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Limit Theorems for Additive Conditionally
Free Convolution

Jiun-Chau Wang

Abstract. In this paper we determine the limiting distributional behavior for sums of infinitesimal

conditionally free random variables. We show that the weak convergence of classical convolution and

that of conditionally free convolution are equivalent for measures in an infinitesimal triangular array,

where the measures may have unbounded support. Moreover, we use these limit theorems to study the

conditionally free infinite divisibility. These results are obtained by complex analytic methods without

reference to the combinatorics of c-free convolution.

1 Introduction

The theory of the conditionally free (c-free) random variables was introduced by

Bożejko, Leinert, and Speicher in [9], as a generalization of Voiculescu’s freeness to

the algebras with two states. The concept of c-freeness leads to a binary operation,

called additive c-free convolution, on pairs of compactly supported probability mea-

sures on the real line. The c-free analogues of central and Poisson limit theorems for

identically distributed summands were also proved in [9]. The development of the

c-free probability theory relies heavily on the combinatorics of non-crossing parti-

tions. The nature of the combinatorial tools makes it difficult to discuss limit theo-

rems when the measures do not have finite moments. Even for finite moments the

limit theorems proved in [9] and [10] require subtle combinatorial arguments.

In this paper we use complex analysis to study the limit theorems of additive c-free

convolution. This has the advantage that an analytic machinery is usually more pow-

erful than a mere combinatorial description. As shown in [18], the same approach

also works in the multiplicative context. We would like to mention that the extension

of (additive) c-free convolution to measures with unbounded support was done by

Belinschi [2]. His work provided useful inspirations for some of the analytic ques-

tions in our approach, as will be seen below.

The remainder of this paper is organized as follows. In Section 2 we deal with

the analytic problems involved in using an analogue of Voiculescu’s R-transform for

measures without bounded support, and we extend the definition of c-free convolu-

tion to pairs of arbitrary measures using this transform. Section 3 contains the main

result of this paper (Theorem 3.5), which provides necessary and sufficient condi-

tions for the weak convergence of c-free convolution of measures in an infinitesimal

array. In Section 4 we present various characterizations of c-free infinite divisibility,
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which extend the results in [16] for pairs of compactly supported measures. Section

5 contains a brief discussion of c-free stability.

2 Setting and Basic Properties

In this section we focus on the analytic apparatus needed for the calculation of c-free

convolution. Most of the results we quote from the literature were developed for

studying the free and boolean convolutions. We refer the reader to the book [21] for

a comprehensive introduction to free probability theory, and to the papers [4,19] for

a detailed treatment of boolean probability theory.

2.1 Cauchy Transforms and C-Free Convolution

Denote by M the family of all Borel probability measures on the real line R and set

C
+

= {z ∈ C : ℑz > 0}, C
−

= −C
+. We associate with each measure µ ∈ M its

Cauchy transform

Gµ(z) =

∫ ∞

−∞

1

z − t
dµ(t), z ∈ C

+,

and its reciprocal Fµ = 1/Gµ : C
+ → C

+. The measure µ can be recovered from Gµ

as the weak∗-limit of the measures

dνy(x) = − 1

π
ℑGµ(x + i y) dx

as y → 0+. For α, β > 0, we define the cone Γα = {x + i y ∈ C
+ : |x| < αy}

and the truncated cone Γα,β = {x + i y ∈ Γα : y > β}. As shown in [7], we have

ℑz ≤ ℑFµ(z) for z ∈ C
+ and

(2.1) Fµ(z) = z(1 + o(1)), z ∈ C
+,

as z → ∞ nontangentially (i.e., |z| → ∞, but z stays within a cone Γα for some α >
0.) The measure µ is uniquely determined by the function Fµ, and conversely, any

analytic function F : C
+ → C

+ so that F(z) = z(1 + o(1)) as z → ∞ nontangentially

is of the form Fµ for a unique probability measure µ on R.

Property (2.1) also implies that, for every α > 0, there exists β = β(µ, α) > 0

such that the function Fµ has a left inverse F
〈−1〉
µ (relative to composition) defined in

Γα,β . Moreover, we see that F
〈−1〉
µ (z) = z(1 + o(1)) as z → ∞ nontangentially. For

µ, ν ∈ M, the free convolution µ ⊞ ν ∈ M is characterized [7] by the identity

F
〈−1〉
µ⊞ν (z) + z = F〈−1〉

µ (z) + F〈−1〉
ν (z),

where z is in a truncated cone Γα,β contained in the domain of all involved functions.

For a measure µ ∈ M, observe that the function Eµ(z) = z − Fµ(z) takes values

in C
− ∪ R and Eµ(z) = o(|z|) as z → ∞ nontangentially. Conversely, any analytic
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function E : C
+ → C

− ∪ R with these properties is of the form Eµ for a unique

probability measure µ. The boolean convolution µ⊎ν ∈ M of two measures µ, ν ∈ M

is characterized [4, 19] by

Eµ⊎ν(z) = Eµ(z) + Eν(z), z ∈ C
+.

The theory of c-free convolution for pairs of compactly supported probability

measures was first studied in [9], which we briefly review as follows. Recall that a

C∗-probability space with two states is a triple (A, ϕ, ψ) of a unital C∗-algebra A and

positive linear functionals ϕ,ψ : A → C such that ϕ(1) = 1 = ψ(1). Two unital

C∗-subalgebras A1,A2 ⊂ A are said to be c-free if

(i) ψ(a1a2 · · · an) = 0

(ii) ϕ(a1a2 · · · an) = ϕ(a1)ϕ(a2) · · ·ϕ(an)

whenever a j ∈ Ai j
, i j ∈ {1, 2}, i j 6= i j+1, and ψ(a j) = 0 for all j = 1, 2, . . . , n.

In other words, A1,A2 are c-free if they are free with respect to ψ [21] and ker ψ ∩
A1, ker ψ ∩ A2 are boolean independent with respect to ϕ [19].

Elements in A are called random variables. Two random variables x1 and x2 are

said to be c-free if the unital C∗-subalgebras generated by x1 and x2, respectively,

are c-free. The distribution of a self-adjoint random variable x ∈ A is the unique

pair (µ, ν) of compactly supported probability measures on R such that, for every

continuous function f on the spectrum of x, we have

ϕ( f (x)) =

∫ ∞

−∞

f (t) dµ(t) and ψ( f (x)) =

∫ ∞

−∞

f (t) dν(t),

where f (x) ∈ A is obtained by the functional calculus.

