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Abstract. For smooth random dynamical systems we consider the quenched linear and
higher-order response of equivariant physical measures to perturbations of the random
dynamics. We show that the spectral perturbation theory of Gouëzel, Keller and Liverani
[28, 33], which has been applied to deterministic systems with great success, may be
adapted to study random systems that possess good mixing properties. As a consequence,
we obtain general linear and higher-order response results, as well as the differentiability
of the variance in quenched central limit theorems (CLTs), for random dynamical
systems (RDSs) that we then apply to random Anosov diffeomorphisms and random
U(1) extensions of expanding maps. We emphasize that our results apply to random
dynamical systems over a general ergodic base map, and are obtained without resorting
to infinite-dimensional multiplicative ergodic theory.
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1. Introduction
In this paper, we study quenched response theory for random dynamical systems (RDSs).
The set-up is as follows. Take M to be a C∞ Riemannian manifold with m being
the measure induced by the associated volume form, take (�, F , P) to be a Lebesgue
space and, for some r ≥ 1 and each ε ∈ (−1, 1), let Tε : � → Cr+1(M , M) denote a
one-parameter family of random maps with a ‘measurable’ dependence on ω. After fixing
an invertible, P-ergodic map σ : � → � from each Tε , we obtain RDSs (Tε , σ) whose
trajectories are random variables of the form
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x, Tε,ω(x), T (2)
ε,ω (x), . . . , T (n)

ε,ω (x), . . . ,

where T (n)
ε,ω is short for the composition Tε,σn−1ω ◦ · · · ◦ Tε,ω. A family of probability

measures {με,ω}ω∈� on M is said to be equivariant for (Tε , σ) if με,ω ◦ T −1
ε,ω = με,σω

for P-almost every ω (see §2.1 for a precise definition). When Tε possesses some
(partial) hyperbolicity and good mixing properties, one hopes to find a unique physical
equivariant family of probability measures (a T -equivariant family of measure {μω}ω∈� is
physical with respect to m if n−1 ∑n−1

i=0 δTσ−iω(x) → μω for x in a (possibly ω-dependent)
positive m-measure set with P-probability 1), as such objects describe the m-almost every
realized statistical behavior of the given RDS. Quenched response theory is concerned
with questions of the regularity of the map ε �→ {με,ω}ω∈� and, in particular, how
this regularity is inherited from that of ε �→ Tε . The one-parameter family of random
maps ε �→ Tε is said to exhibit quenched linear response if the measures {με,ω}ω∈�
vary differentiably with ε in an appropriate topology, with quenched higher-order (e.g.
quadratic) responses being defined analogously.

Linear and higher-order response theory for deterministic (that is, non-random) systems
is an established area of research, and there is a plethora of methods available for treating
various systems (see [6] for a good review). Response theory has been developed for
expanding maps in one and many dimensions [6, 7, 43], intermittent systems [2, 10, 34],
Anosov diffeomorphisms [28, 41, 42], partially hyperbolic systems [16] and piecewise
expanding interval maps [5, 9]. The tools and techniques one may apply to deduce response
results are likewise numerous: there are arguments based on structural stability [41],
standard pairs [16], the implicit function theorem [43] and on the spectral perturbation
theory of Gouëzel, Keller and Liverani [28, 33] (and variants thereof, e.g., [24]).

On the other hand, the literature on quenched response theory for RDSs is relatively
small and has only recently become an active research topic. With a few notable exceptions,
most results for random systems have focused on the continuity of the equivariant random
measure [3, 8, 22, 26, 37], although some more generally apply to the continuity of the
Oseledets splitting and Lyapunov exponents associated to the Perron–Frobenius operator
cocycle of the RDS [11, 14]. Quenched linear and higher-order response results are,
to the best of our knowledge, limited to [44], where quenched linear and higher-order
response is proved for general RDSs of Ck uniformly expanding maps, and to [20], wherein
quenched linear response is proved for RDSs of Anosov maps near a fixed Anosov map.
The relatively fewer results for response theory in the random case has been largely
attributed to the difficulty in finding appropriate generalizations of the tools, techniques
and constructions that have succeeded in the deterministic case. While the authors believe
this sentiment is generally well founded, in this paper, we find that, for quenched linear
and higher-order response problems, it is possible to directly generalize an approach from
the deterministic case to the random case with surprisingly little trouble. In particular, by
building on [37], we show that the application of Gouëzel–Keller–Liverani (GKL) spectral
perturbation theory to response problems can be ‘lifted’ to the random case, which allows
one to deduce corresponding quenched response from deterministic response ‘for free’.

In the deterministic setting, the application of GKL perturbation theory to response
problems is part of the more general ‘functional analytic’ approach to studying dynamical
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systems, which recasts the investigation of invariant measures and statistical properties
of dynamical systems in functional analytic and operator theoretic terms. The key
tool of this approach is the Perron–Frobenius operator, which, for a non-singular map
T ∈ Cr+1(M , M) (a map T : M → M is non-singular with respect to m if m(A) = 0
implies that m(T −1(A)) = 0), is denoted by LT and defined for f ∈ L1(m) by

(LT f )(x) =
∑

T (y)=x

f (y)

|det DyT | .

The key observation is that the statistical properties of T are often encoded in the spectral
data of LT provided that one considers the operator on an appropriate Banach space [4,
7, 23, 36]. Specifically, one desires a Banach space for which LT is bounded and has a
spectral gap (in addition to some other benign conditions), since then a unique physical
invariant measure μT for T is often obtained as a fixed point of LT . One may then attempt
to answer response theory questions by studying the regularity of the map T �→ LT with
a view towards deducing the regularity of T �→ μT via some spectral argument. The main
obstruction to carrying out such a strategy is that T �→ LT is usually not continuous in
the relevant operator norm, and so standard spectral perturbation theory (e.g. Kato [32])
cannot be applied. Instead, however, one often has that T �→ LT is continuous (or Ck)
in some weaker topology, and by applying GKL spectral perturbation theory it is then
possible to deduce regularity results for T �→ μT .

The main contribution of this paper is to show that the strategy detailed in the
previous paragraph may still be applied in the random case to deduce quenched linear and
higher-order response results. More precisely, with {(Tε , σ)}ε∈(−1,1) denoting the RDSs
from earlier, the main (psuedo) theorem of this paper is the following (see Theorem 3.6 for
a precise statement and §4 for our application to RDSs).

THEOREM A. Suppose that (T0, σ) exhibits ω-uniform exponential mixing on M and that,
for P-almost every ω, the hypotheses of GKL perturbation theory are ‘uniformly’ satisfied
for the one-parameter families ε �→ Tε,ω, as in the deterministic case. Then, whichever
linear and higher-order response results that hold P-almost every at ε = 0 for the physical
invariant probability measures of the one-parameter families ε �→ Tε,ω also hold in the
quenched sense for the equivariant physical probability measures of the one-parameter
family ε �→ {(Tε , σ)}ε∈(−1,1) of RDSs.

We note that, despite the mixing requirement placed on (T0, σ) in Theorem A, we
do not require that σ exhibit any mixing behaviour, other than being ergodic. The
general strategy behind the proof of Theorem A is to consider for each ε ∈ (−1, 1) a
‘lifted’ operator obtained from the Perron–Frobenius operators {LTε,ω }ω∈� associated to
{Tε,ω}ω∈�. Then, using the fact that the hypotheses of the GKL theorem (theorem 2.1)
are satisfied ‘uniformly’ for the Perron–Frobenius operators ε �→ LTε,ω and ω in some
P-full set, we deduce that the GKL theorem may be applied to the lifted operator. By
construction, the fixed points of these lifted operators are exactly the equivariant physical
probability measures of the corresponding RDS, and so we obtain the claimed linear and
higher-order response via the conclusion of the GKL theorem. Using Theorem A, we easily
obtain new quenched linear and higher-order response results for random Anosov maps
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(Theorem 4.8) and for random U(1) extensions of expanding maps (Theorem 4.10). We
note that our examples consist of random maps that are uniformly close to a fixed system.
However, this is not a strict requirement for the application of our theory and one could
also consider ‘non-local’ examples, e.g., it is clear that the arguments in §4 are applicable
to random systems consisting of arbitrary Ck expanding maps.

The structure of the paper is as follows. In §2, we introduce conventions that are
used throughout the paper and review preliminary material related to RDSs and the GKL
theorem. In §3, we consider random operator cocycles and their ‘lifts’ and then prove our
main abstract result, Theorem 3.6, which is a version of the GKL theorem for the ‘lifts’
of certain operator cocycles. In §4, we discuss how Theorem 3.6 may be applied to study
the quenched linear and higher-order response of general random Cr+1 dynamical systems
and then consider in detail the cases of random Anosov maps and random U(1) extensions
of expanding maps.

In §5, as another application of Theorem 3.6, we show the differentiability of the
variances in quenched CLTs for certain class of RDSs (including random Anosov maps
and random U(1) extensions of expanding maps).

Lastly, Appendix A contains the proof of a technical lemma from §4.

2. Preliminaries
We adopt the following notational conventions.
(1) The symbol ‘C’ will, unless otherwise stated, be indiscriminately used to refer to

many constants, which are uniform (or almost surely uniform) and whose value
may change between usages. If we wish to emphasize that C depends on parameters
a1, . . . , an, then we may write Ca1,...,an instead.

(2) If X and Y are topological vector spaces such that X is continuously included into Y,
then we will write X ↪→ Y .

(3) If X and Y are Banach spaces, then we denote the set of bounded, linear operators
from X to Y by L(X, Y ). When X = Y , we simply write L(X).

(4) When X is a metric space, we denote the Borel σ -algebra on X by BX.
(5) If A ∈ L(X), then we denote the spectrum of A by σ(A) and the spectral radius

by ρ(A). We will frequently consider operators acting on a number of spaces
simultaneously and, in such a situation, we may denote σ(A) and ρ(A) by σ(A|X)
and ρ(A|X), respectively, for clarity.

2.1. RDSs. Let (�, F , P) be a probability space and let σ : � → � be a measurably
invertible, measure-preserving map. For a measurable space (	, G), we say that a
measurable map 
 : N0 ×�×	 → 	 is an RDS on 	 over the driving system σ if

ϕ(0)ω = id	 and ϕ(n+m)ω = ϕ
(n)
σmω ◦ ϕ(m)ω

for each n, m ∈ N0 and ω ∈ �, with the notation ϕ(n)ω = 
(n, ω, ·) and σω = σ(ω), where
N0 = {0} ∪ N. A standard reference for RDSs is the monograph by Arnold [1]. It is easy
to check that

ϕ(n)ω = ϕσn−1ω ◦ ϕσn−2ω ◦ · · · ◦ ϕω (1)
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with the notation ϕω = 
(1, ω, ·). Conversely, for each measurable map ϕ : �×	 →
	 : (ω, x) �→ ϕω(x), the measurable map (n, ω, x) �→ ϕ

(n)
ω (x) given by (1) is an RDS.

We call it an RDS induced by ϕ over σ and simply denote it by (ϕ, σ).
It is easy to see that if we define a skew-product map � : �×	 → �×	 by

�(ω, x) = (σω, ϕω(x)) for each (ω, x) ∈ �×	, then

�n(ω, x) = (σnω, ϕ(n)ω (x)) for all n ∈ N0.

