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Abstract

We adapt the classical definition of locally stationary processes in discrete time (see
e.g. Dahlhaus, ‘Locally stationary processes’, in Time Series Analysis: Methods and
Applications (2012)) to the continuous-time setting and obtain equivalent representa-
tions in the time and frequency domains. From this, a unique time-varying spectral
density is derived using the Wigner–Ville spectrum. As an example, we investigate
time-varying Lévy-driven state space processes, including the class of time-varying
Lévy-driven CARMA processes. First, the connection between these two classes of pro-
cesses is examined. Considering a sequence of time-varying Lévy-driven state space
processes, we then give sufficient conditions on the coefficient functions that ensure
local stationarity with respect to the given definition.
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1. Introduction

To model non-stationary time series that locally behave in a stationary manner, Dahlhaus
and others, starting with the seminal paper [11], developed a comprehensive theory and pow-
erful estimation procedures, using a parameterized sequence of processes for the definition of
local stationarity (see e.g. [12, 13, 15], or [14] for an overview). Noticeable examples include,
for instance, ARMA processes with continuous coefficient functions (see [11]). Also, more
recently, non-parametric approaches that allow for linear and non-linear locally stationary
models have been introduced and investigated in [3, 16, 17, 44, 45].

Despite this success, the above approaches have mainly been carried out for models defined
on Z, i.e. in a discrete-time framework. Surprisingly, there is so far no general theory available
for locally stationary models defined onR, i.e. in a continuous-time framework, following the
original approach of Dahlhaus.

In this paper, we define local stationarity for continuous-time models in the spirit of
[11, 12]. More precisely, we establish a definition motivated by [11, 12] in the frequency and
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966 A. BITTER ET AL.

time domains, and because we consistently use L2-integration theory (see e.g. [1] for an intro-
duction), we readily obtain that both definitions are equivalent. Based on the definition in the
frequency domain, we define a time-varying spectral density and show that it can be uniquely
determined by a sequence of locally stationary processes, using the Wigner–Ville spectrum
(see also [11]). This uniqueness is a powerful property, as it is known to pave the way for
a likelihood approximation (comparable to the Whittle likelihood for stationary processes),
leading to powerful estimation methods (see [13]).

As an example, we consider time-varying Lévy-driven state space processes, which include
the continuous-time analogue of time-varying ARMA (time-varying CARMA) processes.
Lévy-driven CARMA processes are known to provide a flexible yet analytically tractable class
of processes that have been applied to model a variety of phenomena from different areas
[4, 25, 28].

In the time-invariant setting, it is known from [41] that the class of CARMA processes is
equivalent to the class of Lévy-driven state space processes. While it is easy to see that every
time-varying CARMA process is also a time-varying Lévy-driven state space process, we show
that the inverse inclusion fails to hold, at least for non-continuous coefficient functions. This
motivates us to look at the class of time-varying Lévy-driven state space models.

As for previous appearances of continuous-time local stationarity in the literature, there are
some noteworthy works on locally stationary Hawkes processes [27, 34, 35]. The approach
in these works, as well as the nature of Hawkes processes, deviates significantly from our
approach and the models we investigate, since for Hawkes processes the focus is on time-
varying immigrant intensities and fertility functions. The paper [21] considers certain locally
stationary diffusion models and their semiparametric estimation. The paper [30] employs
spatio-temporal random fields, especially of CARMA type, which are stationary in time and
locally stationary in space. The definition of local stationarity in [30] requires the moments of
all orders to exist. The most recently published concurrent paper [24] defines locally stationary
fields in the spirit of [44] (see also [17]) using a definition of local stationarity involving an
almost sure condition. The jump parts of the Lévy-driven CARMA fields investigated there
are restricted to the case of finite variation, and absolute continuity of the Lévy measure is
assumed. Furthermore, the focus of that paper is on a non-parametric regression problem. In
contrast to these works, we consistently work in an L2 setting throughout, and we aim to estab-
lish a concise probabilistic theory of local stationarity in continuous time and locally stationary
state space models.

The paper is structured as follows. In Section 2, we first review the definition of local sta-
tionarity in the discrete-time framework. Then in Section 2.2, we summarize basic facts about
Lévy processes and orthogonal random measures, including integration with respect to them.

The novel definition of local stationarity for continuous-time models in both the frequency
and time domains is given in Section 3. Moreover, we investigate asymptotic distributional
properties of such models and show that the autocovariance function evaluated at distinct points
tends to zero.

In Section 4, we investigate time-varying state space processes in the context of local sta-
tionarity. We start with a simple example in Section 4.1, where we consider a sequence of
time-varying CAR(1) processes and give sufficient conditions on the coefficient function for
the sequence to be locally stationary according to the given definition. Sections 4.2 and 4.3 are
dedicated to general time-varying state space processes. First, in Section 4.2, the connection
between the class of time-varying CARMA processes and time-varying state space processes
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Continuous-time locally stationary time series models 967

is examined. Then we give sufficient conditions for a sequence of time-varying state space
processes to be locally stationary.

Finally, in Section 5 we investigate the time-varying spectral density and the Wigner–Ville
spectrum of locally stationary processes.