As shown by Bożejko, Leinert, and Speicher [9], given two pairs of compactly

supported probability measures (µ1, ν1) and (µ2, ν2), one can find two c-free, self-

adjoint random variables x1 and x2 in a C∗-probability space (A, ϕ, ψ) such that the

distribution of x j is (µ j , ν j) for j = 1, 2. Then the c-free convolution (µ1, ν1) ⊞c

(µ2, ν2) of such pairs is defined to be the distribution of the random variable x1 + x2

in (A, ϕ, ψ). It is again a pair of compactly supported probability measures (µ̃, ν̃),

where the measure ν̃ = ν1 ⊞ ν2.

In order to describe the measure µ̃, these authors further introduced, for a pair of

compactly supported measures (µ, ν), the analytic function

C(µ,ν)(z) = z
[

Eµ(G〈−1〉
ν (z))

]
,

where the inversion of Gν is carried out in a neighborhood of ∞, and they proved

that

C(eµ,eν)(z) = C(µ1,ν1)(z) + C(µ2,ν2)(z).

The starting point for the treatment of measures with unbounded support is ob-

serving that, for arbitrary measures µ, ν ∈ M, the function C(µ,ν) is actually defined

in an appropriate domain. For measures µ, ν ∈ M, we introduce a new function

(2.2) Φ(µ,ν)(z) = Eµ

(
F〈−1〉

ν (z)
)

https://doi.org/10.4153/CJM-2010-075-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2010-075-4


Limit Theorems for Additive Conditionally Free Convolution 225

in a truncated cone Γα,β where the function F
〈−1〉
ν is defined. The function Φ(µ,ν) is

obtained from the function C(µ,ν)(z)/z by a change of variable z 7→ 1/z, and is more

suitable for our purposes. It is easy to verify that we have

Φ(eµ,eν)(z) = Φ(µ1,ν1)(z) + Φ(µ2,ν2)(z)

in the case of compactly supported measures.

We will require the following result from [5], whose proof is based on the Cauchy

integral formula.

Lemma 2.1 Let α, β, ε be positive numbers, and let φ : Γα,β → C be an analytic

function such that |φ(z)| ≤ ε|z| for every z ∈ Γα,β . Then, for every α ′ < α and

β ′ > β, there exists K > 0 such that the derivative φ ′(z) is estimated as follows

∣∣φ ′(z)
∣∣ ≤ Kε, z ∈ Γα ′,β ′ .

The following result was first noted in [2].

Proposition 2.2 Let µ1, µ2, ν1, ν2 ∈ M, and let ν = ν1 ⊞ ν2. Suppose that both

F
〈−1〉
ν1 and F

〈−1〉
ν2 are defined in a cone Γα,β . Then there exist another truncated cone

Γα ′,β ′ ⊂ Γα,β and a unique probability measure µ such that

Φ(µ,ν)(z) = Φ(µ1,ν1)(z) + Φ(µ2,ν2)(z)

for z ∈ Γα ′,β ′ .

Proof LetΦ be the function Φ(µ1,ν1) + Φ(µ2,ν2) in Γα,β . Note that (2.1) shows that

Fν(z) ∈ Γα,β as z → ∞ nontangentially. To prove the proposition it suffices to

show that the function E(z) = Φ(Fν(z)) is of the form Eµ(z) for a unique probability

measure µ ∈ M, that is, to show that the function E(z) extends analytically to C
+ and

E(z)/z → 0 as z → ∞ nontangentially.

To this purpose, we appeal to a subordination result in [3] (see also [11]) for free

convolution ν1 ⊞ ν2, namely, there exist unique analytic functions ω1, ω2 : C
+ → C

+

such that ω j(z) = z(1 + o(1)), j = 1, 2, as z → ∞ nontangentially and Fν(z) =

Fν1
(ω1(z)) = Fν2

(ω2(z)) for all z ∈ C
+. Then, by (2.2), we have

E(z) = Eµ1
(ω1(z)) + Eµ2

(ω2(z))

in an open subset of C
+, and hence the function E(z) extends analytically to the entire

upper half-pane C
+.

On the other hand, Lemma 2.1 shows that the derivatives E ′
µ j

(z) = o(1), j = 1, 2,

as z → ∞ nontangentially. It follows that there exists M > β such that

|E(z) − Eµ1
(z) − Eµ2

(z)| ≤ |ω1(z) − z| + |ω2(z) − z|,

for z ∈ Γα,M , and hence E(z)/z → 0 as z → ∞ nontangentially.

Proposition 2.2 allows us to make the following definition that will be used in the

rest of this paper.
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Definition 2.3 Let µ1, µ2, ν1, ν2 ∈ M, and let ν = ν1 ⊞ ν2. The additive c-free

convolution (µ1, ν2) ⊞c (µ2, ν2) is the pair (µ, ν), where µ is the unique probability

measure provided by Proposition 2.2.

We will also use the somewhat abused notation µ = µ1 ⊞c µ2. Indeed, µ1 ⊞c µ2

depends on ν1 and ν2 as well. We choose this shorter notation because the asymptotic

behavior of free convolution ⊞ is well understood (see [13], and [8] for a different

approach), and we would like to address convergence issues on the first component

of c-free convolution. Our second remark is that the operation ⊞c is commutative

and associative by Proposition 2.2, and it reduces to the original c-free convolution

introduced in [9] in the case of compactly supported measures.

2.2 Weak Convergence of Probability Measures

If µn and µ are elements of M, or more generally, finite Borel measures on R, we say

that µn converges weakly to µ if

lim
n→∞

∫ ∞

−∞

f (t) dµn(t) = lim
n→∞

∫ ∞

−∞

f (t) dµ(t)

for every bounded continuous function f on R. The weak convergence of measures

requires tightness. Recall that a family F of finite Borel measures on R is tight if

lim
y→+∞

sup
µ∈F

µ({t : |t| > y}) = 0.

Any tight sequence of probability measures has a subsequence that converges weakly

to a probability measure.

We note for further reference that weak convergence of probability measures can

be translated in terms of convergence properties of the corresponding functions E

and Φ.

Proposition 2.4 Let {µn}∞n=1 and {νn}∞n=1 be two sequences in M.

(i) The sequence µn converges weakly to a measure µ ∈ M if and only if there exists

a truncated cone Γ such that the sequence Eµn
converges uniformly on the compact

subsets of Γ to a function E, and Eµn
(z) = o(|z|) uniformly in n as |z| → ∞,

z ∈ Γ. Moreover, we have E = Eµ in this situation.