Rather than work with a single �-invariant measure on the product space �×	, we
prefer to work with a family of equivariant measures supported on 	 fibers, the definition
and existence of which we now recall from [1, §1.4]. A measure μ on (�×	, F × G)
is said to have marginal P on (�, F) if μ ◦ π−1

� = P, where π� : �×	 → � is the
projection onto the first coordinate. A probability measure μ on (�×	, F × G) is
�-invariant and has marginal P on (�, F) if and only if there is a measurable family of
probability measures (a family of probability measures {μω}ω∈� on (	, G) is measurable
if the map ω �→ μω(A) is (F , BR)-measurable for each A ∈ G) {μω}ω∈� such that
μ(A) = ∫

�

∫
	

1A(ω, x)μω(dx)P(dω) for each A ∈ F × G and so that we have

μω ◦ ϕ−1
ω = μσω for almost every ω ∈ �. (2)

Hence, a measurable family of probability measures {μω}ω∈� is said to be equivariant for
(ϕ, σ) if it satisfies (2).

2.2. The GKL theorem. We recall the statement of the GKL theorem from [7] (although
we note that the result first appeared in full generality in [28, 29] and in less generality
in [33]). Fix an integer N ≥ 1 and let Ej , j ∈ {0, . . . , N}, be Banach spaces with
Ej ↪→ Ej−1 for each j ∈ {1, . . . , N}. For a family of linear operators {Aε}ε∈[−1,1] on
these spaces, we consider the following conditions.
(GKL1) For all i ∈ {1, . . . , N} and |ε| ≤ 1,

‖Aε‖L(Ei) ≤ C.

(GKL2) There exists M > 0 such that ‖Anε‖L(E0) ≤ CMn for all |ε| ≤ 1 and n ∈ N.
(GKL3) There exists α < M such that, for every |ε| ≤ 1, f ∈ E1 and n ∈ N,

‖Anεf ‖E1 ≤ Cαn‖f ‖E1 + CMn‖f ‖E0 .

(GKL4) For every |ε| ≤ 1,

‖Aε − A0‖L(EN ,EN−1) ≤ C|ε|.
If N ≥ 2, we have the following additional requirement.
(GKL5) There exist linear operators Q1, . . . , QN−1 such that, for all j ∈ {1, . . . ,

N − 1} and i ∈ {j , . . . , N}, we have Qj(Ei) ⊆ Ei−j and

‖Qj‖L(Ei ,Ei−j ) ≤ C, (3)
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and so that, for all |ε| ≤ 1 and j ∈ {2, . . . , N},∥∥∥∥Aε − A0 −
j−1∑
k=1

εkQk

∥∥∥∥
L(EN ,EN−j )

≤ C|ε|j . (4)

THEOREM 2.1. (The GKL theorem, [7, Theorem A.4]) Fix an integer N ≥ 1 and let
Ej , j ∈ {0, . . . , N}, be Banach spaces with Ej ↪→ Ej−1 for each j ∈ {1, . . . , N}.
Suppose that {Aε}ε∈[−1,1] satisfies (GKL1)–(GKL4) and if N ≥ 2, then also (GKL5). For
z /∈ σ(A0|EN), set R0(z) = (z− A0)

−1 and define

S(N)ε (z) = R0(z)+
N−1∑
k=1

εk
k∑
j=1

∑
l1+···+lj=k

li≥1

R0(z)Ql1R0(z) · · · R0(z)Qlj R0(z). (5)

In addition, for any a > α, let

η = log(a/α)
log(M/α)

,

and, for δ > 0, set

Vδ,a(A0) = {z ∈ C : |z| ≥ a and dist(z, σ(A0|Ej)) ≥ δ for all j ∈ {1, . . . , N}}.
There exists ε0 > 0 so that Vδ,a(A0) ∩ σ(Aε |E1) = ∅ for every |ε| ≤ ε0 and so that, for
each z ∈ Vδ,a(A0),

‖(z− Aε)
−1‖L(E1) ≤ C

and

‖(z− Aε)
−1 − S(N)ε (z)‖L(EN ,E0) ≤ C|ε|N−1+η.

Remark 2.2. While the GKL theorem as stated in Theorem 2.1 is true, there is an error in
the proof of the result in both [7, 28]. We refer the reader to [29] for details of the error
and to the proof of [27, Theorem 3.3] for a corrected argument.

Remark 2.3. We emphasize that the inclusion Ej ↪→ Ej−1 need not be compact in
Theorem 2.1. In applications, one often needs good information on the spectrum of A0

(such as quasi-compactness of A0 : E1 → E1, which is often shown by (GKL2), (GKL3)
and the compactness of E1 ↪→ E0). However, this freedom is essential in our application
in §4 because L∞(�, E) ↪→ L∞(�, F) is not necessarily compact even if E ↪→ F is
compact.

3. A spectral approach to stability theory for operator cocycles
Let X be a Banach space and let SL(X) denote the σ -algebra generated by the strong
operator topology on L(X). If A : � → L(X) is (F , SL(X))-measurable, then we say that
it is strongly measurable. For an overview of the properties of strong measurable maps, we
refer the reader to [25, Appendix A]. The following lemma records the main properties of
strongly measurable maps that we shall use.
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LEMMA 3.1. [25, Lemmas A.5 and A.6] Suppose that X is a separable Banach space and
that (�, F , P) is a Lebesgue space. Then:
(1) the set of strongly measurable maps is closed under (operator) composition, i.e., if

Ai : � → L(X), i ∈ {1, 2}, are strongly measurable, then so is A2A1 : � → L(X);
(2) if A : � → L(X) is strongly measurable and f : � → X is (F , BX)-measurable,

then ω �→ Aωfω is (F , BX)-measurable too; and
(3) if A : � → L(X) is such that ω �→ A(ω)f is (F , BX)-measurable for every f ∈ X,

then A is strongly measurable.

As a slight abuse of notation, for a given strongly measurable map A : � → L(X), we
denote an (F × BX, BX)-measurable map (ω, f ) �→ A(ω)f by A. In light of the previous
lemma, we may now formally define the main objects of study for this section.

Definition 3.2. An RDS (A, σ) on X induced by a map A : � �→ L(X) is called an
operator cocycle (or a linear RDS) if (�, F , P) is a Lebesgue space, σ : � → � is an
invertible, ergodic, P-preserving map, X is a separable Banach space and A : � �→ L(X)

is strongly measurable. We say that (A, σ) is bounded if A ∈ L∞(�, L(X)).

Throughout the rest of this paper, we assume that (�, F , P) is a Lebesgue space and
that σ : � → � is an invertible, ergodic, P-preserving map. An operator cocycle (A, σ) is
explicitly written as a measurable map

N0 ×�×X → X : (n, ω, f ) �→ A(n)(ω)f , A(n)(ω) := A(σn−1ω) ◦ · · · ◦ A(ω).
We denote by X∗ the dual space of X.

Definition 3.3. Let ξ ∈ X∗ be non-zero. We say that A ∈ L(X) is ξ -Markov if ξ(Af ) =
ξ(f ) for every f ∈ X. We say that an operator cocycle (A, σ) is ξ -Markov if A is almost
surely ξ -Markov.

Notice that our terminology in Definition 3.3 is non-standard: in the literature, a linear
operator A : X → X is called Markov if X = L1(S, μ) for a probability space (S, μ)
and A is positive (i.e., Af ≥ 0 μ-almost everywhere if f ≥ 0 μ-almost everywhere) and
ξ -Markov with ξ(f ) = ∫

S
f dμ (cf. [35]). See also Definition 4.3 for a more general

definition of positivity. We do not add the positivity condition to Definition 3.3 to make
clear that the result in this section holds without it.

Definition 3.4. Suppose that (A, σ) is a ξ -Markov operator cocycle for some non-zero
ξ ∈ X∗. We say that (A, σ) is ξ -mixing with rate ρ ∈ [0, 1) if, for every n ∈ N,

ess sup
ω∈�

‖A(n)(ω)|ker ξ‖ ≤ Cρn. (6)

Fix a non-zero ξ ∈ X∗. We define X ≡ Xξ as

X = {f ∈ L∞(�, X) : ξ(f ) is almost surely constant}.
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Since X is a closed subspace of L∞(�, X), it is a Banach space with the usual norm. If
(A, σ) is a bounded ξ -Markov operator cocycle, then we define A : X → X by

(Af )(ω) = A(σ−1(ω))f (σ−1(ω)). (7)

We say that A is the lift of (A, σ). That A ∈ L(X ) follows from Lemma 3.1 and the
boundedness of (A, σ) (see [37] for a possible extension of the lift to the case when σ is not
invertible). The following proposition is a natural generalization of [37, Proposition 2.3].

PROPOSITION 3.5. Fix non-zero ξ ∈ X∗. If (A, σ) is a bounded, ξ -Markov, ξ -mixing
operator cocycle with rate ρ ∈ [0, 1), then 1 is a simple eigenvalue of A and σ(A|X ) \
{1} ⊆ {z ∈ C : |z| ≤ ρ}.
Proof. For each c ∈ C, let

Xc = {f ∈ X : ξ(f ) = c almost surely}. (8)

We note that Xc is non-empty since ξ is assumed to be non-zero. Since (A, σ) is a
ξ -Markov operator cocycle, the lift A preserves Xc. For any f , g ∈ Xc, one has f − g ∈
X0 (i.e., f − g ∈ ker ξ almost surely), and so, as (A, σ) is ξ -mixing with rate ρ, we have,
for every n ∈ N and almost every ω ∈ �, that

‖(Anf )(ω)− (Ang)(ω)‖ = ‖A(n)(σ−n(ω))(fσ−n(ω) − gσ−n(ω))‖
≤ Cρn‖fσ−n(ω) − gσ−n(ω)‖.

(9)

Upon taking the essential supremum, we see that An is a contraction mapping on Xc for
large enough n. Since Xc is complete, it follows that A has a unique fixed point vc in Xc.
Obviously, vc = cv1, and thus 1 is an eigenvalue of A on X . Furthermore, X = span{v1} ⊕
X0 (indeed, for every f ∈ X , we can write f = f1 + f0, where f1 = ξ(f )v1 ∈ span{v1}
and f0 = f − f1 ∈ X0, and note that span{v1} and X0 are closed subspaces).

Since A preserves both span{v1} and X0,

σ(A|X ) = σ(A| span{v1}) � σ(A|X0),

where � denotes a disjoint union. It is clear that σ(A| span{v1}) consists of only a simple
eigenvalue 1, while ρ(A|X0) ≤ ρ since (A, σ) is ξ -mixing with rate ρ. Thus, σ(A|X ) \
{1} = σ(A|X0) ⊆ {z ∈ C : |z| ≤ ρ}.

3.1. Main result. Given a bounded, ξ -Markov, ξ -mixing operator cocycle (A, σ), we are
interested in the question of stability (and differentiability) of the ξ -normalized fixed point
v of A. To this end, we formulate a number of conditions on operator cocycles that are
reminiscent of the conditions of the GKL theorem.

Fix an integer N ≥ 1 and let Ej , j ∈ {0, . . . , N}, be Banach spaces. Let
{(Aε , σ)}ε∈[−1,1] be a family of operator cocycles on these spaces.
(QR0) (a) The Banach spaces {Ej }j∈{0,...,N} satisfy Ej ↪→ Ej−1 for each

j ∈ {1, . . . , N}. Moreover, EN is separable and ‖·‖Ej -dense in Ej for
each j ∈ {0, . . . , N} (in particular, E1 is separable).
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(b) There exists a non-zero functional ξ ∈ E∗
0 such that (Aε , σ) is ξ -Markov

on Ej for each |ε| ≤ 1, j ∈ {0, . . . , N} and so that (A0, σ) is ξ -mixing on
Ej for j ∈ {1, N}.

(QR1) For all i ∈ {1, . . . , N} and |ε| ≤ 1, we have ess supω‖Aε(ω)‖L(Ei) ≤ C.
(QR2) There existsM > 0 such that ess supω‖A(n)ε (ω)‖L(E0) ≤ CMn for all |ε| ≤ 1 and

n ∈ N.
(QR3) There exists α < M such that, for every f ∈ E1, |ε| ≤ 1 and n ∈ N,

ess sup
ω

‖A(n)ε (ω)f ‖E1 ≤ Cαn‖f ‖E1 + CMn‖f ‖E0 .