2. Preliminaries

Throughout this paper, we denote the set of positive integers by N, the set of non-negative
real numbers by R+

0 , and the set of m × n matrices over a ring R by Mm×n(R); 1n stands for
the n × n identity matrix. Given a complex number z, we denote the complex conjugate of z
by z. For square matrices A, B ∈ Mn×n(R), [A, B] = AB − BA denotes the commutator of A and
B, Rank(A) the rank of A, and σ (B) the spectrum of B. We write the transpose of a matrix A ∈
Mm×n(R) as A’ and the adjoint of a matrix B ∈ Mm×n(C) as B∗. Norms of matrices and vectors
are denoted by

∥∥ · ∥∥. If the norm is not further specified, we take the Euclidean norm or its
induced operator norm, respectively. For a complex number z ∈C, the real part of z is denoted
by Re(z). The Borel σ -algebras are denoted by B(·) and λ stands for the Lebesgue measure, at
least in the context of measures. In the following, we will assume all stochastic processes and
random variables to be defined on a common complete probability space (�,F , P) equipped
with an appropriate filtration if necessary. We simply write Lp to denote the space Lp(�,F , P)
and Lp(X) to denote the space Lp(X,B(X), λ) for some set X ⊂R with corresponding norms∥∥ · ∥∥Lp . The ring of continuous functions in t fromR toR is denoted by R[t].

2.1. Locally stationary time series in discrete time

We follow the concept of local stationarity as established in [14] for discrete-time locally
stationary time series models. In [14], the authors consider a parametric representation of a
sequence of non-stationary time-varying processes in either the time domain or the frequency
domain, which has to satisfy certain regularity conditions.

In the following we briefly review the mathematical details of the aforementioned concepts,
as well as the most important results. To this end, we define the total variation of a function g
on [0, 1], denoted by V(g), as

V(g) := sup

{
m∑

k=1

|g(xk) − g(xk−1)|, 0 ≤ x0 < . . . < xm ≤ 1, m ∈N
}

,

and for κ > 0 we define

�κ (j) :=
⎧⎨⎩1, |j| ≤ 1,

|j| log1+κ |j|, |j| > 1,

for all j ∈Z. For further details on the following two definitions we refer to [14].

Definition 1. ([14, Assumption 1].) Let {Xt,T , t = 1, . . . , T}T∈N be a sequence of stochas-
tic processes. Then Xt,T is called locally stationary in the time domain if there exists a
representation

Xt,T =
∞∑

j=−∞
at,T,jεt−j, T ∈N, t = 1, . . . , T,
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where

(a) {εt, t ∈Z} is an independent and identically distributed (i.i.d.) sequence with E[εt] = 0
and Var(εt) = 1,

(b) for all j ∈Z it holds that

sup
t=1,...,T

T∈N
|at,T,j| ≤ K

�κ (j)
,

where κ, K > 0 are constants, and

(c) there exist functions aj(·) : (0, 1] →R, j ∈Z, satisfying

sup
u∈(0,1]

|aj(u)| ≤ K

�κ (j)
, sup

j∈Z

T∑
t=1

∣∣∣∣at,T,j − aj

(
t

T

)∣∣∣∣ ≤ K, and V(aj(·)) ≤ K

�κ (j)

(1)

for some constant K.

Definition 2. ([14, p. 382].) Let {Xt,T : t = 1, . . . , T}T∈N be a sequence of stochastic pro-
cesses. Then Xt,T is called locally stationary in the frequency domain with transfer functions
A0

t,T : [−π, π ] →C, T ∈N, t = 1, . . . , T , if it has the representation

Xt,T =
∫ π

−π

eiλtA0
t,T (λ)ξ (dλ) for all T ∈N, t = 1, . . . , T

(with the integrals existing in L2), where

(a) ξ (λ) is a stochastic process on [−π, π ] with mean zero and orthogonal increments,

(b) there exist a constant K and a function A : [0, 1] × [−π, π ] →C which is continuous in
the first component, satisfying A(u, λ) = A(u, −λ) and

sup
t=1,...,T,
λ∈[−π,π ]

∣∣∣∣A0
t,T (λ) − A

(
t

T
, λ

)∣∣∣∣ ≤ K

T
, T ∈N. (2)

Remark 1. (a) Thanks to the smoothness conditions on the coefficient functions aj(u) and the
transfer function A(u, λ), the sequence Xt,T shows locally stationary behavior (see e.g. [12,
Definition 2.1]).

(b) For a comprehensive introduction to orthogonal increment processes, orthogonal ran-
dom measures, and the related L2-integration theory, we refer to [8].

(c) We note that the given definitions of local stationarity in the time and frequency domains
are not equivalent.
However, using the spectral representation of the noise εt = ∫

(−π,π ]
1√
2π

eiλtξ (dλ) (see
[8]), the Fourier transform allows for the following connections (see [13, Remark 2.2])
between the two concepts. It holds that
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A0
t,T (λ) = 1√

2π

∞∑
j=−∞

at,T,je
−iλj, A(u, λ) = 1√

2π

∞∑
j=−∞

aj(u)e−iλj,

at,T,j = 1√
2π

∫ π

−π

A0
t,T (λ)eiλjdλ, and aj(u) = 1√

2π

∫ π

−π

A(u, λ)eiλjdλ,

since A0
t,T (·) ∈ L2([−π, π ],C) and at,T,j ∈ �2.

Necessary conditions for Definitions 1 and 2 to be equivalent can be found in [15,
Remark 2.2]. In particular, this includes additional smoothness assumptions on A(u, λ)
and a stronger version of the second condition in (1).

The following two propositions give further insight into Definition 2 and the notion of local
stationarity.