(ii) Assume that the sequence νn converges weakly to a measure ν ∈ M. Then the

sequence µn converges weakly to a measure µ ∈ M if and only if there exist

α, β > 0 such that the functions Φ(µn,νn) are defined in the cone Γα,β for every

n, limn→∞ Φ(µn,νn)(i y) exists for every y > β and Φ(µn,νn)(i y) = o(y) uniformly

in n as y → ∞. Moreover, in this case we have limn→∞ Φ(µn,νn)(i y) = Φ(µ,ν)(i y)

for every y > β.

Proof We refer to [5] for the proof of (i). To prove (ii), note first that the existence of

the truncated cone Γα,β is provided by the weak convergence of the sequence {νn}∞n=1

(see [5, Proposition 2.3]). Moreover, the sequence F
〈−1〉
νn converges uniformly on the
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compact subsets of Γα,β to the function F
〈−1〉
ν , and F

〈−1〉
νn (z) = z(1 + o(1)) uniformly

in n as z → ∞, z ∈ Γα,β .

Assume that the measures µn converge weakly to a measure µ. Then (i) and

Lemma 2.1 imply that the derivatives E ′
µ(z) = o(1) and E ′

µn
(z) = o(1) uniformly

in n as z → ∞ nontangentially. It follows that there exists M > β such that

∣∣Φ(µn,νn)(z) − Φ(µ,ν)(z)
∣∣ =

∣∣∣Eµn

(
F〈−1〉

νn
(z)

)
− Eµ

(
F〈−1〉

ν (z)
) ∣∣∣

≤
∣∣∣Eµn

(
F〈−1〉

νn
(z)

)
− Eµn

(
F〈−1〉

ν (z)
) ∣∣∣

+
∣∣∣Eµn

(
F〈−1〉

ν (z)
)
− Eµ

(
F〈−1〉

ν (z)
) ∣∣∣

≤
∣∣F〈−1〉

νn
(z) − F〈−1〉

ν (z)
∣∣

+
∣∣∣Eµn

(
F〈−1〉

ν (z)
)
− Eµ

(
F〈−1〉

ν (z)
) ∣∣∣

for every n ∈ N and z ∈ Γα,M . Hence (i) implies that Φ(µn,νn)(z) = o(|z|) uniformly

in n as z → ∞, z ∈ Γα,β . The family {Φ(µn,νn)}∞n=1 is normal, and hence it has

subsequences that converge uniformly on the compact subsets of Γα,β . Moreover,

the above estimate and (i) actually imply that the limit of such a subsequence must

be the function Φ(µ,ν). Therefore we conclude that the entire sequence {Φ(µn,νn)}∞n=1

converges uniformly on the compact subsets of Γα,β to the function Φ(µ,ν). In partic-

ular, these results hold for z = i y, y > β.

Conversely, let us assume that limn→∞ Φ(µn,νn)(i y) exists for every y > β and

Φ(µn,νn)(i y) = o(y) uniformly in n as y → ∞. We first show that the sequence

{µn}∞n=1 is tight. Let us write

un = un(y) = F〈−1〉
νn

(i y) = i y + φνn
(i y)

for y > β, and also observe that φνn
(i y) = o(y) uniformly in n as y → ∞ by the

assumption on the weak convergence of {νn}∞n=1. Then we have

un − Fµn
(un) = Eµn

(un) = Φ(µn,νn)(i y) = o(y)

uniformly in n as y → ∞. Moreover, note that

|Gµn
(un(y))| ≤ 1

ℑun

=
1

y + o(y)

uniformly in n as y → ∞. Hence, we conclude that u2
nGµn

(un)−un = o(y) uniformly

in n as y → ∞. On the other hand, since un = i y + o(y) uniformly in n as y → ∞,

there exists M > β such that

t2

(ℜun(y) − t)2 + (ℑun(y))2
≥ 1

8
, t ∈ R, |t| ≥ y > M,
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for every n. Finally, putting everything together, we have

− 1

y
ℑ(u2

nGµn
(un) − un) =

ℑun

y

∫ ∞

−∞

t2

(ℜun − t)2 + (ℑun)2
dµn(t)

≥ ℑun

y

∫

|t|≥y

1

8
dµn(t) =

ℑun

8y
µn({t : |t| ≥ y}),

for every n and y > M, which implies that {µn}∞n=1 is tight. If µ ∈ M is a weak

cluster point of {µn}∞n=1, then the first part of the proof shows that the function

Φ(µ,ν) is uniquely determined and hence, so is the measure µ. Therefore the sequence

µn converges weakly to the measure µ.

Note that, in case νn = δ0, Proposition 2.4 gives the equivalence between the weak

convergence of {µn}∞n=1 and convergence properties of {Eµn
(i y)}∞n=1.

2.3 Infinite Divisibility

A pair of probability measures (µ, ν) is said to be ⊞c-infinitely divisible if, for every

n ∈ N, there exist measures µn, νn ∈ M such that

(µ, ν) = (µn, νn) ⊞c (µn, νn) ⊞c · · · ⊞c (µn, νn)︸ ︷︷ ︸
n times

,

in other words, we have

µ = µn ⊞c µn ⊞c · · · ⊞c µn︸ ︷︷ ︸
n times

and ν = νn ⊞ νn ⊞ · · · ⊞ νn︸ ︷︷ ︸
n times

.

The notion of infinite divisibility related to other convolutions is defined analogously.

The Lévy-Hinčin formula (see [12]) characterizes the infinite divisibility relative

to classical convolution ∗ of a probability measure in terms of its Fourier transform.

Namely, a measure ν ∈ M is ∗-infinitely divisible if and only if there exist γ ∈ R

and a finite positive Borel measure σ on R such that the Fourier transform ν̂ of the

measure ν is given by

(2.3) ν̂(t) = exp

[
iγt +

∫ ∞

−∞

(
eitx − 1 − itx

1 + x2

) 1 + x2

x2
dσ(x)

]
, t ∈ R.

The free analogue of the Lévy-Hinčin formula for a ⊞-infinitely divisible proba-

bility measure was proved in [7,20]. A measure ν ∈ M is ⊞-infinitely divisible if and

only if there exist γ ∈ R and a finite positive Borel measure σ on R such that

(2.4) F〈−1〉
ν (z) = γ + z +

∫ ∞

−∞

1 + tz

z − t
dσ(t), z ∈ C

+.