(QR4) For every |ε| ≤ 1,

ess sup
ω

‖Aε(ω)− A0(ω)‖L(EN ,EN−1) ≤ C|ε|.

If N ≥ 2, we have the following additional requirement.
(QR5) There exists linear operators Q1(ω), . . . , QN−1(ω) for each ω such that, for all

j ∈ {1, . . . , N − 1} and i ∈ {j , . . . , N},
ess sup

ω
‖Qj(ω)‖L(Ei ,Ei−j ) ≤ C

and such that, for all |ε| ≤ 1 and j ∈ {2, . . . , N},

ess sup
ω

‖Aε(ω)− A0(ω)−
j−1∑
k=1

εkQk(ω)‖L(EN ,EN−j ) ≤ C|ε|j .

We need not assume that Q1, . . . , QN−1 are measurable (recall that the essential supre-
mum of a (not necessarily measurable) complex-valued function f on � is the infimum of
supω∈�0

|f (ω)| over all P-full measure sets �0), which will make our application in §4
simpler.

Our main theorem for this section is the following.

THEOREM 3.6. Fix an integer N ≥ 1. Let Ej , j ∈ {0, . . . , N}, be Banach spaces and
let {(Aε , σ)}ε∈[−1,1] be a family of operator cocycles on these spaces. Suppose that
{(Aε , σ)}ε∈[−1,1] satisfies (QR0)–(QR4) and, if N ≥ 2, then also (QR5). Then there
exists ε0 ∈ (0, 1] such that (Aε , σ) is ξ -mixing whenever |ε| < ε0. Moreover, for each
ε ∈ (−ε0, ε0), there is a unique vε ∈ L∞(�, E1) such that Aε(ω)vε(ω) = vε(σω) and
ξ(vε(ω)) = 1 almost everywhere and so that

sup
|ε|<ε0

ess sup
ω

‖vε(ω)‖E1 < ∞.

Lastly, there exists {v(k)0 }N−1
k=1 ⊂ L∞(�, E0) such that ξ(v(k)0 ) = 0 almost surely for each k

and so that, for every η ∈ (0, log(1/α)/log(M/α)),

vε = v0 +
N−1∑
k=1

εkv
(k)
0 +Oη(ε

N−1+η), (10)
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where Oη(εN−1+η) is to be understood as an essentially bounded term in E0 that possibly
depends on η.

Remark 3.7. One is free to take E0 = E1 = · · · = EN in Theorem 3.6, in which case the
conditions (QR0)–(QR3) collapse into a single bound and (QR4)–(QR5) become standard
operator norm inequalities. Hence, in this simple case, one recovers an expected Banach
space perturbation result.

Remark 3.8. We note that Theorem 3.6 has been proved before for the cases where N = 1
and N = 2 in [20, 22], respectively.

Remark 3.9. The claim that ‘there exists ε0 ∈ (0, 1] such that (Aε , σ) is ξ -mixing
whenever |ε| < ε0’ is exactly the content of [20, Proposition 6] (as well as being an easy
corollary of [14, Proposition 3.11]).

In fact, [20, Proposition 6] and [14, Proposition 3.11] tell us that the claim follows from
(b) of (QR0), (QR3) and (QR4) with N = 1. Furthermore, upon examining these proofs,
it is clear that something slightly stronger is true: in the setting of Theorem 3.6, for every
κ ∈ (ρ, 1), there exists εκ > 0 such that, for all ε ∈ (−εκ , εκ),

sup
n∈N

κ−n ess sup
ω

‖Anε |ker ξ‖L(E1) ≤ C. (11)

3.2. The proof of Theorem 3.6. Before detailing the proof of Theorem 3.6, we introduce
some basic constructs. For each j ∈ {0, . . . , N}, let

Ej = {f ∈ L∞(�, Ej) : ξ(f ) is almost surely constant}.
Since ξ ∈ E∗

j for each j ∈ {0, . . . , N} we observe that each Ej is a closed subspace
of L∞(�, Ej) and, therefore, is a Banach space. Moreover, we have Ej ↪→ Ej−1 for
j ∈ {1, . . . , N}. For each j ∈ {1, . . . , N}, we may consider the lift Aε,j of the operator
cocycle (Aε , σ) on Ej , although we omit the subscript j and just write Aε , which will be
of no consequence.

The beginning of the proof of Theorem 3.6 is straightforward. First, we note that (QR1)
implies that (A0, σ) is bounded onEj for j ∈ {1, N} and so Proposition 3.5 may be applied
to characterize the spectrum of A0 on E1 and EN . Let ρ be the rate of ξ -mixing in (QR0):
that is, (A0, σ) is ξ -mixing on Ej with rate ρ for each j ∈ {1, N}. Then it follows from
(QR0) and Proposition 3.5 that 1 is a simple eigenvalue of A0, when considered on either
space, and we have

σ(A0|Ej ) \ {1} ⊆ {z ∈ C : |z| ≤ ρ} (12)

for j ∈ {1, N}. For each j ∈ {1, . . . , N}, one may use basic functional analysis and the
fact that EN ↪→ Ej ↪→ E1 to deduce that 1 is a simple eigenvalue of A0 : Ej → Ej and
that (12) holds. As a consequence, we find a ξ -normalized v0 ∈ EN that is the unique
ξ -normalized fixed point of A0 : Ej → Ej for each j ∈ {1, . . . , N}.

We now turn to constructing the ξ -normalized fixed points of Aε : E1 → E1. By
Remark 3.9, we may find some κ ∈ (ρ, 1) and ε0 > 0 such that (Aε , σ) is ξ -mixing on
E1 with rate κ for every ε ∈ (−ε0, ε0). We note that each (Aε , σ) is bounded on E1 due to
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(QR1) and so, by Proposition 3.5, we find that 1 is a simple eigenvalue of Aε : E1 → E1 and
that σ(Aε |E1) \ {1} ⊆ {z ∈ C : |z| ≤ κ}. Thus, Aε : E1 → E1 has a unique ξ -normalized
fixed point vε ∈ E1 for each ε ∈ (−ε0, ε0), by Proposition 3.5. Moreover, by virtue of
the uniform bound (11), we may strengthen the conclusion of Proposition 3.5: for all n
sufficiently large, the family of maps {Anε }|ε|<ε0 uniformly contract the set X1 from (8).
Hence, we deduce the bound

sup
|ε|<ε0

ess sup
ω

‖vε(ω)‖E1 < ∞, (13)

as required for Theorem 3.6.
Thus, to complete the proof of Theorem 3.6, it suffices to prove (10). It may be

easily seen from the proof of Proposition 3.5 that the eigenprojection �ε ∈ L(E1) of
Aε : E1 → E1 onto the eigenspace for 1 is defined for f ∈ E1 and ε ∈ (−ε0, ε0) by

�ε(f ) = ξ(f )vε .

Since each vε is ξ -normalized, we consequently have

vε = v0 + (�ε −�0)v0. (14)

If δ ∈ (0, 1 − κ), thenDδ = {z ∈ C : |z− 1| = δ} ⊆ C \ σ(Aε |E1) for every ε ∈ (−ε0, ε0).
Thus,

�ε =
∫
Dδ

(z− Aε)
−1 dz. (15)

Applying (15) to (14) yields

vε = v0 +
∫
Dδ

((z− Aε)
−1 − (z− A0)

−1)v0 dz. (16)

The idea is to apply the GKL theorem to the lifts {Aε}ε∈[−1,1] with Banach spaces
{Ej }0≤j≤N and then develop a Taylor expansion in (16). The hypothesis that (QR1)–(QR4)
hold for {(Aε , σ)}ε∈[−1,1] with constants almost surely independent of ω readily implies
that the lifts {Aε}ε∈[−1,1] satisfy (GKL1)–(GKL4) for the spaces {Ej }0≤j≤N . Hence, in the
case where N = 1, we may apply Theorem 2.1 to the lifts {Aε}ε∈[−1,1].

However, the case where N ≥ 2 is more delicate because the measurability of Qj is
not required in Theorem 3.6. Thus, we introduce the following functional space instead
of L∞(�, Ej), where the objects are defined up to almost everywhere equality but we
loosen the measurability requirement. For each j ∈ {0, . . . , N}, let B(�, Ej) denote the
set of (not necessarily measurable) bounded Ej -valued functions on � equipped with the
uniform norm ‖·‖B(�,Ej ) that is defined by

‖f ‖B(�,Ej ) = sup
ω∈�

‖f (ω)‖Ej , f ∈ B(�, Ej),

and let

Nj = {f ∈ B(�, Ej) : f = 0 almost surely}.
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Then Nj is a closed subspace of B(�, Ej) and, thus, we can form a quotient space

I∞(�, Ej) = B(�, Ej)/Nj .

Since B(�, Ej) is a Banach space, I∞(�, Ej) is also a Banach space with respect to the
quotient norm

‖f ‖I∞(�,Ej ) = inf
h∈Nj

‖g − h‖B(�,Ej ), f ∈ I∞(�, Ej),

where g is a representative of f. As forL∞(�, Ej), under the identification of each element
of I∞(�, Ej) with its representative, we have

‖f ‖I∞(�,Ej ) = ess sup
ω

‖f (ω)‖Ej .

Thus, under the identification, we have ‖f ‖L∞(�,Ej ) = ‖f ‖I∞(�,Ej ) for each f ∈ L∞(�,
Ej). In particular, L∞(�, Ej) isometrically injects into I∞(�, Ej). Finally, let

Ẽj = {f ∈ I∞(�, Ej) : ξ(f ) is almost surely constant}. (17)

We simply write ‖f ‖Ẽj for ‖f ‖I∞(�,Ej ) if f ∈ Ẽj . Repeating the previous argument, one

can show (GKL1)–(GKL4) for the lifts {Aε}ε∈[−1,1] with respect to the spaces {Ẽj }0≤j≤N .
We now deduce (GKL5) for the lifted systems.

PROPOSITION 3.10. Assume the setting of Theorem 3.6 with N ≥ 2. Then (GKL5) holds
with operators Qj defined by

(Qj f )(ω) = Qj(σ
−1ω)fσ−1ω,

where j ∈ {1, . . . , N − 1}, i ∈ {j , . . . , N} and f ∈ Ẽi .

Proof. It is straightforward to verify the required inequalities in (GKL5) from those in
(QR5). Hence, it only remains to show that Qj (Ẽi ) ⊂ Ẽi−j for each j ∈ {1, . . . , N − 1}
and i ∈ {j , . . . , N}. Let j ∈ {1, . . . , N}, i ∈ {j , . . . , N − 1} and fix f ∈ Ẽi . That Qj f ∈
Ei−j almost everywhere follows immediately from (3), and so, to complete the proof, it is
sufficient to show that ξ(Qj f ) is almost surely constant. SinceEN is ‖·‖Ej -dense inEj for
almost every ω and each η > 0, we may find a gη,ω ∈ EN such that ‖fσ−1ω − gη,ω‖Ej ≤ η.
By (QR5), we have, for almost every ω, that

|ξ(Qj f )(ω)| = |ξ(Qj (σ
−1ω)fσ−1ω)|

≤ |ξ(Qj (σ
−1ω)gη,ω)| + |ξ(Qj (σ

−1ω)(fσ−1ω − gη,ω)|.
(18)

By (QR5) and as ξ ∈ E∗
0 , we have limη→0|ξ(Qj (σ

−1ω)(fσ−1ω − gη,ω))| = 0 for almost
every ω. On the other hand, since gη,ω ∈ EN by (QR5), again we have

ξ(Qj (σ
−1ω)gη,ω)

= lim
ε→0

ξ

(
ε−j (Aε(σ−1ω)− A0(σ

−1ω))gη,ω −
j−1∑
k=1

εk−jQk(σ
−1ω)gη,ω

)
. (19)
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Therefore, using the fact that (Aε , σ) is ξ -Markov for every ε ∈ [−1, 1], we have
ξ(Q1(σ

−1ω)gη,ω) = 0 almost surely. By a simple induction on (19), we find that
ξ(Qj (σ

−1ω)gη,ω) = 0 almost surely too. Thus, in (18),

|ξ(Qj f )(ω)| ≤ lim sup
η→0

|ξ(Qj (σ
−1ω)gη,ω)| + |ξ(Qj (σ

−1ω)(fσ−1ω − gη,ω)| = 0, (20)

which completes the proof.

