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Summary
SPAD combined with hyperspectral sensors can be an alternative approach to traditional laboratory
methods for determining the physiological status of trees. The aim of this work was to assess whether the
effectiveness of SPAD predictive models using hyperspectral data might be influenced by where the
measurements were carried out. Leaves of apricot trees of two varieties (Farbaly and Farlis) were analysed
with SPAD and spectroradiometer, and the data were organized in two different ways: (i) overall dataset
(OD), collecting total measurements of trees in each variety; (ii) subset of overall datasets (SOD), collecting
the measurements performed on the cardinal points of trees in each variety. Prediction models were built
using as regressors: (i) spectral data transformed with Continuum Removal (CR) methodology (CR
indices); (ii) vegetation indices (VI) linked to chlorophyll and nitrogen content; (iii) reflectance values
associated with chlorophyll content and to wavelengths ranges where (CR) methodology was applied;
(iv) reflectance values of full spectrum. The best performances belonged to models using wider ranges of
spectrum both in ODs and in SODs. The north cardinal point showed prediction models with the best
performances in both varieties. No VI and CR indices showed reliable models. All the reliable prediction
models were associated with compounds involved in physiological state and metabolism of leaves in
apricot tree.

Keywords: chlorophyll content; continuum removal methodology; leaf spectral data; plant physiological state; vegetation
index

Introduction
Apricot (Prunus armeniaca L.) is an important fruit crop worldwide, belonging to Rosaceae
family. The apricot production was estimated to be about 3,578,412.14 tonnes in the world and
695,632.70 tonnes in Europe, in 2021 (FAOSTAT, 2023). Europe is the second world’s apricot
producer after Asia (Figure 1). Italy is the fourth world’s apricot producer, after Turkey, Iran and
Uzbekistan, and it is the largest producer in Europe followed by France, Spain and Greece
(Figure 1). In 2021, the apricot annual Italian production was 189 570 tonnes on 17 740 ha of
cultivated area, in five Italian Regions: Emilia-Romagna (31%), Campania (21%), Basilicata (20%),
Puglia (6%) and Sicilia (5%). In the Mediterranean area, a large part of production is primarily
fresh fruit, with a smaller amount destined for processing industry for various products such as
dried fruit, fruit cans, jam and juices, ice cream, cheese, etc. (Alvisi, 1997; Chang et al., 2016).

It has been reported that mineral nutrition, particularly nitrogen content (N), plays a key role
in plant growth, yield and fruit quality including, firmness, sugar content, phenolic compounds
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and visual appearance (skin colour) (García-Gomez et al., 2020; Zhebentyayeva et al., 2012; Radi
et al., 1997, Radi et al., 2003; Falls and Siegel, 2005; Macheix et al., 2018; Wang et al., 2007; Asma
et al., 2007; Dimitrovski and Cvetkovic, 1981). Since nitrogen content in plant was directly
associated with chlorophyll synthesis (Boussadia et al., 2010; Kamnev et al., 2008), chlorophyll
content in leaves is an indicator of the N status (Li et al., 2009; Shaahan et al., 1999). The
proportion of leaf N allocated to the chloroplast is approximately 75% (Hak et al., 1993; Kutik
et al., 1995). Leaf N is contained not only in chlorophyll but also in enzymes, vitamins and nucleic
acids as well as in proteins. (Carranca et al., 2018; Khasawneh et al., 2021; Khasawneh et al., 2022;
Mratinić et al., 2011).

Chlorophyll measurements performed by the SPAD (Soil and Plant Analysis Development)
sensor (Minolta Corporation, Ltd., Osaka, Japan) (Minolta Camera, 1989) record chlorophyll
values in a non-destructive way by acquiring values of the leaf transmittance at red (650 nm) and
infrared (940 nm) wavelengths. The standard method for determining chlorophyll content is very
accurate but destructive. (Amirruddin et al., 2020; Wu et al., 2023). Compared with the traditional
destructive methods (Porra et al., 1989), SPAD analyses many leaf samples in small amounts of
time, space and resources, leading to an exponential increase of its use in the last decade. (Uddling
et al., 2007).