In other words, the function F
〈−1〉
ν can be extended analytically to C

+ if the measure

ν is ⊞-infinitely divisible.
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Every measure ν ∈ M is ⊎-infinitely divisible [19]. The reason for this is that

every analytic self-mapping of C
+ has a Nevanlinna integral representation [1]. In

particular, the function Eν can be written as

(2.5) Eν(z) = γ +

∫ ∞

−∞

1 + tz

z − t
dσ(t), z ∈ C

+,

where γ ∈ R and σ is a finite positive Borel measure on R.

In the sequel, we will use the notations νγ,σ
∗ , νγ,σ

⊞
, and νγ,σ

⊎ to denote respectively

the ∗-, ⊞-, and ⊎-infinitely divisible measures that are uniquely determined by γ and

σ via the formulas (2.3), (2.4), and (2.5).

3 Limit Theorems

Let {kn}∞n=1 be a sequence of positive integers, and let {cn}∞n=1 and {c ′n}∞n=1 be two

sequences in R. Consider two triangular arrays {µnk : n ∈ N, 1 ≤ k ≤ kn} and

{νnk : n ∈ N, 1 ≤ k ≤ kn} in M. The goal of this section is to study the asymptotic

behavior of the sequence {(µn, νn)}∞n=1, where

(µn, νn) = (δcn
, δc ′n

) ⊞c (µn1, νn1) ⊞c (µn2, νn2) ⊞c · · · ⊞c (µnkn
, νnkn

),

and δc denotes the Dirac point mass at c ∈ R.

Recall that the classical limit distribution theory for sums of independent random

variables is concerned with the study of the asymptotic behavior of the measures

ρn = δcn
∗ µn1 ∗ µn2 · · · ∗ µnkn

, n ∈ N.

For example, in case kn = n, cn = 0, µn1 = µn2 = · · · = µnn = µn, where the

measure µn has mean zero and variance 1/n, the weak convergence of the sequence

ρn to the standard normal distribution belongs to the subject of central limit theorem.

In the absence of additional restrictions, any probability measure µ can serve as a

limit of this sort. Indeed, if cn = 0, µn1 = µ and µnk = δ0 for all n ≥ 1, and k ≥ 2,

then the sequence {ρn}∞n=1 certainly converges to µ.

To exclude the possibility that in each row one single measure µnk plays the dom-

inating role, one introduces the following condition:

lim
n→∞

max
1≤k≤kn

µnk({t ∈ R : |t| ≥ ε}) = 0

for every ε > 0. Such a triangular array {µnk}n,k is said to be infinitesimal.

Under this infinitesimality assumption, Hinčin [15] proved that any weak limit of

the sequence {ρn}∞n=1 is ∗-infinitely divisible. Later, Gnedenko [14] found that the

weak convergence of {ρn}∞n=1 to a given ∗-infinitely divisible law νγ,σ
∗ is equivalent to

the weak convergence of the measures

dσn(t) =

kn∑
k=1

t2

1 + t2
dµ◦

nk(t)
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to the measure σ and the convergence of the numbers

γn = cn +

kn∑

k=1

[
ank +

∫ ∞

−∞

t

1 + t2
dµ◦

nk(t)
]

to the number γ as n → ∞, where the measures µ◦
nk are obtained through a centering

technique (see below). We will extend these results to the case of c-free convolution.

To this purpose, we assume that the arrays {µnk}n,k and {νnk}n,k are both infinites-

imal. We introduce the measures µ◦
nk by setting

dµ◦
nk(t) = dµnk(t + ank),

where the numbers ank ∈ [−1, 1] are given by

(3.1) ank =

∫

|t|<1

t dµnk(t).

Note that the array {µ◦
nk}n,k is infinitesimal and limn→∞ max1≤k≤kn

|ank| = 0.

We also associate with each measure µ◦
nk an analytic function

fnk(z) =

∫ ∞

−∞

tz

z − t
dµ◦

nk(t), z ∈ C
+.

Note that ℑ fnk(z) ≤ 0 with equality if and only if µ◦
nk = δ0, and that fnk(z) = o(|z|)

as z → ∞ nontangentially.

We will require the following result.

Proposition 3.1 Let Γα,β be a truncated cone, and let {cn}∞n=1 be a sequence in R.

Suppose that the array {µnk}n,k in M is infinitesimal, and that the centered measures

µ◦
nk and the corresponding functions fnk are defined as above.

(i) Eµ◦

nk
(z) = fnk(z + ank)(1 + vnk(z)) for sufficiently large n, where the sequence

vn(z) = max1≤k≤kn
|vnk(z)| has the properties that limn→∞ vn(z) = 0 for all

z ∈ Γα,β and vn(z) = o(1) uniformly in n as |z| → ∞, z ∈ Γα,β .

(ii) For every n, k and z, w ∈ Γα,β , we have

∣∣ fnk(w) − fnk(z)
∣∣ ≤

∣∣ fnk(z)
∣∣ |z − w|

ℑz

(
1 +

√
1 + α2

∣∣ z

w
− 1

∣∣
)

.

(iii) For every y > β, the sequence {cn +
∑kn

k=1 Eµnk
(i y)}∞n=1 converges if and only if the

sequence {cn +
∑kn

k=1[ank + fnk(i y)]}∞n=1 converges. Moreover, the two sequences

have the same limit.

(iv) If

L = sup
n≥1

kn∑

k=1

∫ ∞

−∞

t2

1 + t2
dµ◦

nk(t) < +∞,

then cn +
∑kn

k=1 Eµnk
(i y) = o(y) uniformly in n as y → ∞ if and only if cn +∑kn

k=1[ank + fnk(i y)] = o(y) uniformly in n as y → ∞.

https://doi.org/10.4153/CJM-2010-075-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2010-075-4


Limit Theorems for Additive Conditionally Free Convolution 231

Proof (i), (iii), and (iv) are proved in [22]. To prove (ii), let us consider the analytic

function

fµ(z) =

∫ ∞

−∞

tz

z − t
dµ(t), z ∈ C

+

for a measure µ ∈ M. For z, w ∈ C
+, we have

| fµ(z) − fµ(w)| ≤ |z − w|
∫ ∞

−∞

t2

|w − t||z − t| dµ(t)

and

ℑz

∫ ∞

−∞

t2

|z − t|2 dµ(t) = |ℑ fµ(z)| ≤ | fµ(z)|.

In addition, we have

∣∣∣
z − t

w − t

∣∣∣ ≤ |z − w| + |w − t|
|w − t| = 1 +

∣∣∣
w

w − t

∣∣∣
∣∣∣

z

w
− 1

∣∣∣ ≤ 1 +
√

1 + α2

∣∣∣
z

w
− 1

∣∣∣

for every t ∈ R and z, w ∈ Γα. Therefore (ii) follows from these considerations.