By Proposition 3.10, we have (GKL5) for the lifts {Aε}ε∈[−1,1] with the spaces
{Ẽj }0≤j≤N in the setting of Theorem 3.6 whenever N ≥ 2, and so we can apply Theorem
2.1 in this case. As a consequence, we may now finish the proof of Theorem 3.6. Let
η ∈ (0, log(1/α)/log(M/α)) and fix a ∈ (α, 1) so that η = log(a/α)/log(M/α). Recall
δ from (15) and notice that we may take δ to be as small as we like. Henceforth, we fix
δ ∈ (0, 1 − a) and choose some δ0 ∈ (0, min{δ, 1 − a − δ}). Upon recalling the statement
of Theorem 2.1 and our earlier characterization of σ(A0|Ẽj ) for j ∈ {1, . . . , N} (see the
paragraph following (12)),

Dδ ⊆ {z ∈ C : |z| ≥ s and |z− 1| ≥ δ0} ⊆ Vδ0,a(A0).

We now apply Theorem 2.1 to the lifts {Aε}ε∈[−1,1] with Banach spaces Ẽj ,
j ∈ {0, . . . , N}, to deduce the existence of εη ∈ (0, ε0) such that, for every ε ∈ (−εη, εη),
we have Vδ0,a(A0) ∩ σ(Aε |Ẽ1) = ∅ and, for each z ∈ Vδ0,a(A0), that

‖(z− Aε)
−1 − S(N)ε (z)‖L(ẼN ,Ẽ0)

≤ C|ε|N−1+η, (21)

where S
(N)
ε (z) is defined as in (5). With (21) in hand, we may proceed with obtaining (10)

via (16). In particular, for z ∈ Dδ ,

((z− Aε)
−1 − (z− A0)

−1)v0 =
N−1∑
k=1

εk
k∑

m=1

∑
l1+···+lm=k

li≥1

( m∏
i=1

(z− A0)
−1Qli

)
(z− A0)

−1v0

+ ((z− Aε)
−1 − S(N)ε )v0. (22)

For each k ∈ {1, . . . , N − 1}, we now define v(k)0 ∈ Ẽ0 by

v
(k)
0 =

∫
Dδ

k∑
m=1

∑
l1+···+lm=k

li≥1

( m∏
i=1

(z− A0)
−1Qli

)
(z− A0)

−1v0 dz.

Furthermore, by the proof of Proposition 3.10, we have ξ(v(k)0 ) = 0 almost everywhere for
all k. By integrating (22) over Dδ and recalling (16), we get

vε = v0 +
N−1∑
k=1

εkv
(k)
0 +

∫
Dδ

((z− Aε)
−1 − S(N)ε )v0 dz (23)
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in Ẽ0. Moreover, since Dδ ⊆ Vδ0,a(A0), it follows from (21) that

‖
∫
Dδ

((z− Aε)
−1 − S(N)ε )v0 dz‖Ẽ0

≤ sup
z∈Vδ0,s (A0)

‖(z− Aε)
−1 − S(N)ε (z)‖L(ẼN ,Ẽ0)

‖v0‖ẼN
≤ C‖v0‖ẼN |ε|N−1+η. (24)

Finally, we show that v(k)0 lies in E0 ⊂ L∞(�, E0) for each k = 1, . . . , N − 1. Recall
that vε ∈ E0 for every ε ∈ (−ε0, ε0). Thus, ε−1(vε − v0) belongs to E0. Therefore, since
E0 isometrically injects into Ẽ0 (recall the argument above (17)), it follows from the Taylor
expansion (23) and (24) that {ε−1(vε − v0)}|ε|<ε0 is a Cauchy sequence in E0. Denote its
limit by v′

0 so that ε−1(vε − v0)− v′
0 lies in E0 and ‖ε−1(vε − v0)− v′

0‖E0 → 0 as ε → 0.
Then, by using again the fact that E0 isometrically injects into Ẽ0, we deduce that v′

0 equals
the limit of {ε−1(vε − v0)}|ε|<ε0 in Ẽ0. Hence, v′

0 = v
(1)
0 by (23) and (24), which concludes

that v(1)0 lies in E0. By considering ε−k(vε − v0 − ∑k−1
j=1 ε

j v
(j)

0 ) instead of ε−1(vε − v0),

we can show via induction that v(k)0 also lies in E0 for each k = 2, . . . , N − 1. This
completes the proof of Theorem 3.6 because (23) and (24) hold with Ej in place of Ẽj .

4. Applications to smooth RDSs
In this section, we shall apply Theorem 3.6 to smooth RDSs in order to obtain stability and
differentiability results for their random equivariant probability measures. In particular,
we will treat random Anosov maps and random U(1) extensions of expanding maps. The
treatments of these settings have much in common, so we discuss some general, abstract
details in earlier sections.

4.1. Equivariant family of measures. Let M be a compact connected C∞ Riemannian
manifold and let m denote the associated Riemannian probability measure on M. Fix a
Lebesgue space (�, F , P) and an invertible, ergodic, P-preserving map σ : � → �. For
some r ≥ 1, let T : � → Cr+1(M , M) denote a (F , BCr+1(M ,M))-measurable map. Recall
from §2.1 that the RDS (T , σ) induced by T over σ is explicitly written as a measurable
map

N0 ×�×X � (n, ω, x) �→ T (n)
ω (x), T (n)

ω := Tσn−1ω ◦ · · · ◦ Tω,

and, since σ is invertible, the equivariance of a measurable family of probability measures
{μω}ω∈� for (T , σ) is given as

μω ◦ T −1
ω = μσω for almost every ω ∈ �.

We aim to study the regularity of the dependence of {μω}ω∈� on the map T as T
is fiber-wise varied in a uniformly CN way for some N ≤ r . To do this, we shall realize
equivariant families of probability measures as fixed points of (the lifts of) certain operator
cocycles (linear RDSs) and then apply Theorem 3.6. In particular, we shall consider the
Perron–Frobenius operator cocycle associated to the RDS (T , σ) on an appropriate Banach
space. Recall that the Perron–Frobenius operator LT associated to a non-singular (recall
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that a measurable map T : M → M is said to be non-singular (with respect to m) if
m(A) = 0 implies that m(T −1(A)) = 0) measurable map T : M → M is given by

LT f = d[(fm) ◦ T ]
dm

for f ∈ L1(M , m), (25)

where fm is a finite signed measure given by (fm)(A) = ∫
A
f dm for A ∈ BM and

dμ/dm is the Radon–Nikodym derivative of an absolutely continuous finite signed
measure μ. Note that, for each M-valued random variable ψ whose distribution is fm
for some density f ∈ L1(M , m), T (ψ) has the distribution (LT f )m (and, thus, LT is also
called the transfer operator associated with T). It is routine to verify that∫

M

(LT f ) · g dm =
∫
M

f · (g ◦ T ) dm for f ∈ L1(M , m) and g ∈ L∞(M , m)

(26)

and that LT is an m-Markov operator, where, in an abuse of notation, we let m denote the
linear functional f ∈ L1(M , m) �→ ∫

f dm. In addition, LT is positive: if f ∈ L1(M , m)
satisfies f ≥ 0 almost everywhere, then LT f ≥ 0 almost everywhere.

Let N r+1(M , M) denote the set of T ∈ Cr+1(M , M) satisfying det DxT �= 0 for all
x ∈ M . Notice that if T ∈ N r+1(M , M), then T is automatically non-singular with respect
to m and so LT is a well-defined operator on L1(M , m). Additionally, for such T, we have
LT ∈ L(Cr (M)) with

(LT f )(x) =
∑

T (y)=x

f (y)

|det DyT | for all f ∈ Cr (M).

Hence, from a measurable map T : � → N r+1(M , M), we obtain a map LT : ω �→ LTω :
� → L(Cr (M)), which is measurable by virtue of the following proposition (we postpone
its proof until Appendix A because it is mundane but technical).

PROPOSITION 4.1. The map T �→ LT is continuous on N r+1(M , M) with respect to the
strong operator topology on L(Cr (M)).

Thus, if we demand that T ∈ N r+1(M , M) almost surely, then (LT , σ) is an m-Markov
operator cocycle on Cr (M), which we shall call the Perron–Frobenius operator cocycle
(on Cr (M)) associated to T . In order to apply the theory of §3, we require that the
Perron–Frobenius operator cocycle is bounded and m-mixing. This later condition will
entail some mixing hypotheses on our random systems. However, as in the deterministic
case, in order to realize the mixing of the RDS in operator theoretic terms, we may be
forced to consider the Perron–Frobenius operator cocycle on an alternative Banach space.
Specifically, we shall seek Banach spaces (X, ‖·‖X) satisfying the following conditions.
(S1) Cr (M) is dense in X with Cr (M) ↪→ X.
(S2) The embedding Cr (M) ↪→ (C∞(M))∗ given by the map h ∈ Cr (M) �→

(g ∈ C∞(M) �→ ∫
gh dm) continuously extends to an embeddingX↪→ (C∞(M))∗.

It is clear that any X satisfying (S1) must be separable. Moreover, we note that the
functional ϕ ∈ (C∞(M))∗ �→ ϕ(1M) is continuous on (C∞(M))∗ and yields m when
pulled back via the embedding Cr (M) ↪→ (C∞(M))∗ that is described in (S2). Hence, if
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(S2) holds so that we have an embedding X ↪→ (C∞(M))∗ that continuously extends the
Cr (M) ↪→ (C∞(M))∗, then m induces a continuous linear functional on X. In particular,
we may speak of m-Markov operators inL(X). The following proposition gives a sufficient
condition for an m-Markov operator in L(Cr (M)) to be extended to an m-Markov operator
in L(X).

PROPOSITION 4.2. Let (A, σ) be a bounded, m-Markov operator cocycle on Cr (M) and
let X be a Banach space satisfying (S1) and (S2). Suppose that

ess sup
ω

sup
f∈Cr (M)
‖f ‖X=1

‖A(ω)f ‖X < ∞. (27)

Then A almost surely extends to a unique, bounded operator on X such that
ω �→ A(ω) : � → L(X) is strongly measurable. Consequently, (A, σ) is a bounded,
m-Markov operator cocycle on X such that

ess sup
ω

‖A(ω)‖L(X) < ∞. (28)

Proof. It is clear that A almost surely extends to a unique, bounded operator on X and that

ess sup
ω

‖A(ω)‖L(X) = ess sup
ω

sup
f∈Cr (M)
‖f ‖X=1

‖A(ω)f ‖X < ∞.

That A is almost surely m-Markov in L(X) follows straightforwardly from the fact that A is
almost surely m-Markov in L(Cr (M)) and that m uniquely extends to a continuous linear
functional on X. Hence, it only remains to show that ω �→ A(ω) is strongly measurable
in L(X). Suppose that f ∈ X. Then there exists a sequence {fn}n∈N ⊂ Cr (M) with limit
f in X. For each n, the map ω �→ A(ω)fn is (F , BCr (M))-measurable and so it must be
(F , BX) measurable too due to (S1). Moreover, for almost every ω,

lim
n→∞‖A(ω)fn − A(ω)f ‖X = 0,

which is to say that ω �→ A(ω)f is the almost everywhere pointwise limit (in X)
of (F , BX)-measurable functions. Hence, ω �→ A(ω)f is (F , BX)-measurable since
(�, F , P) is a Lebesgue space (in particular, complete). That ω �→ A(ω) is strongly mea-
surable in L(X) then follows from Lemma 3.1 and the fact that f ∈ X was arbitrary.