Hyperspectral analysis shares the versatility of SPAD, but in a full range of 350–2500 nm. It
reads the reflectance with a higher resolution to gather more accurate information (Liu et al., 2020;
Tang et al., 2022). These characteristics have been used to assess N content using vegetation
indices such as Normalized Difference Nitrogen Index (NDNI) at specific wavelengths (Götze
et al., 2010; Osborne et al., 2002) or greater ranges until to the full spectrum between 350–2500 nm
(Bruning et al., 2019; Miao et al., 2009). To assess N content, Continuum Removal (CR)
methodology was carried out (Kokaly and Clark, 1999) selecting the ranges where absorption
peaks were evident along the spectrum (Curran et al., 2001; Huang et al., 2004; Van Der Meer,
2004). While SPAD directly measures chlorophyll at certain wavelengths and this value is
correlated with nitrogen content, the spectroradiometer works on the range between 350 and
2500, detecting other signals in the short-wave infrared region (SWIR), between 1400 and 2500
nm, correlated with (a) nitrogen content not of chlorophyll but of other compounds as proteins,
enzymes, involved in the plant metabolism; (b) other organic compounds as carbohydrates
produced during chlorophyll photosynthesis. Thus, it might help to understand more fully the
physiological state of the plant.

Leaf nutrient levels in apricots are non-uniform, showing seasonal variations (Leece and van
den Ende, 1975) and dependence upon cultivar (Bojic et al., 1999), rootstock (Rosati et al., 1997,
Velemis et al., 1999, Jiménez et al., 2004), interstock (Milosevic 2006, Milosevic and Milosevic
2011) and fertilization (Szücs 1986). It has been reported that the organization or relative amounts
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Figure 1. Production of apricot by continents (a) and countries (b) in the world (average 1994–2021).
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of photosynthetic components differ between sun and shade leaves (Hikosaka and Terashima,
1995; Hoel and Solhaug, 1998). Furthermore, an important component for a higher productivity
of quality fruit in an orchard is the design (Javaid et al., 2017) for maximum light interception, and
trees should be oriented in North-South direction (Javaid et al., 2017). Other authors (Boissard
et al., 1990; Leinonen and Jones, 2004; Paltineanu et al., 2013; Zia et al., 2012, Wang et al., 2024)
have studied how leaf orientation and canopy geometry represented by row orientation, row
spacing and plant height interact with environmental factors, and the importance of cardinal point
in peach, apple and walnut orchards, but not in apricots.

Based on these considerations, in this work an apricot orchard was studied with the
following aims:

1) to explore solutions that would make data collection more efficient considering how time-
consuming using proximal sensing tools may be. We have studied whether the results of
SPAD prediction models might vary depending on the leaf position on the tree. Following
studies should evaluate whether some of these positions are more representative of the
whole tree, allowing more targeted and efficient data collection. In this preliminary study,
the four cardinal points were chosen because they represent easily identifiable standard
positions on the apricot tree;

2) to assess plant physiological state in an experimental study where synergy of SPAD and
hyperspectral sensor was considered. This is a very preliminary attempt to assess how
SPAD prediction models may describe metabolic mechanisms involving other substances,
such as sugars, proteins, detected by hyperspectral analysis, during chlorophyll
photosynthesis.

Prediction models of SPAD measurements were built using hyperspectral data as auxiliary
variables along the entire spectrum between 350 and 2500 nm models or in ranges where
absorption peaks were evident along the spectrum (Curran et al., 2001; Huang et al., 2004; Van
Der Meer, 2004). These models were built on two types of datasets: (1) with all data collected on
tree leaves for each of the two apricot varieties, Farlis and Farbaly; (2) with data grouped according
to the four cardinal points on trees of the same apricot varieties.

Materials and methods
Description of site

The study was conducted on apricot orchard in the Apulia Region (Southern Italy) at latitude
40°53’26’’ N and longitude 17°5’5’’ in hilly territory and situated about 20 Km from the Adriatic
Sea, in a private farm. The two varieties chosen were Farlis and Farbaly, both were about 8 years
old, had a late ripening and a good fruit quality.

The orchard was grown in clay-loam soil and was irrigated using drip system, following the
usual agricultural practices of the area. Orchard trees were spaced 3 m within rows and 5.5 m
between rows. This study was carried out in July 2021.