It was first observed in [6] that for any given truncated cone Γα,β , the function

F
〈−1〉
µ is defined in Γα,β as long as the measure µ concentrates near the origin. More

precisely, for given α, β > 0, there exists ε > 0 with the property that if µ ∈ M is

such that µ({t ∈ R : |t| ≥ ε}) < ε, then the function F
〈−1〉
µ is defined in Γα,β .

Lemma 3.2 Let Γα,β be a truncated cone, and let {µnk}n,k and {νnk}n,k be two in-

finitesimal arrays in M. Then, for sufficiently large n, we have

Φ(µnk,νnk)(z) − ank = fnk(z)(1 + unk(z)), z ∈ Γα,β , 1 ≤ k ≤ kn,

where the sequence

un(z) = max
1≤k≤kn

|unk(z)|

has the properties that limn→∞ un(z) = 0 for all z ∈ Γα,β , and that un(z) = o(1)

uniformly in n as |z| → ∞, z ∈ Γα,β .

Proof Introduce measures dν◦
nk(t) = dνnk(t + ank), where the real numbers ank are

defined as in (3.1). Notice that F
〈−1〉
ν◦

nk
(z) = F

〈−1〉
νnk (z)− ank. The infinitesimality of the

array {νnk}n,k and the remark we make prior to the current lemma imply, as n tends

to infinity, that the functions F
〈−1〉
νnk and F

〈−1〉
ν◦

nk
are defined in the cone Γα,β . We also

have, for any z ∈ Γα,β , that

ηn(z) = max
1≤k≤kn

∣∣∣∣
F
〈−1〉
νnk (z)

z
− 1

∣∣∣∣ → 0

as n → ∞ and ηn(z) = o(1) uniformly in n as |z| → ∞, z ∈ Γα,β .

The desired result now follows from Proposition 3.1(i) and (ii), and from the fol-

lowing observation:

Φ(µnk,νnk)(z) − ank = Φ(µ◦

nk
,ν◦

nk
)(z) = Eµ◦

nk

(
F〈−1〉

νnk
(z) − ank

)
.
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As shown in [8], the real and the imaginary parts of the function fnk become

comparable when n is large. More precisely, we have

∣∣ℜ fnk(i y)
∣∣ ≤ (3 + 6y)

∣∣ℑ fnk(i y)
∣∣ , 1 ≤ k ≤ kn, y ≥ 1,

and ∣∣ℜ fnk(i y)
∣∣ ≤ 2

∣∣ℑ fnk(i y)
∣∣ +

∣∣bnk(y)
∣∣ , 1 ≤ k ≤ kn, y ≥ 1,

where n is sufficiently large and the real-valued function bnk(y) is defined by

bnk(y) =

∫

|t|≥1

[
ank +

(t − ank)y2

y2 + (t − ank)2

]
dµnk(t).

We will need an auxiliary result from [22], where it was written in a slightly dif-

ferent form.

Lemma 3.3 Consider triangular arrays {snk}n,k in [0, +∞) and {znk}n,k , {wnk}n,k in

C. Let {cn}∞n=1 be a sequence in R. Assume that

(i) ℑwnk ≤ 0 and ℑznk ≤ 0 for all n and k;

(ii) znk = wnk(1 + εnk) and limn→∞ εn = 0, where εn = max1≤k≤kn
|εnk|;

(iii) there exists a constant M > 0 such that |ℜwnk| ≤ M|ℑwnk| + snk for all n and k.

Then, for sufficiently large n, we have

∣∣∣
kn∑

k=1

[znk − wnk]
∣∣∣ ≤ (1 + M)εn

∣∣∣
kn∑

k=1

ℑwnk

∣∣∣ + εn

kn∑
k=1

snk,

and

(1 − εn − εnM)
∣∣∣

kn∑
k=1

ℑwnk

∣∣∣ ≤
∣∣∣

kn∑
k=1

ℑznk

∣∣∣ + εn

kn∑
k=1

snk.

In particular, if supn≥1

∑kn

k=1 snk < +∞, then the sequence {cn +
∑kn

k=1 znk}∞n=1 con-

verges if and only the sequence {cn +
∑kn

k=1 wnk}∞n=1 does. Moreover, the two sequences

have the same limit.

Proposition 3.4 Let {µnk}n,k and {νnk}n,k be two infinitesimal arrays in M, and let

{cn}∞n=1 be a sequence of real numbers. Suppose the functions Φ(µnk,νnk) are defined in a

cone Γα,β .

(i) For every y > β, the sequence {cn +
∑kn

k=1 Φ(µnk,νnk)(i y)}∞n=1 converges if and only

if the sequence {cn +
∑kn

k=1 Eµnk
(i y)}∞n=1 does. Moreover, the two sequences have

the same limit.

(ii) If L < +∞ as in Proposition 3.1(iv), then cn +
∑kn

k=1 Φ(µnk,νnk)(i y) = o(y) uni-

formly in n as y → ∞ if and only if cn +
∑kn

k=1 Eµnk
(i y) = o(y) uniformly in n as

y → ∞.

https://doi.org/10.4153/CJM-2010-075-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2010-075-4


Limit Theorems for Additive Conditionally Free Convolution 233

Proof Note first that

kn∑

k=1

|bnk(y)| ≤ (1 + y)

kn∑

k=1

∫

|t|≥1

1

2
dµnk(t)

≤ 5y

kn∑

k=1

∫

|t|≥1

(t − ank)2

1 + (t − ank)2
dµnk(t) ≤ 5yL,

for sufficiently large n and y ≥ 1. Applying Lemmas 3.2 and 3.3 to arrays { fnk(i y)}n,k

and {Φ(µnk,νnk)(i y) − ank}n,k, we conclude that the two sequences

cn +

kn∑

k=1

[
ank + fnk(i y)

]
and cn +

kn∑

k=1

Φ(µnk,νnk)(i y)

have the same asymptotic behavior. Then the proof is completed by Proposition

3.1(iii) and (iv).

We are now ready for the main result of this section. Fix real numbers γ, γ ′ and

finite positive Borel measures σ, σ ′ on R. Recall that νγ,σ
⊎ and νγ ′,σ ′

⊞
are the ⊎- and

⊞-infinitely divisible measures from Section 2.3. The equivalence of (ii) and (iii)

in the following theorem was mentioned in [22] without the proof. For the sake of

completeness and a further reference in the next section, we will prove it here.