Hence, by Propositions 4.1 and 4.2, if T : � → N r+1(M , M) is measurable and X
satisfies (S1) and (S2), then the Perron–Frobenius operator cocycle (LT , σ) on Cr (M)
can be extended to a bounded, m-Markov operator cocycle on X. Compare also (28) with
(QR1).

The following proposition will help us to describe the relationship between the
equivariant family of probability measures for (T , σ) and the fixed point of the lift of
a bounded, m-mixing Perron–Frobenius operator cocycle (LT , σ).
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Definition 4.3. Assume that X satisfies (S1). A ∈ L(X) is called positive if A(X+) ⊂ X+,
where X+ is the completion of {f ∈ Cr (M) : f ≥ 0} in ‖·‖X. An operator cocycle (A, σ)
is called positive if A is almost surely positive. Furthermore, a distribution f ∈ (C∞(M))∗
is called positive if f (g) ≥ 0 for every g ∈ C∞(M) such that g ≥ 0.

PROPOSITION 4.4. Let X be a Banach space satisfying (S1) and (S2) and let (A, σ)
be a bounded, m-Markov operator cocycle on X. Suppose that (A, σ) is positive and
m-mixing and that h is the unique m-normalized fixed point of the lift A : X → X on
X ⊂ L∞(�, X) (recall (7) for its definition). Then there exists a measurable family of
Radon probability measures {μω}ω∈� such that h(ω)(g) = ∫

g dμω for every g ∈ C∞(M)
and almost every ω.

Proof. Notice that the set

D = {f ∈ L∞(�, X) : m(f ) = 1 and f ∈ X+ almost surely}
is almost surely invariant under A(ω) since (A, σ) is bounded, positive and m-Markov.
Hence, we may carry out the construction of h in Proposition 3.5 with D in place of X1

to conclude that h ∈ X+ almost surely. Thus, there exists {fk}k∈N ⊆ L∞(�, Cr (M)) such
that fk(ω) ≥ 0 and

∫
fk(ω) dm = 1 for every k and so that limk→∞ fk(ω) = h(ω) in X for

almost every ω. As X ↪→ (C∞(M))∗, it follows that limk→∞ fk(ω) = h(ω) in the sense
of distributions as well. Thus, for any positive g ∈ C∞(M),

h(ω)(g) = lim
k→∞ fk(ω)(g) = lim

k→∞

∫
fk(ω) · g dm (29)

(recall the embedding of Cr (M) in (S2)). As fk(ω) and g are positive, it follows from (29)
that h(ω)(g) ≥ 0 for every such g. Hence, h(ω) is a positive distribution for almost every
ω. On the other hand, as is well known, for any positive f ∈ (C∞(M))∗, one can find a
positive Radon measure μf such that f (g) = ∫

g dμf for every g ∈ C∞(M). We denote
by μω the positive Radon measure corresponding to h(ω).

To see that μω is a probability measure for almost every ω, we note that, by (29) and as∫
fk(ω) dm = 1 for every k,

μω(M) = h(ω)(1M) = lim
k→∞

∫
fk(ω) dm = 1.

Finally, {μω}ω∈� is a measurable family on the complete probability space (�, F , P)
because for, any A ∈ BM , by using (29) again,

μω(A) = h(ω)(1A) = lim
k→∞

∫
A

fk(ω) dm

for almost every ω, while, for every k, ω �→ fk(ω) : � → Cr (M) is measurable and
f �→ ∫

A
f dm : Cr (M) �→ C is continuous, so that ω �→ ∫

A
fk(ω) dm is measurable

too.

Hence, if X satisfies (S1) and (S2) and if the Perron–Frobenius operator cocycle (LT , σ)
on X is m-mixing, then we obtain a measurable family of Radon probability measures
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{μω}ω∈� such that h : ω �→ (g �→ ∫
g dμω) is in L∞(�, X). Furthermore, {μω}ω∈� is

equivariant because it follows from (29) that, for any A ∈ BM and almost every ω,

μω(T
−1
ω (A)) = h(ω)

(
1
T −1
ω (A)

) = lim
k→∞

∫
fk(ω) · 1A ◦ Tω dm.

Due to (26), the continuity of LTω : X → X and the fact that h is the fixed point of the lift
of (LT , σ), this coincides with

lim
k→∞

∫
LTωfk(ω) · 1A dm

= lim
k→∞ LTωfk(ω)(1A) = LTωh(ω)(1A) = h(σω)(1A) = μσω(A).

4.2. The conditions (QR4) and (QR5). In this section, we discuss a sufficient condition
for a family of Perron–Frobenius operator cocycles {(LTε , σ)}ε∈[−1,1] to satisfy (QR4)
and (QR5). We emphasize that these conditions hold rather independently of how the
underlying random dynamics (Tε , σ) behave (see Proposition 4.5 for a precise statement),
so we treat (QR4) and (QR5) here as a final preparation before specializing to our
applications. For simplicity, throughout this section, we assume that M is a d-dimensional
torus Td . One may straightforwardly remove this assumption by considering a partition of
unity. (Refer to, e.g., [7, 28]; see also Appendix A).

Notice that (QR4) and (QR5) are conditions for a single iteration LTε,ω (not for
LT

ε,σn−1ω
◦ · · · ◦ LTε,ω , n ∈ N), and so clear observations may be found in the non-random

setting. Fix r ≥ 1 and 1 ≤ s ≤ r , and consider T ∈ CN([−1, 1], Cr+1(Td , Td)). Let
1 ≤ N ≤ s be an integer and let Ej , j ∈ {0, . . . , N}, be Banach spaces with Ej ↪→ Ej−1

for each j ∈ {1, . . . , N} satisfying the following conditions.
(P1) The condition (S1) holds with Ej in place of X for each j ∈ {0, . . . , N}.
(P2) The condition (S2) holds with Ej in place of X for each j ∈ {0, . . . , N}.
(P3) There are constants C > 0 and 0 ≤ ρ ≤ r −N such that

‖uf ‖Ej ≤ C‖u‖Cρ+j ‖f ‖Ej for each u, f ∈ Cr (Td) and j ∈ {0, . . . , N}.
(P4) There is a constant C > 0 such that∥∥∥∥ ∂

∂xl
f

∥∥∥∥
Ej−1

≤ C‖f ‖Ej for each f ∈ Cr (Td), l ∈ {1, . . . , d} and j ∈ {1, . . . , N}.
Observe that all conditions (P1)–(P4) are not for the operators LTε , ε ∈ [−1, 1], with
Tε := T (ε), but for the spaces Ej , j ∈ {0, . . . , N}, so the following proposition is quite
useful in our applications. Note that if

‖LTε f ‖Ej < Cε‖f ‖Ej for each f ∈ Cr (Td), j ∈ {0, . . . , N} and |ε| ≤ 1, (30)

then it follows from Proposition 4.2 that LTε is a bounded operator on Ej for each
j ∈ {0, . . . , N} and |ε| ≤ 1.
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PROPOSITION 4.5. Let N be a positive integer, let T ∈ CN([−1, 1], Cr+1(Td , Td)) and
let Ej , j ∈ {0, . . . , N}, be Banach spaces with Ej ↪→ Ej−1 for each j ∈ {1, . . . , N}
satisfying (P1)–(P4). Suppose that Tε ∈ N r+1(Td , Td) for each ε ∈ [−1, 1] and that (30)
holds. Then ε �→ LTε f is in Cj ([−1, 1], Ei−j ) for each j ∈ {1, . . . , N}, i ∈ {j , . . . , N}
and f ∈ Ei .

Before starting the proof of Proposition 4.5, we discuss a consequence of
Proposition 4.5 with respect to the conditions (QR4) and (QR5). Let {(Tε , σ)}ε∈[−1,1]

be a family of RDSs such that, for almost every ω, the map ε �→ Tε,ω := Tε(ω) is in
CN([−1, 1], Cr+1(Td , Td)). Let Ej , j ∈ {0, . . . , N}, be Banach spaces with Ej ↪→ Ej−1

for each j ∈ {1, . . . , N} satisfying (P1)–(P4). We suppose the following.
(P5) Tε,ω ∈ N r+1(Td , Td) for each ε ∈ [−1, 1] and almost every ω. Furthermore, (27)

holds with Ej and LTε,ω in place of X and A(ω) for every j ∈ {0, . . . , N} and
|ε| ≤ 1.

Then it follows, from Proposition 4.2, that the Perron–Frobenius operator cocyles (LTε , σ),
ε ∈ [−1, 1], can be extended to bounded operator cocycles on each Ej and that (QR1)
holds for these operator cocycles by virtue of (28).

For each j ∈ {0, . . . , N}, i ∈ {j , . . . , N} and almost every ω, it follows from
Proposition 4.5 that we can define Qj(ω) : Ei → Ei−j by

Qj(ω)f = 1
j !

(
dj

dεj
LTε,ωf

)
ε=0

for f ∈ Ei .

By the definition, it is straightforward to see that, for all ε ∈ [−1, 1] and 2 ≤ j ≤ N ,

ess sup
ω

‖LTε,ω − LT0,ω‖L(EN ,EN−1) ≤ C|ε|

and

ess sup
ω

‖LTε,ω − LT0,ω −
j−1∑
k=1

εkQk(ω)‖L(EN ,EN−j ) ≤ C|ε|j .

To summarize the above argument, we conclude the following corollary.

COROLLARY 4.6. Suppose that (P1)–(P5) hold for the family of Perron–Frobenius
operator cocyles {(LTε , σ)}ε∈[−1,1] on Banach spaces Ej , j ∈ {0, . . . , N}. Then (QR1),
(QR4) and (QR5) hold.

We now return to the proof of Proposition 4.5.

Proof of Proposition 4.5. Fix 1 ≤ σ ≤ N , 1 ≤ ρ ≤ r , f ∈ Cσ ([−1, 1], Cρ(Td)),
g ∈ Cρ(Td) and 1 ≤ l ≤ d for the time being (notice that this f is different from f in the
statement of Proposition 4.5 in the sense that this f depends on ε ∈ [−1, 1]). We simply
denote da/dεaf ∈ Cσ−a([−1, 1], Cρ(Td)) by f (a) for each integer a ∈ [0, σ ]. We also
simply denote by ∂lg the partial derivative of g with respect to the lth coordinate and let
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∂α = ∂
α1
1 · · · ∂αdd and |α| = α1 + · · · + αd for each multi-index α = (α1, . . . , αd) ∈ Nd0 .