Proposition 1. Let Xt,T be a locally stationary process in the frequency domain and {Tn}n∈N ⊂
N an increasing sequence. If sTn ∈ {1, . . . , Tn} for some fixed s ∈ [0, 1] and all n > n0, n0 ∈N,
then it holds that

A0
sTn,Tn

(·) L2−−−→
n→∞ A(s, ·).

Proof. This follows directly from (2). �
For instance, the choice Tn = 2n and s = k/2n0 for some n0 ∈N and k ∈ {1, . . . , Tn0} suits

the conditions of Proposition 1.

Proposition 2. Let Xt,T be a locally stationary process in the frequency domain with
associated orthogonal increment process {ξ (λ), λ ∈ [−π, π ]} such that the sequence εt =∫

(−π,π ]
1√
2π

eiλtξ (dλ) is i.i.d., and let {Tn}n∈N ⊂N be an increasing sequence. If sTn ∈
{1, . . . , Tn} for some fixed s ∈ [0, 1] and all n > n0, n0 ∈N, then it holds that

XsTn,Tn

d−→
n→∞

∫ π

−π

A(s, λ)ξ (dλ).

Proof. First observe that every time series of the form
∫ π

−π
eiλtA(λ)ξ (dλ), t ∈Z, where ξ is

an orthogonal increment process coming from an i.i.d. noise, is strictly stationary. Thus,∫ π

−π

eiλt1 A0
sTn,Tn

(λ)ξ (dλ)
d=
∫ π

−π

eiλt0 A0
sTn,Tn

(λ)ξ (dλ)

for all t0, t1 ∈Z. In particular, for t1 = sTn, where s ∈ [0, 1] is such that sTn ∈ {1, . . . , T}, and
t0 = 0, we obtain

XsTn,Tn =
∫ π

−π

eiλsTn A0
sTn,Tn

(λ)ξ (dλ)
d=
∫ π

−π

A0
sTn,Tn

(λ)ξ (dλ).

The remainder follows from Proposition 1 and the continuity of the stochastic integral in mean
square and thus in distribution with respect to the integrand. �
Remark 2. A notable class of processes that are locally stationary in the time and frequency
domains is that of time-varying AR(p) processes with continuous coefficient functions. For the
mathematical details of this result we refer to [11, p. 147].
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Among the variety of different concepts for local stationarity in the literature, we mention
the results of [16, 44]. In [44], the author considers a triangular array Xt,T , T ∈N, t = 1, . . . , T ,
to be locally stationary if for each u ∈ [0, 1] there exists a strictly stationary process {Xt(u),
t = 1, . . . , T} such that almost surely

∣∣Xt,T − Xt(u)
∣∣ ≤

(∣∣∣∣ t

T
− u

∣∣∣∣ + 1

T

)
Ut,T (u),

where Ut,T (u) are positive random variables satisfying E[(Ut,T (u))ρ] < ∞ for some ρ > 0 uni-
formly in u, t, and T . Time-varying AR(p) processes with continuous coefficient functions can
also be embedded in this framework using arguments similar to those of [17].

More recently, the authors of [16] developed a general theory for locally stationary pro-
cesses based on stationary approximations. Similarly to [16, 44] assumes that there exists a
strictly stationary process {Xt(u), t = 1, . . . , T} such that for some q, C > 0,

∥∥Xt(u) − Xt(v)
∥∥

Lq ≤ C
∣∣u − v

∣∣ and

∥∥∥∥Xt,T − Xt

(
t

T

)∥∥∥∥
Lq

≤ C

T
(3)

uniformly in t = 1, . . . , T and u, v ∈ [0, 1]. Based on these approximations, the authors estab-
lish asymptotic results as a law of large numbers and a central limit theorem, which in turn
are used to derive asymptotic results for a maximum likelihood estimator (see [16, Section 5]).
Again, time-varying AR(p) processes with continuous coefficient functions can be embed-
ded in this framework. Recently, in [3], this work has been extended to models with infinite
memory.

In view of the statistical results obtained from the approximations (3), a possible charac-
terization of local stationarity in terms of similar approximations for continuous-time models
will be the topic of future work.

2.2. Lévy processes and orthogonal random measures

In this section we lay the foundation for the definition of continuous-time locally stationary
processes and briefly review Lévy processes and orthogonal random measures. We also cover
basic results, including stochastic integration with respect to Lévy processes and orthogonal
random measures. For further insight we refer to [1, 39].

Definition 3. A real-valued stochastic process L = {L(t), t ∈R+
0 } is called a Lévy process if

(a) L(0) = 0 almost surely,

(b) for any n ∈N and t0 < t1 < t2 < · · · < tn, the random variables (L(t0), L(t1) −
L(t0), . . . , L(tn) − L(tn−1)) are independent,

(c) for all s, t ≥ 0, the distribution of L(s + t) − L(s) does not depend on s, and

(d) L is stochastically continuous.

Theorem 1. Let L = {L(t), t ≥ 0} be a real-valued Lévy process. Then L(1) is an infinitely divis-
ible real-valued random variable with characteristic triplet (γ, �, ν), where γ ∈R, � > 0,

and ν is a Lévy measure on R, i.e. ν(0) = 0 and
∫
R (1 ∧ ∣∣x∣∣2)ν(dx) < ∞. The characteristic

function of L(t) is given by
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ϕL(t)(z) =E

[
eizL(t)

]
= exp (t�L(z)),

�L(z) =
(

iγ z − �z2

2
+

∫
R

(
eizx − 1 − izx1Z(x)

)
ν(dx)

)
,

(4)

where z ∈R and Z = {x ∈R,
∣∣x∣∣ ≤ 1}.