Theorem 3.5 Let {cn}∞n=1 and {c ′n}∞n=1 be two sequences in R, and let {µnk}n,k and

{νnk}n,k be two infinitesimal arrays in M. Suppose that the sequence δc ′n
⊞ νn1 ⊞ νn2 ⊞

· · · ⊞ νnkn
converges weakly to νγ ′,σ ′

⊞
as n → ∞. Then the following assertions are

equivalent:

(i) The sequence δcn
⊞c µn1 ⊞c µn2 ⊞c · · · ⊞c µnkn

converges weakly to µ ∈ M.

(ii) The sequence δcn
⊎ µn1 ⊎ µn2 ⊎ · · · ⊎ µnkn

converges weakly to νγ,σ
⊎ .

(iii) The sequence of measures

dσn(t) =

kn∑
k=1

t2

1 + t2
dµ◦

nk(t)

converges weakly on R to the measure σ, and the sequence of numbers

γn = cn +

kn∑

k=1

[
ank +

∫ ∞

−∞

t

1 + t2
dµ◦

nk(t)

]

converges to γ as n → ∞.

Moreover, if (i)–(iii) are satisfied, then we have Φ
(µ,νγ ′ ,σ ′

⊞
)
= Eνγ,σ

⊎
in a truncated cone.

Proof We first assume that (i) holds. Define

µn = δcn
⊞c µn1 ⊞c µn2 ⊞c · · · ⊞c µnkn

, νn = δc ′n
⊞ νn1 ⊞ νn2 ⊞ · · · ⊞ νnkn

,
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and

ρn = δcn
⊎ µn1 ⊎ µn2 ⊎ · · · ⊎ µnkn

, n ∈ N.

The infinitesimality of the array {νnk}n,k implies that there exists a truncated cone

Γα,β such that the functions Φ(µnk,νnk) are all defined in Γα,β and

Φ(µn,νn)(z) = cn +
kn∑

k=1

Φ(µnk,νnk)(z), z ∈ Γα,β .

For n ≥ 1, we define the function

Fn(z) = cn +
kn∑

k=1

[ank + fnk(z)], z ∈ C
+.

Notice that

(3.2) Fn(z) = γn +

∫ ∞

−∞

1 + tz

z − t
dσn(t)

and σn(R) = −ℑFn(i).

By Propositions 2.4, 3.1, and 3.4, we have

(3.3) lim
n→∞

Eρn
(i y) = Φ

(µ,νγ ′ ,σ ′

⊞
)
(i y) = lim

n→∞
Fn(i y), y > β.

Since {Fn}∞n=1 is a normal family, an application of Montel’s theorem shows that the

sequence {Fn(i)}∞n=1 converges to Φ
(µ,νγ ′ ,σ ′

⊞
)
(i). Hence we obtain

lim
n→∞

−ℑFn(i) = −ℑΦ
(µ,νγ ′ ,σ ′

⊞
)
(i).

In particular, we deduce that L = supn≥1 σn(R) < +∞, and therefore (ii) holds by

Propositions 2.4 and 3.4. Moreover, in this case we have Φ
(µ,νγ ′ ,σ ′

⊞
)
= Eνγ,σ

⊎
in the cone

Γα,β by the uniqueness principle in complex analysis.

Assume now that (ii) holds. Thus we have limn→∞ Eρn
(z) = Eνγ,σ

⊎
(z) for z ∈ C

+,

and Eρn
(i y) = o(y) uniformly in n as y → ∞. Hence Proposition 3.1 implies that

limn→∞ Fn(z) = Eνγ,σ
⊎

(z) for z ∈ C
+ and Fn(i y) = o(y) uniformly in n as y → ∞.

Then we have L ≤ −2ℑEνγ,σ
⊎

(i) < +∞. Also, note that

1

2
σn({|t| ≥ y}) ≤

∫ ∞

−∞

1 + t2

y2 + t2
dσn(t) = − 1

y
ℑFn(i y),

for y ≥ 1 and n ∈ N. This implies that {σn}∞n=1 is actually a tight family. Since

−ℑEνγσ
⊎

(x + i y)/π and −ℑFn(x + i y)/π are the Poisson integral of the measures

(1 + t2) dσ(t) and (1 + t2) dσn(t) respectively, the equation limn→∞ Fn(z) = Eνγ,σ
⊎

(z)

uniquely determines the weak cluster point σ of {σn}∞n=1. Hence the full sequence σn

must converge to σ; moreover, the convergence of the numbers γn follows from (3.2)

and (3.3). Therefore (iii) holds.
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Finally, we prove that (iii) implies (i). Suppose (iii) holds. Then we have L ≤
2σ(R) < +∞ and limn→∞ Fn(z) = Eνγ,σ

⊎
(z) for z ∈ C

+ by (3.2). Proposition 3.1

then shows that limn→∞ Eρn
(z) = Eνγ,σ

⊎
(z) for z ∈ C

+. Observe that for any M > 0,

n ≥ 1, and y ≥ 1, we have

1

y
|Fn(i y)| ≤ |γn|

y
+

1

y

∫

|t|<M

1 + |t|y√
y2 + t2

dσn(t) + σn

(
{|t| ≥ M}

)

≤ |γn|
y

+
L(1 + My)

y2
+ σn

(
{|t| ≥ M}

)
.

Then the tightness of {σn}∞n=1 and the convergence of {γn}∞n=1 imply that Fn(i y) =

o(y) uniformly in n as y → ∞. By Proposition 3.1, this amounts to saying that

Eρn
(i y) = o(y) uniformly in n as y → ∞. Therefore, by Propositions 2.4 and 3.4, (i)

holds.

Notice that Theorem 3.5(iii) is precisely the classical condition for the weak con-

vergence to a ∗-infinitely divisible law νγ,σ
∗ . Also, Theorem 3.5 shows that the recip-

rocal of the Cauchy transform of the limit law µ is given by

(3.4) Fµ(z) = z − Eνγ,σ
⊎

(F
νγ ′ ,σ ′

⊞

(z)), z ∈ C
+.

Therefore, in order to determine the limit law µ, one first finds the parameters γ, γ ′,

σ, and σ ′ by Theorem 3.5(iii), then uses the formulas (2.4), (2.5), and (3.4) to obtain

the function Fµ. Finally, the measure µ is recovered from the function Gµ as we have

seen in Subsection 2.1.