Sampling design

Leaves of nine trees of Farlis and Farbaly were analysed in the field. Each tree was divided into 4
cardinal points east, north, south, west. Three leaves were selected on each cardinal point for a
total of 108 leaves representing each variety. Three repetitions were measured in situ across the
leaf with SPAD and after on the same points with Field Spec 4. Finally, the 324 SPAD and spectral
data were averaged to get an overall dataset (OD) of 108 measurements that represented each
variety. Furthermore, the data of each cardinal point of varieties were elaborated. For this aim,
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subsets of the overall dataset (SOD) of 27 SPAD and spectral data represented the cardinal points
with each variety.

SPAD

The SPAD-502 (Minolta Corporation, Ltda., Osaka, Japan) (Minolta, 1989) measured the
transmittance of red light (650 nm) and infrared radiation (940 nm) through the leaf giving out a
SPAD dimensionless reading as an indicator of the amount of chlorophyll in the leaf tissue
according to this equation (Naus et al., 2010) (Eq. 1):

SPAD � kxlog
%trasmission 940 nm
%trasmission 650 nm

� �
� C (1)

where k is a slope coefficient and C is a confidential offset value.

Spectral data

Hyperspectral analysis
Leaf spectral measurements were performed in the field with ASD Field Spec 4 Portable
Spectroradiometer (Analytical Spectral Devices Inc., Boulder, Colorado, USA) on the same points
where SPAD analysis was performed. Plant Probe was used to detect a spectral signature in a range
of 350–2500 nm. Field Spec 4 provided spectra with 2151 bands having a resolution of 1 nm. The
spectral reflectance signatures were averaged over 10 nm to reduce the number of wavelengths
from 2151 to 215, smoothing the spectra and keeping down the risk of over-fitting (Shepherd and
Walsh, 2002). The calibration was performed by a standard white reference of Plant Probe with a
known reflectance of 99% and repeated for each tree, to increase the comparability of
measurements.

Spectral transformations
Since the aim of this paper was to study the performance of SPAD prediction models, vegetation
indices (VI) associated with chlorophyll and nitrogen content were considered. They were
Chlorophyll Index (CI), Normalized Pigment Chlorophyll Index (NPCI) associated with
chlorophyll content and Normalized Difference Nitrogen Index (NDNI) with nitrogen content
(Table 1).

Furthermore, CR methodology was applied on all the ranges along the spectrum of 350–2500
nm showing absorbance peaks (R ranges) to compute Depth (Table 2) as follows (Eq. 2):

Depth � 1 � Rb

Re
(2)

where Rb is the reflectance at the band bottom and Re is the reflectance on the conjunction line
called continuum at the same wavelength of Rb so that no local maximum is higher than 1 (Van
Der Meer, 2004). This calculation was performed by ViewSpecPro software (Analytical Spectral
Devices Inc., Boulder, Colorado, USA).

Statistical analysis

Prediction and model estimation
Two types of estimation models were applied on ODs and SODs constituted by SPAD values
(dependent variable), and spectral data (independent variables or predictors): (i) ordinary least
square regression (OLSR) applied on VI and CR indices; (ii) partial least square regression (PLSR)
applied on full spectrum of 350–2500 nm (FS) and R ranges. The two apricot varieties were
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estimated separately, as well as the cardinal points. The analysis was performed with statistical
software package SAS/STAT (release 9.4 SAS ANALYTICS U software).

Cross-validation
Cross-validation was performed as described by Riefolo et al. (2020). This procedure was
performed on cardinal points subset too: two-third of the subset (18 samples) as calibration set,
and the remaining one-third of the samples (9 samples), as validation set. The performance of
prediction models was evaluated by means of three statistics: (i) the coefficient of determination in
prediction (R2); (ii) root mean square error of prediction (RMSEP); (iii) residual prediction
deviation (RPD) (Bellon-Maurel et al., 2010) defined as follows (Eq. 3):

RPD � SD=RMSEP (3)

where SD is the standard deviation of the response variable SPAD. It is used to standardize the
value of RMSEP with respect to the dispersion of samples enabling to compare the effectiveness of
the prediction model as follows: (i) RPD> 2 excellent; (ii) 1.4≤ RPD≤ 2 good; (iii) RPD< 1.4
unreliable (Chang et al., 2001). After cross-validation, analysis of residuals was performed with
Shapiro–Wilk and Kolmogorov–Smirnov tests, to evaluate the normality of distribution. The
selection of the best model was based on the following criteria: (i) RPD values≥ 2.0 with the
smaller number of latent variables; (ii) normality of residuals.