In the remainder we work with a two-sided Lévy process, i.e. L(t) = L1(t)1{t≥0} −
L2(−t)1{t<0}, where L1 and L2 are independent copies of a one-sided Lévy process.
Throughout this paper, it will be assumed that

E[L(1)] = γ +
∫

|x|>1
xν(dx) = 0 and E[L(1)2] = � +

∫
x∈R

x2ν(dx) < ∞. (5)

Thus, the above assumptions on the Lévy process imply that
∫
R x2ν(dx) < ∞. Occasionally,

we will write �L := Var(L(1)) = � + ∫
x∈R x2ν(dx).

If the Lévy process satisfies (5) and f :R×R→R is a B(R×R) −B(R)-measurable
function satisfying f (t, ·) ∈ L2(R), then the integral X(t) = ∫

R f (t, s)L(ds), t ∈R, exists in L2

(see e.g. [28]).

Definition 4. ([22, Definition 2.3.5].) A family {ξ (�)}�∈B(R) of C-valued random variables
is called an orthogonal random measure (ORM) if

(a) ξ (�) ∈ L2(B(R),C) for all bounded � ∈B(R),

(b) ξ (∅) = 0,

(c) ξ (�1 ∪ �2) = ξ (�1) + ξ (�2) almost surely whenever �1 ∩ �2 = ∅, and

(d) F : B(R) →C such that F(�) =E[ξ (�)ξ (�)] defines a σ -additive positive definite
measure, and it holds that E[ξ (�1)ξ (�2)] = F(�1 ∩ �2) for all �1, �2 ∈B(R).

F is referred to as the spectral measure of ξ .

Theorem 2. ([28, Theorem 3.5].) Let L be a two-sided Lévy process satisfying (5). Then there
exists an ORM �L with spectral measure FL such that

(a) E[�L(�)] = 0 for any bounded � ∈B(R),

(b) FL(dt) = �L
2π

dt, and

(c) �L is uniquely determined by �L([a, b)) := ∫ ∞
−∞

e−iμa−e−iμb

2π iμ L(dμ).

In the proof of the above theorem, the standard theory of Fourier transforms on L2(R) (see
e.g. [10, Chapter 2] for an introduction) is used to show that∫ ∞

−∞
ϕ(μ)�L(dμ) = 1√

2π

∫ ∞

−∞
ϕ̂(u)L(du) (6)

for any complex function ϕ ∈ L2(R) and its Fourier transform ϕ̂, where

ϕ̂(u) = 1√
2π

∫ ∞

−∞
e−iμuϕ(μ)dμ.
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Note that the above definition of the integral refers to the Plancherel extension theorem for the
Fourier transform on L1(R) ∩ L2(R) to L2(R). Hence, the corresponding integral is understood
symbolically as the corresponding limit in L2(R). Similarly, we define the inverse Fourier
transform g of a function ĝ ∈ L2(R) symbolically as

g(μ) = 1√
2π

∫ ∞

−∞
eiμûg(u)du.

We also recall that for two complex functions f , g ∈ L2(R) and their Fourier transforms f̂ , ĝ, it
follows that f̂ , ĝ ∈ L2(R) and, by [37, p. 189],∫ ∞

−∞
f (μ)g(μ)dμ =

∫ ∞

−∞
f̂ (u)̂g(u)du.

3. Locally stationary processes in continuous time

Analogously to Section 2.1, one can define a (stationary) stochastic process {Y(t)}t∈R via
the representation as a linear process or the spectral representation, i.e.

Y(t) =
∫
R

g(t − u)L(du) or Y(t) =
∫
R

eiμtA(μ)�L(dμ), t ∈R,

where g and A are square-integrable functions and L is a two-sided Lévy process with corre-
sponding ORM �L. As we consistently use L2-integrals to define the process in both the time
and the frequency domain, and the Fourier transform is an isometry on L2, the two definitions
are equivalent. Hence, from (6) it follows that the transfer function A and the kernel g satisfy

g(u) = 1

2π

∫ ∞

−∞
eiμuA(μ)dμ and A(μ) =

∫ ∞

−∞
e−iμvg(v)dv.

Now, we allow the kernel function and the transfer function to be time-dependent, leading to

Y(t) =
∫
R

eiμtA(t, μ)�L(dμ) =
∫
R

g(t, t − u)L(du), t ∈R,

where

g(t, u) = 1

2π

∫ ∞

−∞
eiμuA(t, μ)dμ and A(t, μ) =

∫ ∞

−∞
e−iμug(t, u)du.

As we are interested in real-valued processes, we require that g be real-valued, or equivalently
that A(μ) = A(−μ) for all μ ∈R.

To be able to define local stationarity analogously to Section 2.1, we need not only a time-
varying representation, but also a sequence of stochastic processes. The intuitive idea is to take
a limiting kernel g and a sequence of kernels g0

N defining the processes in the time domain,
such that ∥∥∥∥g0

N(t, ·) − g

(
t

N
, ·
)∥∥∥∥

L2
−→

N→∞ 0.
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However, for the limiting (stationary) process we prefer to fix a time t ∈R rather than dealing
with fractions t

N . Replacing t by Nt leads to the following definition.