In this spirit, we see that the results in [9] concerning the c-free analogues of the

central and Poisson limit theorems are direct consequences of Theorem 3.5. Indeed,

given α, β ≥ 0, in case γ = γ ′
= 0, σ = α2δ0 and σ ′

= β2δ0, the limit law

µ is a c-free version of the centered Gaussian distribution on R that appeared in

[9, Theorem 4.3]. A c-free analogue of the Poisson law as in [9, Theorem 4.4] is

obtained when γ = α/2, γ ′
= β/2, σ = (α/2)δ1, and σ ′

= (β/2)δ1.

It is also interesting to note that (3.4) shows that the limit law µ = δ0 if and only

if γ = 0 and the measure σ = δ0. Thus, by Theorem 3.5, one obtains necessary and

sufficient conditions for the weak convergence to Dirac measure at the origin, which

can be viewed as the c-free analogue of the weak law of large numbers.

4 Application to the ⊞c-infinite Divisibility

In this section we give various characterizations of the ⊞c-infinite divisibility with the

help of Theorem 3.5. The analogue of Theorem 4.1 for compactly supported mea-

sures was obtained earlier in [16] by analyzing the solutions of a complex Burger’s

equation. The approach we have presented here deals with general probability mea-

sures, and does not involve such a differential equation.

Before outlining the main result, we need a definition. A family of pairs

{(µt , νt )}t≥0 of probability measures on R is said to be a weakly continuous semi-

group relative to the convolution ⊞c if (µt , νt ) ⊞c (µs, νs) = (µt+s, νt+s) for t, s ≥ 0,

and the maps t 7→ µt and t 7→ νt are continuous.
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Theorem 4.1 Given a ⊞-infinitely divisible measure ν ∈ M and a measure µ ∈ M,

the following statements are equivalent:

(i) The pair (µ, ν) is ⊞c-infinitely divisible.

(ii) There exists a real number γ and a finite positive Borel measure σ on R such that

Φ(µ,ν)(z) = γ +

∫ ∞

−∞

1 + tz

z − t
dσ(t), z ∈ C

+.

(iii) The function Φ(µ,ν) can be analytically continued to C
+.

(iv) There exists a weakly continuous semigroup {(µt , νt )}t≥0 relative to ⊞c such that

(µ0, ν0) = (δ0, δ0) and (µ1, ν1) = (µ, ν).

Moreover, if statements (i)–(iv) are all satisfied, then the limit

γ = lim
t→0+

[
1

t

∫ ∞

−∞

x

1 + x2
dµt (x)

]

exists and the measure σ is the weak limit of measures

1

t

x2

1 + x2
dµt (x)

as t → 0+.

Proof We first prove that (i) implies (ii). Assume that (i) holds. For every n ∈ N, we

have

µ = µn ⊞c µn ⊞c · · · ⊞c µn︸ ︷︷ ︸
n times

and ν = νn ⊞ νn ⊞ · · · ⊞ νn︸ ︷︷ ︸
n times

,

where µn, νn ∈ M. Then we have F
〈−1〉
νn (z) − z = [F

〈−1〉
ν (z) − z]/n, and hence

the measures νn converge weakly to δ0 as n → ∞ by [5, Proposition 2.3]. On the

other hand, the identity Φ(µn,νn)(z) = Φ(µ,ν)(z)/n and Proposition 2.4 imply that the

measures µn converge weakly to δ0 as well. Let us introduce two infinitesimal arrays

{µnk}n,k and {νnk}n,k by setting µnk = µn and νnk = νn, where 1 ≤ k ≤ n. Then

the measure µ (resp., ν) can be viewed as the weak limit of the c-free (resp., free)

convolutions µn1 ⊞c µn2 ⊞c · · ·⊞c µnn (resp., νn1 ⊞νn2 ⊞ · · ·⊞νnn). Hence (ii) follows

from Theorem 3.5.

The equivalence of (ii) and (iii) is based on the Nevanlinna integral representation

of analytic self-mappings in C
+(see [1]).

We next show that (ii) implies (iv). Suppose that (ii) holds. It was proved in [7]

that there exists a weakly continuous semigroup {νt}t≥0 relative to ⊞ so that ν0 = δ0

and ν1 = ν. Then, for every t ≥ 0, there exists a unique probability measure µt on

R such that Eµt
(z) = t(Φ(µ,ν)(Fνt

(z))) for all z ∈ C
+, where µ0 = δ0. It is easy to see

that the c-free convolution semigroup {(µt , νt )}t≥0 has the desired properties.

The implication from (iv) to (i) is obvious. To finish the proof, we only need to

prove the assertions about the measure σ and the number γ. Assume that the pair
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(µ, ν) is ⊞c-infinitely divisible, and let {(µt , νt )}t≥0 be the corresponding convolu-

tion semigroup as in (iv). Let {tn}∞n=1 be a sequence of positive real numbers such

that limn→∞ tn = 0. Let kn = [1/tn] for every n ∈ N, where [x] denotes the largest

integer that is no greater than the real number x. Observe that

1 − tn < tnkn ≤ 1, n ∈ N.

Hence we have limn→∞ tnkn = 1, and further, the properties of the semigroup

{(µt , νt )}t≥0 show that the c-free convolutions

µtn
⊞c µtn

⊞c · · · ⊞c µtn︸ ︷︷ ︸
kn times

= µtnkn

converge weakly to the measure µ1 = µ as n → ∞. Theorem 3.5 then implies that

the measures
1

tn

x2

1 + x2
dµ◦

tn
(x) =

1

tnkn

kn
x2

1 + x2
dµ◦

tn
(x)

converge weakly to the measure σ and

γ = lim
n→∞

[
1

tn

∫ ∞

−∞

x

1 + x2
dµ◦

t (x)

]
,

where the centered measures dµ◦
tn

(x) = dµtn
(x + an) and the numbers an are defined

as in (3.1). The desired result follows from the facts that limn→∞ an = 0, and that the

topology on the set M determined by the weak convergence of measures is actually

metrizable [12, Problem 14.5].

We conclude this section by showing a result, which is a c-free analogue of Hinčin’s

classical theorem on the ∗-infinite divisibility [15].

Corollary 4.2 Let {cn}∞n=1 and {c ′n}∞n=1 be two sequences in R, and let {µnk}n,k and

{νnk}n,k be two infinitesimal arrays in M. Suppose that the sequence δcn
⊞c µn1 ⊞c µn2 ⊞c

· · · ⊞c µnkn
converges weakly to µ, and that the sequence δc ′n

⊞ νn1 ⊞ νn2 ⊞ · · · ⊞ νnkn

converges weakly to ν. Then the pair (µ, ν) is ⊞c-infinitely divisible.

