n log N). 

Since « > 30N/y the result follows. 
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7. The proof of theorem 1. We shall establish (51) now. We have, for 
v̂ > JV16, 

\J - U~l J Q F(a)G(a)S(-a)U(-a)da\ 

g f_x \F(a) | \G(a) | \S(-a) \(U - U(-a))/U\da 

n-X 
+ Jx \F(a) | \G(a) \ \S(~a) |(1 + \U(~a)/U\ )da 

which, by Lemma 2, is 

S J _x \F(a) | \G(a) \S4U\a\da 

+ ) \F(a) | \G(a) |( max \S(/3) \ \lda 

by Lemmas 15 and 16, is 

< Jx \F(a) | \G(a) \Cn(y(N/y)Vk/log N)UXda 

+ f[ " \F(a) | \G(a) \2C16( (N/y)l/k/log N) 
~i-x 

A 

X exp(c5(log k log >>)/log log y)da, 

g ( C ^ J V / y ^ / l o g JV + C32((N/y)yk/logN) 

X exp(c5(log £: log y)/\og logy)) 

X j ^ |F(a) | \G(a) \da, 

and, by Cauchy's inequality, is 

g C33( (N/y)l/k/\og N) exp(c5(log k log y)/log log y) 

x(( /ô i f («) iH(/ô | G ( a ) H) 1 2 -
Thus, by Parseval's formula, 

(59) f\ F(a)G(a) t r 1 I nF(a)G(a)U(-a)S(-a)da 

si c 3 3 ( ( jv/)0 1 /*(HII*l) , / 2 / iogJV) 
X exp(c5(log k log ^)/log log y). 

Furthermore, 

/ = J oF(a)G(a)U(-a)S(-a)da 
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p I IN \/4N+U-\ \ 
= J 0 1 2 hne(na) 2 vme(-ma) \da 

IN 

= 2 hnvn. 

Since hn and vn are non-negative for n — 1, . . . , 27V, 

/ i= 2 A„v„, 
30V/_y<«^2V 

and, by Lemma 17, 

/ ^ C21(N/yf/k)- \U/log N) 2 Aw 
30A7y<«^2V 

= C21(N/yiuk)~\unogN) 2 1. 

30A7y<a + />^2V 

Observe that since C ^ 20, 

307V/y ^ (\A\ \B\ )1 /2/2 ^ (1/2) max( \A\, \B\ ) 

and thus 

2 \^\A\\B\/2. 

30N/y<a + b^2N 

Therefore 

(60) / ^ C3 4U| \B\(N/y)(l/k)~lU/log N. 

It follows, from (59) and (60), that 

(61) \J\ ^ \I\/U - C33((N/y)vk(\A\\B\)U2/\ogN) 

X exp(c5(log k log y)/log log j>) 

^ C34UI |£|((JV/jO(1/*)_Vlog;V)(l - (C35iV/(^( \A\ \B\ )1 / 2)) 

X exp(c5(log k log jO/log !og JO )• 

Recall that 

y = CR exp(c(log k log R)/log log # ) . 

We now choose c = 2c5. Put 

(62) W = C35(7V/(j;( H | |2?| )1/2) ) exp(c5(log k log y)/log log y). 

Provided that C > C36 we have >> < (CR)2 and 
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log y/log log y < 2(log CR)/log log CR 

< 2( (log C/log log C) + (log */ log logR)) 

hence 

W < C35 exp(2c5(log k log C)/log log C)/C 

and so we may choose C = C37 sufficiently large so that W < 1/2. Then, 
by (61) and (62), 

| / | ^ (C34/2)( | ^ | |2?|/log N)(N/yf/k)-1. 

Since / is non-negative (51) holds and this completes the proof of 
Theorem 1 for the case of sums a + b. The proof of Theorem 1 for terms 
of the form a — b is essentially the same as that given above. We 
estimate 

/ ' = J oF(a)G(-a)S(-a)da 

in place of / ; see pp. 190-191 of [9] for details. 
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