Analysis of variance
Analysis of variance of all variables relative to cardinal points was performed to find significative
difference among them. The normal distribution of variables was verified by Shapiro-Wilk and
Kolmogorov-Smirnov tests to choose the correct analysis of variance (data not shown). Test of
Levene verified the homoscedasticity (data not shown). Based on these preliminary tests, four
types of analysis of variance with their corresponding post hoc tests were applied (Table 3).

Table 1. Vegetation indices*

Vegetation index Acronym Equation References

Chlorophyll Index CI (R750–R705)/(R750� R705) Gitelson and Merzlyak
(1994)

Normalized Pigment
Chlorophyll Index

NPCI (R680–R430)/(R680� R430) Peñuelas et al. (1994)

Normalized Difference Nitrogen
Index

NDNI (log(1/R1510) –log(1/R1680))/(log(1/R1510)
�log(1/R1680))

Gotze et al. (2010)

*Rn represents the reflectance values and n the wavelength.

Table 2. Indices computed with continuum removal methodology*

Continuum removal index Minimum wavelength (nm) Range (nm) Acronym

Depth710 710 400–820 R1
Depth1000 1000 820–1110 R2
Depth1170 1170 1110–1270 R3
Depth1460 1460 1270–1660 R4
Depth1840 1840 1660–1870 R5
Depth1990 1990 1870–2180 R6

*R indicate the ranges along the spectrum of 350–2500 nm showing absorbance peaks.
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Table 4 shows the results of some VI and CR indices of Farbaly, since SPAD, Depth1460 and NPCI
index did not show any significative differences.

Results
A total of 23 SPAD prediction models were fitted for each variety: 8 models for wavelength ranges,
full and partial (R ranges) elaborated with Partial Least Square Regression (PLSR) and 9 regarding
VI and CR indices elaborated with Ordinary Least Square Regression (OLSR).

Analysis of normal distribution

Table 5 shows the basic statistics of the response variable SPAD for the two varieties in both ODs
and SODs. Shapiro-Wilk and Kolmogorov-Smirnov tests were used to assess the normal
distribution. When at least one of the two tests was significant at a level probability of 5%
(p< 0.05), SPAD was transformed in Gaussian ranks by SAS/RANK procedure: the ranks divided
by the total number of observations form values in the range 0–1, which were used in subsequent
processing. Predictors (VI and CR indices and spectral data) and response variable (SPAD rank
transformed) were centred and scaled to have the mean at zero and the variance at 1 and to place
both on the same relative position to their variation in the process of prediction model estimation.

Prediction models

Farbaly OD
Table 6 shows PLSR statistics regarding R ranges. The only value of RPD≥ 1.4 belonged to R1R6
range with 9 factors, (highest R2 0.623 and lowest RMSEP 0.610) (Figure 2). No VI and CR indices
showed a RPD value≥ 1.4 with an explained variance that never exceeded 10% (data not shown).

Farbaly subsets
Table 7 shows PLSR statistics of SODs in descending order of RPD values until the last good
effective model. Although the greatest value of RPD belonged to the R1R6 range in the east SOD
(10.657), that represented by the R3 range of the same SOD was chosen as the best model (2.160)

Table 3. Types of test and post hoc test for analysis of variance

Test Normality Homoscedasticity Post hoc test

ANOVA one-way Yes Yes Tukey
Welch one-way Yes No Duncan
Kruskal-Wallis No Yes Bonferroni
Friedman No No Conover

Table 4. Results of ANOVA for some variables concerning cardinal points in Farbaly*