Definition 5. A sequence of stochastic processes {YN(t), t ∈R}N∈N is said to be locally
stationary in the time domain if it can be represented as

YN(t) =
∫
R

g0
N(Nt, Nt − u)L(du), for all t ∈R, N ∈N,

where L is a two-sided Lévy process and the kernel functions g0
N :R×R→R satisfy the

following:

(a) g0
N(t, ·) ∈ L2(R) for all t ∈R, N ∈N, and

(b) there exists a (local/limiting kernel) function g :R×R→R such that the mapping
R→ L2(R), t �→ g(t, ·) is continuous and

g0
N(Nt, ·) L2−→

N→∞ g(t, ·) for all t ∈R.

Definition 6. A sequence of stochastic processes {YN(t), t ∈R}N∈N is said to be locally
stationary in the frequency domain if it can be represented as

YN(t) =
∫
R

eiμNtA0
N(Nt, μ)�L(dμ), for all t ∈R, N ∈N, (7)

where �L is the ORM of a two-sided Lévy process L, and the transfer functions A0
N :R×R �→

C satisfy the following:

(a) A0
N(t, ·) ∈ L2 for all t ∈R, N ∈N,

(b) A0
N(·, ·) = A0

N(·, −·), and

(c) there exists a (local/limiting transfer) function A :R×R→C with A(·, ·) = A(·, −·)
such that the mapping R �→ L2(R), t �→ A(t, ·) is continuous and

A0
N(Nt, ·) L2−→

N→∞ A(t, ·), for all t ∈R.

In contrast to the discrete-time case, it is now irrelevant whether we use the definition in the
time or the frequency domain. Therefore, we will just use the term ‘locally stationary’ in both
cases.

Proposition 3. Definitions 5 and 6 are equivalent. Moreover, the relationship between the (lim-
iting) transfer function and the (limiting) kernel, using their Fourier transforms, is given by

A0
N(Nt, μ) =

∫ ∞

−∞
e−iμug0

N(Nt, u)du, A(t, μ) =
∫ ∞

−∞
e−iμug(t, u)du,

g0
N(Nt, u) = 1

2π

∫ ∞

−∞
eiμuA0

N(Nt, μ)dμ, and g(t, u) = 1

2π

∫ ∞

−∞
eiμuA(t, μ)dμ.

Proof. The result follows immediately from Definitions 5 and 6 using Plancherel’s
theorem. �

https://doi.org/10.1017/apr.2022.64 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2022.64


974 A. BITTER ET AL.

The following lemma provides sufficient conditions for the continuity conditions on the
mappings t �→ A(t, ·) and t �→ g(t, ·) from Definitions 5 and 6.

Lemma 1. Let A :R×R→C be a function which is continuous in the first argument, such
that for all t ∈R there exist an εt > 0 and a real function ft ∈ L2(R) such that

∣∣A(s, ·)∣∣ ≤ ft(·)
for all s ∈ [t − εt, t + εt]. Then the mapping R→ L2(R), t �→ A(t, ·) is continuous.

Proof. This is a straightforward application of the dominated convergence theorem. �
In principle it is possible to replace the Lévy process by a process with weakly stationary

uncorrelated increments and the ORM induced by the Lévy process by an arbitrary ORM.
The resulting processes would be (locally) weakly stationary. However, at the moment it does
not seem worthwhile to us to pursue this any further, for the following reason. To derive a
continuous-time analogue of Proposition 2, the stationary and independent increments of the
driving Lévy process L are essential. Therefore, the ORM in Definition 6 also has to be gener-
ated by a stochastic process on R with independent and stationary increments, i.e. by a Lévy
process.

We note that this also ensures for all t̃ ∈R that the limiting process Yt̃(t) = ∫
R g(t̃,

t − u)L(du) is strictly stationary. The next proposition provides the aforementioned continuous-
time analogue of Proposition 2.

Proposition 4. Let {YN(t), t ∈R}N∈N be a locally stationary process. Then, for fixed t ∈R,

YN(t)
d−→

n→∞

∫
R

A(t, μ)�L(dμ) =
∫
R

g(t, −u)L(du).

Proof. For t ∈R we obtain, using a stationarity argument,

YN(t) =
∫
R

eiμNtA0
N(Nt, μ)�L(dμ)

d=
∫
R

A0
N(Nt, μ)�L(dμ).

The remainder follows from the continuity of the stochastic integral in mean square and thus
in distribution with respect to the integrand. �
Proposition 5. Let {YN(t), t ∈R}N∈N be a locally stationary sequence and t1, t2 ∈R such that
t1 �= t2. Then YN(t1) and YN(t2) are asymptotically uncorrelated, i.e. Cov(YN(t1), YN(t2)) → 0
as N → ∞.

The intuition behind this proposition is that the kernel functions g0
N(Nt, Nt − ·) are square-

integrable and therefore roughly vanish if the second argument tends to infinity. For t1 �= t2,
the difference between Nt1 and Nt2 increases for N → ∞. Therefore, for large N, the bulks of
the kernels for t1 and t2 rest on far-apart segments of the Lévy process, which has independent
increments.