Then, for each ε ∈ [−1, 1] and x ∈ Td ,

∂l(f
(1)
ε )(x) = ∂ε∂lf̃ (ε, x) = ∂l∂εf̃ (ε, x),

where f̃ : [−1, 1] × Td → Td is given by f̃ (ε, x) = fε(x). (Since f (1) ∈ C0([−1, 1],
C1(Td)), it is straightforward to see that the first equality holds and that (ε, x) �→
∂l(f

(1)
ε )(x) is continuous. The second equality also immediately follows from these

observations together with the Schwarz–Clairaut theorem on equality of mixed partials.)
In particular,

f (1) = (ε �→ ∂εf̃ (ε, ·)) in Cσ−1([−1, 1], Cρ(Td)). (31)

Furthermore, it is also straightforward to see that the map ε �→ ∂lfε is in Cσ ([−1, 1],
Cρ−1(Td)), which we denote by ∂lf as a slight abuse of notation, and that

(∂lf )
(1) = ∂l(f

(1)) in Cσ−1([−1, 1], Cρ−1(Td)), (32)

(det DT )(1) = det DT (1) in CN−1([−1, 1], Cr−1(Td)). (33)

Moreover, we denote by T(l) ∈ CN([−1, 1], Cr+1(Td)) the map ε �→ (x �→ T(l),ε(x)),
where T(l),ε(x) is the lth coordinate of Tε(x) ∈ Td (under the identification of Td with
Rd ). Finally, we define a map Lf : [−1, 1] → Cρ(Td) by

(Lf )ε = LTε fε for ε ∈ [−1, 1],

which is well defined by virtue of (30). The following is the key lemma for the proof of
Proposition 4.5.

LEMMA 4.7. For each f ∈ Cσ ([−1, 1], Cρ(Td)) with σ ∈ [1, N] and ρ ∈ [1, r], (Lf )(1)

exists in Cσ−1([−1, 1], Cρ−1(Td)) and is of the form

(Lf )(1) = L
( ∑

|α|≤1

J0,α · ∂αf +
∑
|α|≤1

J1,α · ∂αf (1)
)

, (34)

where Jk,α is in CN−1([−1, 1], Cr−1(Td)) is a polynomial function of ∂βT(l), ∂βT
(1)
(l) (1 ≤

l ≤ d , |β| ≤ 2) and (det DT )−1 for each k = 0, 1 and multi-index α with |α| ≤ 1.

Proof. Observe that det DxTε > 0 for all |ε| ≤ 1 and x ∈ Td or det DxTε < 0 for all
|ε| ≤ 1 and x ∈ Td because Tε ∈ N r+1(Td , Td) for each |ε| ≤ 1 and ε �→ Tε is continu-
ous. We consider only the former case because the other case is similar. Also, we show (34)
only around ε = 0 to keep our notation simple (the general case can be literally treated).
First, we note that there is ε0 > 0, B ∈ N, a finite covering {Uλ}λ∈� of Td and Cr+1 maps
(Tε)

−1
λ,b : Uλ → (Tε)

−1
λ,b(Uλ) for |ε| < ε0, λ ∈ � and b ∈ {1, . . . , B} such that, for each

|ε| < ε0, λ ∈ �, b ∈ {1, . . . , B} and g ∈ Cr (Td),

Tε ◦ (Tε)−1
λ,b(x) = x on Uλ (35)
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and

M1(ε, g)(x) :=
∑

Tε(y)=x
g(y) =

B∑
b=1

g ◦ (Tε)−1
λ,b(x) on Uλ (36)

(because T0 ∈ N r+1(Td , Td) and Td is compact; see Appendix A for details). Note also
that if we define M2 : [−1, 1] × Cr (Td) → Cr (Td) by

M2(ε, g) = g

det DTε
for ε ∈ [−1, 1], g ∈ Cr (Td),

then, for each f ∈ Cσ ([−1, 1], Cr (Td)) and |ε| < ε0,

(Lf )ε = M1(ε, M2(ε, fε)).

Notice that both M1 and M2 are linear with respect to g ∈ Cr (Td). Hence, it follows from
the chain rule for (Fréchet) derivatives that

(Lf )(1)ε = ∂εM1(ε, M2(ε, fε))+ M1(ε, ∂εM2(ε, fε)+ M2(ε, f (1)ε )) (37)

if the derivatives exist, where ∂ε = ∂/∂ε.
Now we calculate ∂εM1 and ∂εM2. First, we show that

∂εM1(ε, g) = M1

(
ε, −

d∑
l=1

∂lg ·
∑d
k=1(adj(DTε))l,k · T (1)(k),ε

det DTε

)
, (38)

where adj(A) is the adjugate matrix (i.e., the transpose of the cofactor matrix) of a
matrix A. By (31) (with ε �→ M1(ε, g) in place of f ), (36) and the chain rule for
derivatives,

∂εM1(ε, g)(x) = ∂εM̃1,g(ε, x) =
B∑
b=1

d∑
l=1

∂lg ◦ (Tε)−1
b,λ(x) · ∂ε((Tε)−1

b,λ)(l)(x), x ∈ Uλ,

(39)

where ((Tε)−1
b,λ)(l)(x) is the lth coordinate of (Tε)−1

b,λ(x) and M̃1,g(ε, x) = M1(ε, g)(x).
On the other hand, by differentiating the lth coordinate of (35) for 1 ≤ l ≤ d , we get

T
(1)
(�),ε(y)+

d∑
k=1

∂kT(�),ε(y) · ∂ε((Tε)−1
b,λ)(k)(x) = 0, y = (Tε)

−1
b,λ(x), x ∈ Uλ.

In the matrix form (under the identification of Td with Rd ), this can be written as

T (1)ε (y)+DyTε[∂ε(Tε)−1
b,λ(x)] = 0, y = (Tε)

−1
b,λ(x), x ∈ Uλ,

where we see T (1)ε (y) and ∂ε(Tε)−1
b,λ(x) as column vectors. Thus, since A−1 = (det A)−1

adj(A) for any invertible matrix A,

∂ε(Tε)
−1
b,λ(x) = −(det DyTε)−1adj(DyTε)[T (1)ε (y)], y = (Tε)

−1
b,λ(x), x ∈ Uλ. (40)
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Equation (38) immediately follows from (39) and (40). Furthermore, by the quotient rule
for derivatives and (33),

∂εM2(ε, g) = −g · det DT (1)ε

(det DTε)2
(41)

and

∂l(M2(ε, g)) = ∂lg

det DTε
− g · ∂l(det DTε)

(det DTε)2
. (42)

The conclusion immediately follows from (37), (38), (41) and (42).

Now we complete the proof of Proposition 4.5. We first consider the case when
f ∈ Cr (Td). We will show by induction that, for each 1 ≤ k ≤ j , (Lf )(k) exists and is
of the form

(Lf )(k) = L
( ∑

|α|≤k
Ĵk,α · ∂αf

)
, (43)

where Ĵk,α is in CN−k([−1, 1], Cr−k(Td)) is a polynomial function of ∂βT (k
′)

(l) (1 ≤ l ≤ d ,
0 ≤ k′ ≤ k, |β| ≤ k + 1) and (det DT )−1 for each multi-index α with |α| ≤ k. Equation
(43) for k = 1 is an immediate consequence of Lemma 4.7 (notice that f in Lemma 4.7
depended on ε while f here does not). Suppose that k ≥ 2 and (43) holds with k − 1
instead of k. Then, by Lemma 4.7,

(Lf )(k) = L
( ∑

|α|≤1

J0,α · ∂α
( ∑

|β|≤k−1

Ĵk−1,β · ∂βf
)

+
∑
|α|≤1

J1,α · ∂α
( ∑

|β|≤k−1

Ĵ
(1)
k−1,β · ∂βf

))
.

Therefore, (43) immediately follows from (32) and (33). Furthermore, ε �→dj /dεjLTε f =
(Lf )(j)ε exists as an element of C0([−1, 1], Ei−j ) by (P3) and the fact that s − j ≥ 0.

Next, we consider the general case, i.e., the case when f ∈ Ei . By (P1), one can find
{fn}n≥1 ⊂ Cr (Td) such that ‖f − fn‖Ei → 0 as n → ∞. By the result in the previous
paragraph, (Lfn)(k) exists as an element of a Banach space C0([−1, 1], Ei−k) for all
1 ≤ k ≤ j . On the other hand, it follows from (P3), (P4), (30) and (43) that

sup
ε∈[−1,1]

‖(Lfn)(k)ε − (Lfm)(k)ε ‖Ei−k ≤ C
∑
|α|≤k

sup
ε∈[−1,1]

‖Ĵk,α,ε‖Cr−k‖fn − fm‖Ei → 0

as n, m → ∞. In particular, limn→∞(Lfn)(j) exists. In a similar manner, we can
show that L is a bounded operator from C0([−1, 1], Ei) to Cj ([−1, 1], Ei−j ), so that
limn→∞(Lfn)(j) = (Lf )(j) in C0([−1, 1], Ei−j ). In conclusion, Lf : ε �→ LTε f is in
Cj ([−1, 1], Ei−j ).

4.3. Random Anosov maps. Let M be a compact, connected C∞ Riemannian manifold
with dimension d. In this section, we consider RDSs consisting of Anosov maps
lying in a small Cr+1(M , M)-neighborhood of a fixed, topologically transitive Anosov
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diffeomorphism T ∈ Cr+1(M , M) for some r ≥ 1. The setting we consider is very similar
to that of [20, §4]; however, we obtain more general conclusions than those of [20]. For
the remainder of this section, we fix a topologically transitive Anosov diffeomorphism
T ∈ Cr+1(M , M). Recall that (�, F , P) is a Lebesgue space and that σ : � → � is a
measurably invertible, ergodic, measure-preserving map. For every η > 0, we define

Oη(T ) = {S ∈ Cr+1(M , M) : dCr+1(S, T ) < η}.
Recall that if η is sufficiently small, then Oη(T ) ⊂ N r+1(M , M) and every S ∈ Oη(T ) is
an Anosov diffeomorphism. A map T : � → Cr+1(M , M) will be said to be measurable
if it is (F , BCr+1(M ,M))-measurable.

We consider RDSs induced by measurable maps T : � → Oη(T ) for some small,
fixed η, over σ . Our main result for this section concerns the stability properties of the
equivariant family of probability measures associated to such systems. We will formulate
our result in the setting developed by Gouëzel and Liverani in [28]. In particular, in
[28] it is shown that, when a topologically transitive Anosov map is smoothly perturbed,
the Sinai–Ruelle–Bowen measure varies with similar regularity in certain anisotropic
Banach spaces.

A small technical comment is required before proceeding: in [28] the usual metric on M
is replaced by an adapted metric for T (which will also be adapted for S ∈ Oη(T ) provided
that η is sufficiently small); we shall do the same here. We denote by m the Riemannian
probability measure induced by the adapted metric on M. For each q ≥ 0, p ∈ N0 with
p ≤ r , one obtains a space Bp,q(T ) by taking the completion of Cr (M) with respect to
anisotropic norms ‖·‖p,q as defined in [28, §3] (actually, the norms in [28, §3] are defined
on the real Banach space Cr (M , R). Here, we consider the complexification, which is of
no consequence). Since the map T is fixed, we will just write Bp,q in place of Bp,q(T ).
Our main result for this section is the following theorem.

THEOREM 4.8. Let N , p ∈ N and q ≥ 0 satisfying that p + q < r −N . Then there exists
η0 > 0 such that every measurable T : � → Oη0(T ) has an equivariant measurable
family of Radon probability measures {μT

ω }ω∈� and hT ∈ L∞(�, Bp+N ,q) such that
hT (ω)(g) = ∫

g dμT
ω for each g ∈ C∞(M) and almost every ω. In addition, if {Tε :

� → Oη0(T )}ε∈[−1,1] is a family of measurable maps such that there is a bounded
subset K of CN([−1, 1], Cr+1(M , M)) (recall that Cr+1(M , M) is a Cr+1 Banach
manifold and so, for k ≤ r + 1, we may talk of Ck curves taking values in Cr+1(M , M))
satisfying that ε �→ Tε(ω) lies in K for almost every ω, then the map ε �→ hTε (ω) is in
CN−1([−1, 1], Bp,q+N) for almost every ω.