Indices East North West South

Depth710 0.89a 0.88b 0.91c 0.89abc

Depth1000 0.59a 0.60ab 0.55c 0.56ac

Depth1170 0.61a 0.62a 0.57b 0.58b

Depth1840 0.81a 0.83a 0.80b 0.77c

Depth1990 0.96a 0.95ab 0.97ac 0.93a

CI 0.72a 0.68b 0.78c 0.75ac

NDNI 0.42a 0.38b 0.44a 0.43ab

*Different letters indicate significant differences (p< 0.05) among the cardinal points.
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Table 5. Basic statistics of response variable SPAD for the two apricot varieties

Parameters

Farbaly Farlis

Overall East North West South Overall East North West South

Mean 36.0 36.3 35.8 36.4 35.4 37.0 37.6 37.0 37.0 36.4
Standard Deviation 1.51 0.96 1.73 1.32 1.75 1.49 1.57 1.42 1.45 1.34
Range 9.24 4.08 5.60 5.76 7.20 6.62 5.42 5.54 5.16 4.46
Skewness –0.74 0.88 –0.19 0.25 –1.41 0.32 0.85 0.34 –0.39 0.12
Kurtosis 1.61 0.70 –1.09 0.01 2.02 –0.18 –0.27 –0.46 –0.47 –1.22
Shapiro-Wilk (W*) 0.96 0.94 0.94 0.97 0.86 0.98 0.89 0.96 0.95 0.95
P value 0.00 0.16 0.11 0.67 0.00 0.13 0.01 0.40 0.21 0.21
Kolmogorov-Smirnov (D†) 0.08 0.14 0.14 0.12 0.16 0.06 0.20 0.15 0.13 0.13
P value 0.13 >0.15 >0.15 >0.15 0.07 >0.15 <0.01 0.12 >0.15 >0.15

*Mathematic factor computed by Shapiro-Wilk test.
†Mathematic factor computed by Kolmogorov-Smirnov test.

Table 6. Statistics of PLSR and analysis of residuals of SPAD for the two apricot varieties (OD)

Varieties Input data Factor R2 RMSEP RPD W* P value D† P value

Farbaly Full spectrum 1 0.06 0.96 1.03 1.00 1.00 0.03 >0.15
R1 5 0.21 0.89 1.12 0.98 0.14 0.07 >0.15
R2 5 0.29 0.84 1.18 0.99 0.55 0.06 >0.15
R3 4 0.24 0.87 1.14 0.99 0.52 0.06 >0.15
R4 1 0.06 0.97 1.02 1.00 1.00 0.03 >0.15
R5 5 0.29 0.84 1.18 0.99 0.87 0.04 >0.15
R6 0 0.00 0.99 1.00 1.00 1.00 0.02 >0.15
R1R6 9 0.62 0.61 1.62 0.98 0.07 0.05 >0.15

Farlis Full spectrum 15 0.89 0.50 2.95 0.99 0.96 0.04 >0.15
R1 5 0.34 1.22 1.22 0.98 0.07 0.08 0.05
R2 9 0.46 1.10 1.35 0.99 0.68 0.05 >0.15
R3 1 0.21 1.33 1.12 0.99 0.71 0.05 >0.15
R4 8 0.49 1.07 1.39 0.99 0.62 0.07 >0.15
R5 1 0.09 1.42 1.05 0.99 0.38 0.07 >0.15
R6 1 0.08 1.43 1.04 0.99 0.39 0.05 >0.15
R1R6 1 0.21 1.33 1.12 0.99 0.45 0.06 >0.15

*Mathematic factor computed by Shapiro-Wilk test.
†Mathematic factor computed by Kolmogorov-Smirnov test.

Figure 2. Predicted vs measured SPAD values in the R1R6 model for Farbaly (a) and in the FS model for Farlis (b).
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(Figure 3). It, among the models with an excellent RPD value, shows the lowest number of factors.
Ten models have an excellent RPD value and a normal distribution of residuals (Table 7) and eight
a good one (data not shown). Considering the models with RPD≥ 1.4, the north SOD is
represented six times while the west one only once (data not shown).

No VI and CR indices show a RPD value≥ 1.4 both with an explained variance that never
exceeds 50% (data not shown). The highest value of explained variance belongs to Depth1000

(49,90%) with a RMSEP of 0,696 and a RPD of 1.386, followed by Depth1460 (41,30%) with a
RMSEP of 0,754 and a RPD of 1.280 in east SOD.