Proof. Let YN(t) = ∫
R g0

N(Nt, Nt − u)L(du) be a sequence of locally stationary processes.
Without loss of generality we assume that t1 > t2 and set h = t1 − t2 > 0. It is sufficient to
show that for all t2 ∈R and ε > 0 there exists an N0 ∈N such that for all N > N0,∣∣Cov(YN(t2), YN(t2 + h))

∣∣
= �L

∣∣∣∣∣
∫
R

g0
N(Nt2, Nt2 − u)g0

N(N(t2 + h), N(t2 + h) − u)du

∣∣∣∣∣ < ε.
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Let t ∈R, and define E as the set of all elementary real functions in L2(R), i.e.

E =
{

f ∈ L2(R) : f =
n∑

i=1

ci1[ai,bi), n ∈N, ci ∈R, −∞ < ai < bi < ∞, i = 1, . . . , n

}
.

Then for all η > 0 there exist N1 ∈N and elementary functions ĝ(t2, ·), ĝ(t2 + h, ·) ∈ E such
that for all N > N1,∥∥g(t2, ·) − ĝ(t2, ·)∥∥L2 < η,

∥∥g(t2 + h, ·) − ĝ(t2 + h, ·)∥∥L2 < η,∥∥∥g0
N(Nt2, ·) − g(t2, ·)

∥∥∥
L2

< η, and
∥∥∥g0

N(N(t2 + h), ·) − g((t2 + h), ·)
∥∥∥

L2
< η,

using [36, Proposition 6.8]. For the remainder of the proof, it will be assumed that N > N1.
Thus,∥∥∥g0

N(N(t2 + h), ·)
∥∥∥

L2
≤ η + ∥∥g(t2 + h, ·)∥∥L2 and

∥∥∥g0
N(N(t2), ·)

∥∥∥
L2

≤ η + ∥∥g(t2, ·)∥∥L2 .

We define the constant K = η + max
{∥∥g(t2, ·)∥∥L2,

∥∥g(t2 + h, ·)∥∥L2

}
< ∞. Then, using the

triangle inequality and the Cauchy–Schwarz inequality shows that

|Cov(YN(t2), YN(t2 + h))| = �L

∣∣∣∣∣
∫
R

g0
N(Nt2, Nt2 − u)g0

N(N(t2 + h), N(t2 + h) − u)du

∥∥∥∥∥
≤ �L

(∥∥∥g0
N(Nt2, ·) − g(t2, ·)

∥∥∥
L2

∥∥∥g0
N(N(t2 + h), ·)

∥∥∥
L2

+ ∥∥g(t2, ·)∥∥L2

∥∥∥g0
N(N(t2 + h), ·) − g(t2 + h, ·)

∥∥∥
L2

+ ∥∥g(t2, ·) − ĝ(t2, ·)∥∥L2

∥∥g(t2 + h, ·)∥∥L2

+ ∥∥ĝ(t2, ·)∥∥L2

∥∥g(t2 + h, ·) − ĝ(t2 + h, ·)∥∥L2

+
∫
R

∣∣ĝ(t2, Nt2 − u)
∣∣ ∣∣ĝ(t2 + h, N(t2 + h) − u)

∣∣du
)

≤ �L

(
4ηK +

∫
R

∣∣ĝ(t2, Nt2 − u)
∣∣ ∣∣ĝ(t2 + h, N(t2 + h) − u)

∣∣du

)
,

where the last integral tends to zero for N → ∞, by the dominated convergence theorem and
the fact that the elementary functions ĝ have bounded support. �

4. Classes of locally stationary processes in continuous time

In this section, we consider sequences of time-varying CARMA processes, for which we
derive sufficient conditions for local stationarity.

4.1. Locally stationary CAR(1) processes

The simplest Lévy-driven CARMA process is the Lévy-driven CAR(1) or Ornstein–
Uhlenbeck-type process.
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For a constant coefficient a > 0, a CAR(1) process is the stationary solution to the stochastic
differential equation dY(t) = −aY(t)dt + L(dt), which can be expressed as

Y(t) =
∫ t

−∞
e−a(t−u)L(du).

We replace the constant a by a time-varying function a(t) and arrive at a so-called time-varying
CAR(1) process, which is given by

Y(t) =
∫ t

−∞
e− ∫ t

u a(s)dsL(du).

Additional rescaling results in a sequence of time-varying CAR(1) processes that could
be locally stationary. We consider the sequence of stochastic processes {YN(t), t ∈R}N∈N
defined by

YN(t) =
∫ Nt

−∞
e− ∫ Nt

u a( s
N )dsL(du), (8)

where a :R→R is a continuous coefficient function such that

u �→ e− ∫ Nt
u a( s

N )ds

is square-integrable for all t ∈R, N ∈N, and L is a two-sided Lévy process. Recall that the
Lévy process satisfies (5). In view of Definition 3, we obtain from (8) that

g0
N(Nt, Nt − u) = 1{Nt−u≥0}e− ∫ Nt

u a( s
N )ds = 1{Nt−u≥0}e− ∫ 0

−(Nt−u) a( s
N +t)ds and

A0
N(Nt, μ) =

∫
R

e−iμug0
N(Nt, u)du =

∫
R

e−iμv1{v≥0}e− ∫ 0
−v a( s

N +t)dsdv.
(9)

Proposition 6. Let {YN(t), t ∈R}N∈N be a sequence of time-varying CAR(1) processes as
defined in (8). If

(C1) a(·) is continuous and

(C2) for every T ∈R+ there exists εT > 0 such that a(s) ≥ εT for all s ≤ T,

then YN(t) is well-defined and locally stationary, with the limiting kernel g and limiting transfer
function given by

g(t, u) = 1{u≥0}e−a(t)u and A(t, μ) =
∫
R

e−iμu1{u≥0}e−a(t)udu.