We will use Theorem 3.6 to prove Theorem 4.8, with the help of Propositions 4.2 and
4.4 and of Corollary 4.6. Therefore, we should check (P1)–(P5) and (QR0)–(QR3) for
appropriate Banach spaces. We start with the basic properties of the Bp,q spaces from [28].
(1) By the definition of ‖ · ‖p,q , it is straightforward to see that ‖∂lf ‖p,q ≤ ‖f ‖p+1,q−1

for each f ∈ Cr (M) and 1 ≤ l ≤ d . Furthermore, Bp+1,q−1 ↪→ Bp,q .
(2) [28, Lemma 2.1] If p + q < r , then the unit ball in Bp+1,q−1 is relatively compact

in Bp,q .
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(3) [28, Lemma 3.2] ‖uf ‖p,q ≤ C‖u‖Cp+q‖f ‖p,q for each u ∈ Cp+q(M) and f ∈
Cr (M). In particular, if p + q < r , then Cr (M) ↪→ Bp,q (see also [28, Remark 4.3]).

(4) [28, Proposition 4.1] We have Bp,q ↪→ (Cq(M))∗. Specifically, for each h ∈ Cr (M),
one obtains a distribution h̃ ∈ (Cq(M))∗ defined by h̃(g) = ∫

hg dm. The map
h �→ h̃ continuously extends from Cr (M) to Bp,q and yields the required inclusion.

We also remark that there exist injections Bp,q → Bp−1,q and Bp,q → Bp,q ′ for q ′ > q

due to [28, Remark 4.2]. By the fourth item of the above list, the functional h �→ ∫
h dm

on Cr (M) extends to a continuous functional on Bp,q , which we shall also denote by m.
The following result summarizes some facts from [13, 28] pertaining to the boundedness
and mixing of the Perron–Frobenius operator associated to maps in Oη(T ) for small η. We
refer the reader to [28, Lemma 2.2] and the discussion at the beginning of [28, §7] for the
first and second items and to [13, Proposition 2.10] for the third item (see also [19, §3]).

PROPOSITION 4.9. There exists 0 < η0 ≤ η such that, for any p ∈ N0 and q ≥ 0 with
p + q < r , we have the following.
(1) For every sequence {Ti}i∈N ⊆ Oη0(T ) and n ∈ N,

‖LTn ◦ · · · ◦ LT1‖L(Bp,q ) ≤ Cp,q .

(2) There exists αp,q ∈ [0, 1) such that, for every {Ti}i∈N ⊆ Oη0(T ), n ∈ N and
f ∈ Bp+1,q ,

‖(LTn ◦ · · · ◦ LT1)f ‖p+1,q ≤ Cp,qα
n
p,q‖f ‖Bp+1,q + Cp,q‖f ‖Bp,q+1 .

(3) There exists a constant λp,q ∈ [0, 1) such that, for every sequence {Ti}i∈Z ⊆ Oη2(T )

and n ∈ N,

‖LTn ◦ · · · ◦ LT1 |Vp,q‖L(Bp,q ) ≤ Cp,qλ
n
p,q ,

where Vp,q = ker(m|Bp,q ) = {h ∈ Bp,q | m(h) = 0}.

Fix q ≥ 0 and p ∈ N with p + q < r −N . Let Ej = Bp+j ,q+N−j , j ∈ {0, . . . , N}.
Then the conditions (P1)–(P4) on these Banach spaces immediately follow from the above
list (recall that each Ej is the completion of Cr (M) with respect to ‖ · ‖Ej ). Furthermore,
fix a bounded subset K of CN([−1, 1], Cr+1(M , M)) and let {Tε : � → Oη0(T )}ε∈[−1,1]

be a family of measurable maps such that ε �→ Tε(ω) lies in K for almost every ω.
Then, by virtue of Proposition 4.2, the first part of Proposition 4.9 and the above
list, Perron–Frobenius operator cocycles {(LTε , σ)}ε∈[−1,1] associated with the random
dynamics {(Tε , σ)}ε∈[−1,1] are precisely defined on these Banach spaces and they satisfy
(P5) and (QR0) with ξ = m (see the remark following (S2)) except the m-mixing property.
In fact, (QR2), (QR3) and the mixing of {(LTε , σ)}ε∈[−1,1] on Ej for j ∈ {1, N} are
consequences of each item of Proposition 4.9, respectively. By Corollary 4.6, (QR1),
(QR4) and (QR5) also hold for {(LTε , σ)}ε∈[−1,1] on Ej (see also [28, Lemma 7.1] and
[28, §9]).

By Proposition 4.4 (and the remark following it), for each ε ∈ [−1, 1], Tε has
an equivariant measurable family of Radon probability measures {μTε

ω }ω∈� and
hTε ∈ L∞(�, EN) = L∞(�, Bp+N−1,q) such that hTε (ω)(g) = gdμTε

ω for each g ∈
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C∞(M) and almost every ω. Furthermore, we apply Theorem 3.6 to deduce the claim
that ε �→ hTε (ω) is in CN−1([−1, 1], E0) = CN−1([−1, 1], Bp−1,q+N) for almost every
ω, which completes the proof of Theorem 3.6.

4.4. Random U(1) extensions of expanding maps. In this section, we will apply
Theorem 3.6 to quenched linear response problems for random U(1) extensions of
expanding maps. Let U be the set of C∞ endomorphisms T : T2 → T2 on the torus
T2 = R2/Z2 of the form

T :
(
x

s

)
�→

(
E(x)

s + τ(x) mod 1

)
, (44)

whereE : S1 → S1 is a C∞ orientation-preserving endomorphism on the circle S1 = R/Z

and τ : S1 → R is a C∞ function (T is called the U(1) extension of E over τ ). U(1)
extensions of expanding maps can be seen as toy models of (piecewise) hyperbolic flows
such as geodesic flows on manifolds with negative curvature or dispersive billiard flows
(via suspension flows of hyperbolic maps; see [31, 40]), and have been intensively studied
by several authors (see, e.g., [15, 21, 38, 39]). When we want to emphasize the dependence
of E and τ in (44) on T, we write them as ET and τT . Fix T ∈ U and assume that E is an
expanding map on S1 in the sense that minx∈S1 E′(x) > 1. Let r be a positive integer. For
every η > 0, we define

Oη(T ) = {S ∈ U | dCr+1(S, T ) < η}.
Note that U ⊂ N r+1(T2, T2) and that, if η is sufficiently small, then ES is an expanding
map for every S ∈ Oη(T ).

Recall that (�, F , P) is a Lebesgue space and that σ : � → � is a measurably
invertible, ergodic, P-preserving map on (�, F , P). When τT (x) = α for any x ∈ S1 with
some constant α, then obviously T does not admit any mixing physical measure because the
rotation s �→ s + (1/2π)α mod one has no mixing physical measure. However, it is known
that if τ satisfies a generic condition, called the partial captivity condition, then T admits a
unique absolutely continuous invariant probability measure for which correlation functions
of T decay exponentially fast (in particular, T is mixing). The partial captivity condition
was first introduced by Faure [21] and was proved to be generic in [38]. Furthermore, it was
shown in [39, Theorem 1.6] that, if T satisfies the partial captivity condition, then there is
an η0 > 0 and an m0 ∈ N, only depending on T (see the comment above Proposition 4.11
for more a precise choice of η0 and m0), such that, if r ≥ m0, then, for any measurable
map T : � → Oη0(T ), the RDS (T , σ) induced by T over σ admits a unique equivariant
measurable family of absolutely continuous probability measures {μT

ω }ω∈� such that the
Radon–Nikodym derivative of μT

ω is in the usual Sobolev spaceHr(T2) of regularity r for
P-almost every ω and that quenched correlation functions of (T , σ) for {μT

ω }ω∈� decay
exponentially fast.

Assume that T satisfies the transversality condition, and fix such an η0 > 0 and an
m0 ∈ N. Assume also that r ≥ m0 + 1. The main result in this section is the following
theorem.

https://doi.org/10.1017/etds.2023.41 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2023.41


A spectral approach to quenched linear and higher-order response 1051

THEOREM 4.10. Let N be positive integers such that N ≤ r −m0. If {Tε : � →
Oη0(T )}ε∈[−1,1] is a family of measurable maps such that there is a bounded subset K
of CN([−1, 1], Cr+1(T2, T2)) satisfying that ε �→ Tε(ω) lies in K for P-almost every
ω ∈ �, then the map ε �→ μ

Tε
ω is in CN−1([−1, 1], Hr−N(T2)) for P-almost every ω ∈ �.

We recall the basic properties of the Sobolev spaces Hm(T2) with regularity m ∈ N0.
Recall that ‖f ‖2

Hm = ∑
|α|≤m ‖∂αf ‖2

L2 .
(1) By the definition of ‖ · ‖Hm , it is straightforward to see that ‖∂lf ‖Hm ≤ ‖f ‖Hm+1

for each f ∈ Cm+1(T2) and 1 ≤ l ≤ d and that ‖uf ‖Hm ≤ C‖u‖Cm‖f ‖Hm for each
u, f ∈ Cm(T2).

(2) By Kondrachov’s embedding theorem, Hm+1(T2) ↪→ Hm(T2) and the unit ball in
Hm+1(T2) is relatively compact in Hm(T2).

(3) Cm′
(T2) is dense in Hm(T2) for each m′ ≥ m because Cm′

(T2) ⊂ Hm(T2) ⊂
Cm−1(T2) by Sobolev’s embedding theorem.

(4) By the Cauchy–Schwarz inequality, we haveHm(T2) ↪→ (C0(T2))∗ by h �→ h̃ given
by h̃(g) = ∫

hg dm for g ∈ C0(T2).
Let λ0 := (infS∈Oη0

minx∈S1 E′
S(x))

−1, which is less than one by taking η0

small, if necessary. Fix λ ∈ (λ1/2
0 , 1). Let m0 be a sufficiently large integer given

in [39, Theorem 1.5]. Let N ≤ r −m0 be a positive integer. By taking η0 small,
if necessary, we assume that (infS∈Oη0

minx∈S1 E′
S(x))

−1 < λ. Fix a family of
measurable maps {Tε : � → Oη0(T )}ε∈[−1,1] such that there is a bounded subset K of
CN([−1, 1], Cr+1(T2, T2)) satisfying that ε �→ Tε(ω) lies in K for P-almost every ω ∈ �.
Let (LTε , σ) be the Perron–Probenius cocycle induced by (Tε , σ). Then it follows from
[39, §4] that LTε almost surely extends to a unique, bounded operator on Hm(T2) such
that ω �→ LTε (ω) : � → L(Hm(T2)) is strongly measurable for each ε ∈ [−1, 1]. The
following estimates were proved in [12, §§2.3 and 2.4].

PROPOSITION 4.11. There is a constant ρ ∈ (0, 1) (which may depend on T and η0) such
that, for all |ε| ≤ 1, the following hold.
(1) For each m ≥ 0 and n ≥ 1,

ess sup
ω

‖L(n)Tε (ω)‖L(Hm(T2)) ≤ C.

(2) For each m ≥ m0, n ≥ 1 and f ∈ Hm(T2),

ess sup
ω

‖L(n)Tε (ω)f ‖Hm+1 ≤ Cλn‖f ‖Hm+1 + C‖f ‖Hm .

(3) For each m ≥ m0, n ≥ 1 and f ∈ Hm(T2) with
∫
T2f dm = 0,

ess sup
ω

‖L(n)Tε (ω)f ‖Hm ≤ Cρn‖f ‖Hm .

We now prove Theorem 4.10. Letm = r −N . For j ∈ {0, . . . , N}, setEj = Hm+j (T2).
Then, in the same manner as in the proof of Theorem 4.8, we can apply Theorem 3.6,
with the help of Propositions 4.2 and 4.4 and of Corollary 4.6, to deduce the claim that
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ε �→ μ
Tε
ω is in CN−1([−1, 1], E0) = CN−1([−1, 1], Hr−N(T2)) for almost every ω, which

completes the proof of Theorem 4.10.