Table 7. The better models of the two apricot varieties concerning the cardinal points subsets (SOD) with analysis of
residuals

Varieties SOD Input data Factor R2 RMSEP RPD W* P value D† P value SD

Farbaly East R1R6 11 0.99 0.09 10.7 0.97 0.54 0.10 >0.15 0.96
North FS 10 1.00 0.19 8.94 0.97 0.72 0.09 >0.15 1.73
North R2 11 0.97 0.28 6.12 0.97 0.52 0.10 >0.15 1.73
South FS 6 0.96 0.19 4.98 0.99 0.97 0.11 >0.15 0.97
East FS 6 0.95 0.22 4.42 0.96 0.28 0.11 >0.15 0.96
South R1R6 6 0.94 0.25 3.91 0.98 0.82 0.07 >0.15 0.97
East R6 7 0.85 0.37 2.58 0.96 0.35 0.12 >0.15 0.96
East R1 8 0.83 0.41 2.37 0.98 0.79 0.13 >0.15 0.96
West R2 7 0.83 0.56 2.35 0.94 0.13 0.16 0.07 1.32
East R3 5 0.79 0.45 2.16 0.95 0.27 0.10 >0.15 0.96
South R1 6 0.78 0.47 2.08 0.96 0.44 0.14 >0.15 0.97

Farlis North FS 9 0.99 0.14 10.4 0.98 0.78 0.11 >0.15 1.42
North R1R6 7 0.97 0.26 5.46 0.97 0.69 0.11 >0.15 1.42
North R2 11 0.97 0.28 5.05 0.95 0.52 0.09 >0.15 1.42
North R4 9 0.94 0.34 4.19 0.97 0.62 0.12 >0.15 1.42
East FS 7 0.94 0.24 4.04 0.97 0.68 0.08 >0.15 0.97
West R2 8 0.84 0.59 2.45 0.97 0.59 0.11 >0.15 1.45
East R4 7 0.83 0.40 2.40 0.96 0.44 0.15 0.10 0.97
West FS 5 0.82 0.63 2.29 0.94 0.10 0.20 <0.01 1.45
East R1 5 0.81 0.43 2.28 0.97 0.74 0.09 >0.15 0.97
West R1 8 0.81 0.64 2.25 0.97 0.49 0.12 >0.15 1.45

In bold the models chosen for each variety.
*Mathematic factor computed by Shapiro-Wilk test.
†Mathematic factor computed by Kolmogorov-Smirnov test.

Figure 3. Predicted vs measured SPAD values in the R1R6 model (a) and in the R3 model for SOD east of Farbaly (b).
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Farlis OD
Table 6 shows PLSR statistics regarding R ranges. The only value of RPD≥ 2.0 belonged FS range,
with 15 factors (highest R2 0.886 and lowest RMSEP 0.504) (Figure 2) while the other ranges never
exceeded the 1.4 value. No VI and CR indices show a RPD value≥ 1.4 both in OD with an
explained variance that never exceeded 12% (data not shown).

Farlis subsets
Table 7 shows PLSR statistics of SODs in descending order of RPD values until the last good
effective model. Although the greatest value of RPD belongs to the FS range in the north SOD
(10.394), that represented by the R1 range of the east SOD was chosen as the best model (2.276),
since it showed the lowest number of factors and a normal distribution of residuals (Figure 4).
Nine models had an excellent RPD value and a normal distribution of residuals (Table 7), six a
good one (data not shown). Since the west SOD model departed by the normal distribution, it is
excluded by the effective models. Considering the models with RPD≥ 1.4, the north SOD is
represented six times, while the south one twice (data not shown).

No VI and CR indices show a RPD value≥ 1.4 both with an explained variance that is around
15% (data not shown). The highest value of explained variance belongs to NDNI (15.44%) with a
RMSEP of 1.470 and a RPD of 1.067, in east SOD, followed by NPCI (15.23%) with a RMSEP of
1.260 and a RPD of 1.062 in south SOD.