Proof. From (C2) we readily obtain that YN(t) is well-defined. For all t ∈R it holds that∥∥∥g0
N(Nt, ·) − g(t, ·)

∥∥∥2

L2
=

∥∥∥g0
N(Nt, Nt − ·) − g(t, Nt − ·)

∥∥∥2

L2

=
∫
R

∣∣∣∣∣1{Nt−u≥0}e− ∫ 0
−(Nt−u) a( s

N +t)ds − 1{Nt−u≥0}e−a(t)(Nt−u)

∣∣∣∣∣
2

du

=
∫
R
1{u≤0}

∣∣∣∣∣e− ∫ 0
u a( s

N +t)ds − ea(t)u

∣∣∣∣∣
2

du −→
N→∞ 0,
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using the dominated convergence theorem. For the inner integral, the continuity of a on a
compact set is sufficient for an application of the dominated convergence theorem. As majorant
for the outer integral we consider u �→ 41{u≤0}e2εtu ∈ L2. The required L2-continuity of the
limiting kernel g can be obtained similarly, using Lemma 1. �
Remark 3. The condition (C1) is intrinsically related to the continuity of the limiting kernel
demanded in the definition of local stationarity. The condition (C2) is obviously satisfied if a(·)
is bounded away from zero. However, as time goes to infinity, a(·) may go to zero arbitrarily
fast. The latter is clearly connected to the fact that our time-varying CAR processes are causal
by definition. It may be possible to weaken (C2) and allow a(·) also to approach 0 as time goes
to minus infinity. Then the convergence to zero must be slow enough for all integrals to exist in
L2. Carrying this out in detail appears rather intricate and not of relevance for the applications
of locally stationary CAR(1) processes.

4.2. Time-varying CARMA(p, q) processes and time-varying state space models

Consider p, q ∈N, where p > q. The formal differential equation for a time-varying Lévy-
driven CARMA(p, q) process is given by p(t, D)Y(t) = q(t, D)DL(t), i.e.

DpY(t) + a1(t)Dp−1Y(t) + . . . + ap(t)Y(t)

= b0(t)DL(t) + b1(t)D2L(t) + . . . + bq(t)Dq+1L(t),

where D denotes the differential operator with respect to time and L(t) is a two-sided Lévy
process satisfying (5). For continuous functions ai(t), bi(t), i = 1, . . . , p, where bi(t) = 0 for
all i > q, the polynomials

p(t, z) = zp + a1(t)zp−1 + . . . + ap−1(t)z + ap(t) and

q(t, z) = b0(t) + b1(t)z + . . . + bq−1(t)zq−1 + bq(t)zq
(10)

are called autoregressive (AR) and moving average (MA) polynomials. For a rigorous defini-
tion we interpret the differential equations to be equivalent to the state space representation

Y(t) =B(t)′X (t), and

dX (t) =A(t)X (t)dt + CL(dt), t ∈R,
(11)

with

A(t) =

⎛⎜⎜⎜⎜⎜⎜⎝

0 1 . . . 0

...
. . .

...

0 1

−ap(t) −ap−1(t) . . . −a1(t)

⎞⎟⎟⎟⎟⎟⎟⎠ ∈ Mp×p(R[t]) and

B(t) =

⎛⎜⎜⎜⎜⎜⎜⎝

b0(t)

b1(t)

...

bp−1(t)

⎞⎟⎟⎟⎟⎟⎟⎠ ∈ Mp×1(R[t]), C =

⎛⎜⎜⎜⎜⎜⎜⎝

0

...

0

1

⎞⎟⎟⎟⎟⎟⎟⎠ ∈ Mp×1(R),

where R[t] denotes the ring of continuous functions in t from R toR.
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It is obvious that (11) has a unique solution when one fixes the value X(t0) at some point
t0 ∈R. For a Brownian motion as driving noise, such equations were investigated in [43,
Section 2.1.1].

Provided the integrals exist in L2, it can be shown that a solution is given by

X (t) =
∫ t

−∞
�(t, s)CL(ds) and Y(t) =B(t)′

∫ t

−∞
�(t, s)CL(ds), (12)

where �(t, t0) is the unique matrix solution of the homogeneous initial value problem (IVP)
d
dt �(t, t0) =A(t)�(t, t0), where �(t0, t0) = 1p for all t > t0 (see [7, Sections 3 and 4]). The
transition matrix � satisfies �(t, t0) = �(t, u)�(u, t0) for all t > u > t0 (see [7, Section 4,
Theorem 2]). In particular, the integrals in (12) are well-defined (see Section 2.2) if there
exist γ, λ > 0 such that∥∥�(t, t0)

∥∥ ≤ γ e−λ(t−t0) for all t, t0 with t ≥ t0.

This condition corresponds to uniform exponential stability of the state space model in (11)
and will be explained in more detail in Section 4.3.

The usual integral representation of stationary causal CARMA processes motivates the
following definition.

Definition 7. A solution {Y(t)}t∈R of the observation and state equations (11) in the form (12)
is called a time-varying Lévy-driven CARMA(p, q) process (tvCARMA(p, q)).