5. Application to the differentiability of random dynamical variances
In this section, as another application of Theorem 3.6, we show the differentiability of the
variances in quenched CLTs for certain class of RDSs (including random Anosov maps
and random U(1) extensions of expanding maps). See, e.g., [45] and reference therein for
the background of this topic.

The quenched CLT, stated precisely below, was first shown by Dragičević et al. [18] for
random piecewise expanding maps and was later extended to random piecewise hyperbolic
maps by the same authors [19]. The argument in these results was extracted in an abstract
form in [12] and the quenched CLT for random (1) extensions of expanding maps was
established as its application. In this section, we employ a mixture of the settings of §§4.1
and 4.2 and [12]. Specifically, to apply Theorem 3.6, we assume the following.
• There are a real number r ≥ 1, a positive integer N ≤ r , a bounded subset

K of CN([−1, 1], Cr+1(M , M)) and a family of measurable maps {Tε : � →
N r+1(M , M)}ε∈[−1,1] such that ε �→ Tε(ω) lies in K for almost every ω.

• {Ej }j∈{0,...,N} is a family of Banach spaces with Ej ↪→ Ej−1 for each j ∈ {1, . . . , N}
for which (P1)–(P5) of §4.2 holds for the family of the Perron–Frobenius operator
cocycles {(LTε , σ)}ε∈[−1,1] (and so, by Corollary 4.6, it satisfies (QR1), (QR2), (QR4)
and (QR5)).

• {(LTε , σ)}ε∈[−1,1] satisfies (QR0) and (QR3).
To apply the result in [12] we further assume the following.

• The inclusion E1 ↪→ E0 is compact.
Then, with the help of (Q), for any ε ∈ [−1, 1], (P5), (P3), (QR0) (b) and (QR3) we
verify hypotheses (A1), (A2), (UG) and (LY) of [12, §2.1], respectively, for Lω = LTε,ω ,
M = N r+1(M , M), D = Cr+1(M), B = E1, E = Cρ(M) and B+ = E0 with some
ρ ≤ r (where (P1) and (P2) are used to ensure that Lω is well defined in the manner
of [12]). Examples satisfying the above conditions include the random Anosov maps and
random U(1) extensions of expanding maps considered in §§4.3 and 4.4.

Therefore, under this setting, it follows from [12, Theorem 2.6] that a quenched CLT
holds for (Tε , σ) for each ε ∈ [−1, 1], in the following sense. Let g ∈ L∞(�, Cr (M)).
Let {με,ω}ω∈� be the equivariant measurable family of Radon probability measures such
that there exists hε ∈ L∞(�, EN) satisfying hε(ω)(u) = ∫

udμε,ω for each u ∈ C∞(M)
and almost every ω (refer to Proposition 4.4). Let gε be the centering of g with respect to
{με,ω}ω∈�: that is,

gε,ω := gω −
∫
Td
gωdμε,ω.

We define the variance (the drift coefficient) Vε of (Tε , σ , με , gε) by

Vε :=
∫
�

( ∫
Td
g2
ε,ω dμε,ω + 2

∞∑
n=1

∫
Td
gε,ω · (gε,σnω ◦ T (n)

ε,ω ) dμε,ω

)
P(dω).
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(The limit exists due to the exponential decay of correlations, which follows from
Remark 3.9 in a standard manner.) Suppose that Vε > 0 (this is a generic condition for
random expanding maps; refer to [17]). Then, for P-almost every ω ∈ �, (Sngε)ω/

√
n

converges in distribution to a normal distribution with mean zero and variance Vε as
n → ∞: that is, for any a ∈ R,

lim
n→∞ μω

(
(Sngε)ω√

n
≤ a

)
= 1√

2πVε

∫ a

−∞
e−z2/2Vε dz,

where (Sngε)ω = ∑n−1
j=0 gε,σjω ◦ T (j)

ε,ω .
We now show that the regularity of the variance Vε is subjected to the regularity of the

dynamics Tε . Recall that M > 0 and α < M in (QR2) and (QR3).

THEOREM 5.1. V : ε �→ Vε is of class CN−1+η for every η ∈ (0, log(1/α)/log(M/α)). In
particular, V is differentiable if N ≥ 2.

Remark 5.2. As seen below, the proof of Theorem 5.1 uses only Theorem 3.6, not
any result in [12]. Hence, (Q) and the assumption Vε > 0 are not necessary for the
CN−1+η-regularity of V.

Proof. We use the idea that appeared in [28, Remark 2.10] for deterministic Anosov maps.
Recall the notation Aε , Ẽj and Nj for j ∈ {0, . . . , N} given in §3.2 for Aε = LTε . Then
Vε can be written as

Vε =
∫
�

[
(gε · hε)(ω)(gε,ω)+ 2

∞∑
n=1

(Anε (gε · hε))(ω)(gε,ω)
]

dP,

where gε · hε ∈ ẼN is given by (gε · hε)(ω)(u) := ∫
M
gε,ω · u dμε,ω for each ω ∈ � and

u ∈ C∞(M). (Recall the duality (26) and the σ -invariance of P.) Notice also that

m(gε · hε)(ω) = (gε · hε)(ω)(1M) =
∫
M

gε,ω dμε,ω = 0 P-almost surely

by the definition of gε , so that

Anε (gε · hε) = (Aε |NN
)n(gε · hε) and ρ(Aε |NN

) < 1

for any sufficiently small ε ≥ 0 (recall Remark 3.9).
Now recall the Neumann series expansion

∑∞
n=0 A

n = (Id − A)−1 for a bounded linear
operator A with ρ(A) < 1. Applying it to A = Aε |NN

, we get

Vε =
∫
�

[−(gε · hε)(ω)(gε,ω)+ 2((Id − Aε |NN
)−1(gε · hε))(ω)(gε,ω)] dP. (45)

On the other hand, it follows from (18) and (19) that, for any
 ∈ ẼN , there exists
(k) ∈ Ẽ0

with k = 1, . . . , N − 1 such that∥∥∥∥(Id − Aε)
−1
− (Id − A0)

−1
−
N−1∑
k=1

εk
(k)
∥∥∥∥
Ẽ0

≤ C‖
‖ẼN |ε|N−1+η.
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This immediately implies the CN−1+η-regularity of the second term of the right-hand side
of (45). Moreover, Theorem 3.6 leads to the CN−1+η-regularity of the first term of the
right-hand side of (45) via the CN−1+η-regularities of hε because (gε · hε)(ω)(gε,ω) =
hε(ω)(g

2
ω)− hε(ω)(gω)

2. This completes the proof.
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A. Appendix. Proof of Proposition 4.1
Let T ∈ N r+1(M , M). Then it follows from [30, Corollary 1] that T is a covering map.
Hence, by a basic property of covering spaces, there is a discrete topological space �
such that, for every x ∈ M , there is a neighborhood Ux of x such that T −1({x}) is
homeomorphic to � and T −1(Ux) is homeomorphic to Ux × �. In other words, T −1(Ux)

is a union of disjoint open sets {Ũb,x}Bb=1 such that T : Ũb,x → Ux is a homeomorphism
for each b = 1, . . . , B, where B is the cardinality of �. If B = ∞, then, since |det DT | is
bounded uniformly away from zero due to the compactness of M,

m(T −1(Ux)) ≥ B · inf
y∈M |det DT (y)| m(Ux) = ∞,

which contradicts M having finite m-measure. Hence, B < ∞. Furthermore, there is a
small neighborhood U of T in N r+1(M , M) such that, for each S ∈ U and x ∈ M , there
are disjoint open sets {ŨSb,x}Bb=1 such that S : ŨSb,x → Ux is a Cr+1 diffeomorphism for
each b and that, for each y ∈ Ux ,

dM((S|ŨSb,x
)−1(y), (T |Ũb,x

)−1(y)) → 0 (A.1)

as S → T in N r+1(M , M).
Since M is compact, there is a finite subfamily {Uλ}λ∈� (with |�| < ∞) of the

open covering {Ux}x∈M of M. As per the previous paragraph, for each λ ∈ �, there are
disjoint open sets {Ũb,λ}Bb=1 such that T : Ũb,λ → Uλ is a Cr+1 diffeomorphism for each
b = 1, . . . , B. Notice that, for each λ ∈ �, x ∈ Uλ and a complex-valued function f on
M, it holds that

∑
T (y)=x

f (y) =
B∑
b=1

(f ◦ (T |Ũb,λ
)−1)(x). (A.2)

Let {Kλ}λ∈� be a closed covering of M such that Kλ ⊂ Uλ and let {ρλ}λ∈� be a partition
of unity of M subordinate to the covering {Kλ}λ∈� (that is, ρλ is a C∞ function on M with
values in [0, 1] ⊂ R such that the support of ρλ is contained in Kλ for each λ ∈ � and∑
λ∈� ρλ(x) = 1 for each x ∈ M). Then, in view of (A.2), we get that, for each f ∈ Cr (M)

and x ∈ M ,
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LT f (x) =
∑
λ∈�

ρλ(x) ·
∑

T (y)=x

f (y)

|det DT (y)| =
∑
λ∈�

B∑
b=1

ρλ(x) ·
(

f

|det DT | ◦ (T |Ũb,λ
)−1

)
(x)

and, for each S ∈ U ,

‖LT f − LSf ‖Cr

≤
∑
λ∈�

B∑
b=1

‖ρλ‖Cr
∥∥∥∥ f

|det DT | ◦ (T |Ũb,λ
)−1 − f

|det DS| ◦ (S|ŨSb,λ
)−1

∥∥∥∥
Cr (Kλ)

.

Therefore, since both |�| and B are finite and ‖|det DT |−1 − |det DS|−1‖Cr → 0 as
S → T in N r+1(M , M), it suffices to show that, for each λ ∈ �, b = 1, . . . , B and
f ∈ Cr (M),

‖f ◦ (T |Ũb,λ
)−1 − f ◦ (S|ŨSb,λ

)−1‖Cr (Kλ) → 0 as S → T in N r+1(M , M). (A.3)

Fix λ ∈ �, b = 1, . . . , B and f ∈ Cr (M). By taking Kλ small, if necessary, we can
assume that Kλ is included in a local chart of M, so we assume that Kλ is a closed
subset of Rd , where d = dim M . We use the notation ∂i(·), ∂α(·) and adj(·) given in the
proof of Proposition 4.5. Recall that T |Ũb,λ

: Ũb,λ → Uλ is a Cr+1 diffeomorphism, so, by
the inverse function theorem and the fact that A−1 = (det A)−1adj(A) for any invertible
matrix A,

D((T |Ũb,λ
)−1)(x) = DT (y) = (det DT (y))−1adj(DT (y))

with y = (T |Ũb,λ
)−1(x) for any x ∈ Uλ. Since each entry of adj(DT (y)) (the transpose of

the cofactor matrix of DT (y)) is a polynomial of ∂iT (1 ≤ i ≤ d), by the chain rule for
derivatives, we conclude that, for each i = 1, . . . , d ,

∂i(f ◦ (T |Ũb,λ
)−1) =

d∑
l=1

(Jl · ∂lf ) ◦ (T |Ũb,λ
)−1 on Uλ,

where Jl is a polynomial function of ∂iTj (1 ≤ i, j ≤ d) and (det DT )−1. Applying this
formula repeatedly, we get that, for each multi-index α with |α| ≤ r ,

∂α(f ◦ (T |Ũb,λ
)−1) =

∑
|β|≤|α|

(Jα,β · ∂βf ) ◦ (T |Ũb,λ
)−1 on Uλ,

where Jα,β = J Tα,β is a polynomial function of ∂γ Tj (1 ≤ j ≤ d , |γ | ≤ |β|) and
(det DT )−1. Now (A.3) immediately follows from (A.1), and this completes the proof.
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