Proof It was proved in [6] that the measure ν must be ⊞-infinitely divisible. There-

fore the result follows immediately from Theorems 3.5 and 4.1.

5 Stable Laws

In this section we determine all ⊞c-stable pairs of measures, which are defined as

follows. Denote by M × M the set of all pairs of measures (µ, ν), where µ, ν ∈ M.

Two pairs of measures (µ1, ν1) and (µ2, ν2) in M×M are said to be equivalent if there

exist real numbers a, b, with a > 0, such that dµ2(t) = dµ1(at + b) and dν2(t) =

dν1(at + b); we indicate this by writing (µ1, ν1) ∼ (µ2, ν2). By analogy with classical

probability theory, we say a pair of measures (µ, ν) ∈ M×M is ⊞c-stable if (µ1, ν1)⊞c

(µ2, ν2) ∼ (µ, ν) whenever (µ1, ν1) ∼ (µ, ν) ∼ (µ2, ν2).
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Remark 5.1 Note that if dµ2(t) = dµ1(at + b) and dν2(t) = dν1(at + b), where

a > 0, then (2.2) shows that

(5.1) Φ(µ2,ν2)(z) =
1
a

[
Φ(µ1,ν1)(az) − b

]

in a truncated cone. Conversely, if pairs (µ1, ν1) and (µ2, ν2) are such that dν2(t) =

dν1(at + b), where a > 0, and (5.1) holds in a truncated cone, then

dµ2(t) = dµ1(at + b).

Proposition 5.2 If (µ, ν) is ⊞c-stable, then (µ, ν) is ⊞c-infinitely divisible.

Proof The ⊞c-stability of (µ, ν) implies that (µ ⊞c µ, ν ⊞ ν) = (µ, ν) ⊞c (µ, ν) ∼
(µ, ν), that is, there exist a2 > 0 and b2 ∈ R such that

dµ(t) = d(µ ⊞c µ)(a2t + b2) and dν(t) = d(ν ⊞ ν)(a2t + b2).

The analytic description of free convolution implies that

F〈−1〉
ν (z) =

1
a2

[
F
〈−1〉
ν⊞ν (a2z) − b2

]
=

2
a2

[
F〈−1〉

ν (a2z) − b2

2

]
− z

= 2F〈−1〉
ν2

(z) − z = F
〈−1〉
ν2⊞ν2

(z),

where dν2(t) = dν(a2t + b2/2). This shows that ν = ν2 ⊞ ν2. Moreover, Remark 5.1

and Proposition 2.2 show that

Φ(µ,ν)(z) =
1
a2

[
Φ(µ⊞cµ,ν⊞ν)(a2z) − b2

]

=
2
a2

[
Φ(µ,ν)(a2z) − b2

2

]

= 2Φ(µ2,ν2)(z) = Φ(µ2⊞cµ2,ν2⊞ν2)(z)

in a truncated cone, where dµ2(t) = dµ(a2t +b2/2). Therefore, we have µ = µ2⊞cµ2.

Next, we consider (µ2, ν2) ∼ (µ, ν) = (µ2 ⊞c µ2, ν2 ⊞ν2). By a slight modification

of the above argument, it is easy to verify that there exist a3 > 0 and b3 ∈ R such

that ν = ν3 ⊞ ν3 ⊞ ν3 and µ = µ3 ⊞c µ3 ⊞c µ3, where dν3(t) = dν2(a3t + b3/3) and

dµ3(t) = dµ2(a3t + b3/3). Continuing in this fashion, we see that the pair (µ, ν) is

⊞c-infinitely divisible.

Recall from [7] that an analytic function φ : C
+ → C

− ∪ R is said to be stable if

for every a > 0, there exist b > 0 and c ∈ R such that

φ(z) +
1

a
φ(az) =

1

b
φ(bz) + c, z ∈ C

+.

The next result follows immediately from Remark 5.1.

Proposition 5.3 A ⊞c-infinitely divisible pair of measures (µ, ν) is ⊞c-stable if and

only if the functions Φ(µ,ν) and F
〈−1〉
ν (z) − z are stable.
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A complete characterization of stable analytic functions was proved in [7]. We

will write out this result below for the sake of completeness. The complex functions

in the following list are given by their principal value in the upper half plane.

Theorem 5.4 The following is a complete list of the stable analytic functions φ : C
+ →

C
− ∪ R.

(i) φ(z) = a + ib, a ∈ R and b ≤ 0.

(ii) φ(z) = a + bz−α+1, a ∈ R, α ∈ (1, 2], b 6= 0, and arg b ∈ [(α − 2)π, 0].

(iii) φ(z) = a + bz−α+1, a ∈ R, α ∈ (0, 1), b 6= 0, and arg b ∈ [−π, (α − 1)π].

(iv) φ(z) = a + b log z or φ(z) = a + b(iπ − log z), where a ∈ C
− ∪ R and b < 0.

Finally, we briefly outline the role of ⊞c-stable pairs of measures in relation to the

limit theorems. Following the ideas in [17], one can show that a pair of measures

(µ, ν) is ⊞c-stable if and only if there exist An > 0, Bn ∈ R and measures µ ′, ν ′ ∈ M

so that the measure µ (resp., ν) is the weak limit of c-free (resp., free) convolutions

µn ⊞c µn ⊞c · · · ⊞c µn︸ ︷︷ ︸
n times

(
resp., νn ⊞ νn ⊞ · · · ⊞ νn︸ ︷︷ ︸

n times

)
,

where the measure µn and νn are given by

dµn(t) = dµ ′(Ant + Bn), and dνn(t) = dν ′(Ant + Bn).

We will not provide the details of the proof of the above assertion because it is quite

similar to those in the free case [17]. The reader will have no difficulty in providing

his/her own proof.
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[6] , A free analogue of Hinčin’s characterization of infinite divisibility. Proc. Amer. Math. Soc.
128(2000), no. 4, 1011–1015. doi:10.1090/S0002-9939-99-05087-X

[7] H. Bercovici and D. Voiculescu, Free convolution of measures with unbounded support. Indiana
Univ. Math. J. 42(1993), no. 3, 733–773. doi:10.1512/iumj.1993.42.42033

[8] H. Bercovici and J.-C. Wang, The asymptotic behavior of free additive convolution. Oper. Matrices
2(2008), no. 1, 115–124.
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