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Abstract. Planar motions of a triangular body and a massive point under the action of mu-
tual Newtonian attraction are studied. For the first formulation the triangle is assumed to be
composed of three massive points. For the second formulation it is constructed with three homo-
geneous rods. Some partial solutions are observed within the analysis of the geometry of mass
distribution.

The investigation is motivated by the problem of motion of spacecrafts near asteroid-like
celestial objects possessing irregular mass distribution. Comparison of dynamical effects for two
types of mass distribution is another goal of the research.

Problems appearing because of irregularities in mass distributions have been known for a long
time. Certain approaches to the description of motions under attraction as well as qualitative
particulars of dynamics are discussed by Demin (1963), Burov & Karapetyan (1995), Buchin &
Burov & Troger (2008), Burov & Guerman & Sulikashvili (2010), Kholshevnikov & Kuznetsov
(2011), Beletsky & Rodnikov (2011) and Scheeres (2012).
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Consider a motion of ΔP1P2P3 and the point mass P in the fixed plane under the
action of mutual attraction. The triangular object ΔP1P2P3 is assumed to be composed of
masses m1 , m2 and m3 located at its vertices (”point triangle”, PT), or by homogeneous
rods P1P2 , P2P3 and P1P3 of masses m3 , m1 and m2 respectively (”wire triangle”, WT).
Let P have mass m.

Denote M = m1 + m2 + m3 , |P1P2 | = �3 > 0 (1,2,3), where (1,2,3) is the cyclic
permutation of indices. Let C and S be the centers of mass of the triangle and the whole
system respectively, and Cf be the point where the gravitational forces generated by the
the triangle vanish. Then, the following statement is true.

Assertion. If C = Cf , then for any value of m there exist steady motions of the
triangle with an arbitrary angular velocity, such that C = Cf = P .

For PT the condition C = Cf requires C to be center of the circumscribed circle, i.e.
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For WT this condition is true if and only if m1 = m2 = m3 .
In case of PT, positivity of masses implies that all angles of the triangle are acute.
Using the Routh method (see Routh (1877)), one can investigate in general steady

motions of the systems and their degrees of instability. If (x1 , x2 , x3) are barycentric
coordinates (BC) of the point P with respect to the triangle P1P2P3 , then the Routh
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Figure 1. Poincare diagram: point and wire triangles

function leads to Wλ = U + λ(x1 + x2 + x3 − 1)
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where Pψ is the constant of total angular momentum, G is the gravitational constant,
and J is the moment of inertia of the whole system with respect to the axis perpendicular
to the plane of motion and passing through the point S.

Steady configurations are determined as critical points of the function Wλ (x1 , x2 , x3 , λ).
Analyzing these equations one can easily discover families of steady motions, such that
the point P locates at one of the axes of dynamical symmetry of the triangle (see Nikonov
(2014) for PT). Appropriate Poincaré bifurcation diagrams are drawn in Fig 1. There
the figures near the curves express degrees of instability. In particular, the figure ”0”
corresponds to the stability of steady motion in the sense of Lyapunov. The Poincaré
bifurcation diagram for PT drawn before in Nikonov (2014) is improved here.
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