Discussion
The models based on the wider ranges of spectrum, FS and R1R6, were the best ones both in Farlis
and Farbaly ODs (Table 6). Considering the SODs results, the cardinal point east in Farbaly and
the north one in Farlis showed the highest number of excellent models (Table 7). However, in
Farbaly north SOD showed the highest number of models with RPD≥ 1.4 (data not shown).
These results were consistent with those of the ANOVA for Farbaly, since the north cardinal point
showed the highest number of significative differences, 14, followed by the west one and as the
lowest the south one (Table 4). Farlis showed a significative difference in CI index only between
north and south cardinal point at a level of 1% (data not shown). The results suggested the
possibility that metabolic behaviour could vary within the plant, even according to cardinal points
and the importance of row direction in orchard design as reported by Javaid et al. (2017).

Considering the R ranges corresponding to the absorbance peaks where Depths were calculated
(Table 2), the R1 and R2 ranges included the wavelengths at which SPAD and the
spectroradiometer both worked. From R3 onward, only the spectroradiometer was working.

Figure 4. Predicted vs measured SPAD values in the R1 model for SOD east (a) and in the FS model for SOD north of
Farlis (b).
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They have been associated with physiological characteristics of the plant based on previous
studies. R1 (400–820 nm) corresponded to the absorbance range of chlorophyll while R2 (820–
1110 nm) was associated with leaf structure (Bauer, 1985; Knipling, 1970; Peñuelas et al., 1993).
The results showed excellent RPD for these two models to the north and east in both Farbaly and
Farlis, and this was attributed to the fact that R1 and R2 ranges included SPAD wavelengths (650
and 930 nm). R3 range was associated with leaf water content (Clevers et al., 2010; González-
Fernández et al., 2015). It became interesting to note that although there was no longer the overlap
with the wavelengths where SPAD worked, for R3 the RPD value was still reliable in both Farbaly
to the east (2.16) (Table 7) and Farlis to the north (1.88, not shown in Table 7). This could have
been caused by the relationship between leaf structure, characterizing R2 where SPAD also
worked, and R3 characterizing leaf water content. From the R3 range onward, the prediction
models with the highest RPD no longer belonged to the same cardinal points in Farbaly and Farlis.
Farbaly showed a good value of RPD for R6 model, whereas Farlis showed an excellent RPD value
for R4 model. The ranges corresponding to R4 and R6, shared an association with organic
compounds, involving stretching and bending deformations of O-H link as in the carbohydrates,
over all in starch that represents plant energy reserve (Fourty et al., 1996). Therefore, these
prediction models might be associated with photosynthetic activity. But whereas the R4 model
would refer only to carbohydrates, the R6 one would also be associated with the presence of
protein (Ecarnot et al., 2013; Fourty et al., 1996). Both varieties showed that the R4 and R6 models
were mutually exclusive: when one model is reliable, the other is not. RPD value for R5 model
associated with cellulose (Fourty et al., 1996; Shenk et al., 2001) forming the structural basis of the
tree (roots, stems and leaves), resulted good only for Farbaly. This could confirm that the
prediction models of SPAD produced are associated with compounds concerning the metabolic
activity of leaf and not of tree structure. It is noteworthy that these compounds have a chemical
affinity with water, associated with the ranges showing good predictive models at the north
cardinal point. So, these results should confirm that the row direction in orchard design gets
maximum light interception in trees as reported by Javaid et al. (2017).

Conclusion
In this paper, the variation of physiological response on different cardinal points of apricot trees
was studied. This study is in addition to others with similar purposes carried out in the past on
other types of orchards. The choice to assess the efficiency of SPAD prediction models on cardinal
points showed the best results for the north one. VI and CR indices did not produce reliable
predictive models even if their analysis of variance showed a greater number of significative
differences for north. Considering both the OD and the subsets of cardinal points, models
referring to the widest ranges of wavelengths showed the best performance. When the wavelengths
ranges where SPAD worked no longer overlapped that of the hyperspectral sensor, the cardinal
points of the best predictive models were not the same in the two varieties. These preliminary
results, although agreeing with those of other studies, should be confirmed using more
measurements taken on each cardinal point. They suggest the possibility of identifying plant
points more suitable for producing reliable prediction models of SPAD that, involving many
aspects of the leaf metabolic activity thanks to hyperspectral analysis, enable to assess plant
physiological state.
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