For some initial time t0 ∈R the process satisfies the following relation (see [43,
Section 2.1.1]):

X (t) = �(t, t0)

(
X (t0) +

∫ t

t0
�(u, t0)−1CL(du)

)
. (13)

From [2, Remark 2] it follows that if for all t, t0 ∈R and t > t0

A(t)
∫ t

t0
A(s)ds =

∫ t

t0
A(s)dsA(t), (14)

then �(t, t0) = e
∫ t

t0
A(s)ds

.
If the commutativity assumption (14) holds, the equations (12) and (13) simplify to

X (t) = e
∫ t

t0
A(s)dsX (t0) +

∫ t

t0
e
∫ t

u A(s)dsCL(du) =
∫ t

−∞
e
∫ t

u A(s)dsCL(du) and

Y(t) =B(t)′e
∫ t

t0
A(s)dsX (t0) +

∫ t

t0
B(t)′e

∫ t
u A(s)dsCL(du) =

∫ t

−∞
B(t)′e

∫ t
u A(s)dsCL(du)

for t, t0 ∈R, where t > t0.
If the assumption (14) does not hold, �(t, t0) can be expressed by the Peano–Baker series

(see [2, Section 2])
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�(t, t0) = 1p +
∫ t

t0
A(τ1)dτ1 +

∫ t

t0
A(τ1)

∫ τ1

t0
A(τ2)dτ2dτ1 + . . . =

∞∑
n=0

In(t),

where I0(t) = 1p and In(t) = ∫ t
t0
A(τ1)

∫ τ1
t0

A(τ2) · · · ∫ τn−1
t0

A(τn)dτn . . . dτ2dτ1.

Remark 4. If A(s) and A(t) commute, i.e. [A(s),A(t)] = 0 for all s, t ∈R, then the commuta-
tivity assumption (14) holds. However, the matrices A(t), t ∈R, are in companion form and are
not in general commutative (see also Proposition 12. For further insight into the commutativity
of some matrices A(t) and

∫ t
t0
A(s)ds as well as A(s) and A(t), we refer to [38, Exercise 4.8]

and [47].

The previous remark shows that, when considering time-varying CARMA(p, q) processes,
it is in general not possible to describe the solution of the state space equations explicitly in
the form of a matrix exponential. Instead one has to use the Peano–Baker series.

In [41, Corollary 3.4] it is proved that in the time-invariant case, the class of CARMA
processes is equivalent to the class of continuous-time state space models. This motivates us to
look at time-varying state space processes. We consider the observation and state equations

Y(t) = B(t)′X(t) and

dX(t) = A(t)X(t)dt + C(t)L(dt),
(15)

where t ∈R, A(t) ∈ Mp×p(R[t]) and B(t), C(t) ∈ Mp×1(R[t]) are arbitrary continuous coeffi-
cient functions, and L is a two-sided Lévy process satisfying (5).

Now, the representation of a time-varying CARMA process as given in (12) can be adapted
to (general) state space processes. Provided the integrals exist in L2, it can be shown that a
solution of (15) is given by

X(t) =
∫ t

−∞
�(t, u)C(u)L(du) and Y(t) = B(t)

∫ t

−∞
�(t, u)C(u)L(du), (16)

where �(t, t0) is the unique matrix solution of the IVP d
dt �(t, t0) = A(t)�(t, t0), �(t0, t0) = 1p,

for t > t0. In particular, in the representation of (16), the integrals are well-defined if C(·) ∈
L2(R) and there exist γ, λ > 0 such that∥∥�(t, t0)

∥∥ ≤ γ e−λ(t−t0) for all t ≥ t0 (uniform exponential stability).

For some initial time t0 ∈R, the process satisfies the relation

X(t) = �(t, t0)

(
X(t0) +

∫ t

t0
�(u, t0)−1C(u)L(du)

)
. (17)

Finally, we make the following definition.

Definition 8. A solution {Y(t)}t∈R of the observation and state equations (15) in the form (16)
is called a time-varying Lévy-driven state space process.

The natural question arises of whether all time-varying state space processes are tvCARMA
processes, as in the time-invariant case. A comprehensive investigation of this question seems
to be beyond the scope of this work. Below we present a result indicating that this is probably
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not the case in general (and definitely not if we allow the coefficient functions to have a
discontinuity). Moreover, we give sufficient conditions for a positive answer.

Proposition 7. The classes of time-varying Lévy-driven CARMA models (11) and time-varying
Lévy-driven state space models (15) with not necessarily continuous coefficient functions do
not coincide in general.

Proof. Consider a two-dimensional time-varying state space model as defined in (15) with
a structural break at t = 1. As coefficient functions we consider the step functions

B(t) =
⎧⎨⎩B1 if t ≤ 1,

B2 if t > 1,
A(t) =

⎧⎨⎩A1 if t ≤ 1,

A2 if t > 1,
and C(t) =

⎧⎨⎩C1 if t ≤ 1,

C2 if t > 1,
(18)

which satisfy the uniform exponential stability assumption for the solution of (15).
We assume that the system is in the form of a CARMA process for t ≤ 1 and assume (for

contradiction) that there exists an equivalent CARMA model as defined in (11) for all t ∈R.
Then the CARMA model shows the same structural resemblance as the corresponding state
space model. In the following we denote the coefficients of the CARMA model by B(t), A(t),
and C(t). Using the same notation as in (18), we obtain

B1 = B1, A1 = A1, C1 = C1,

B2 =
(∗

∗
)

, A2 =
(

0 1
∗ ∗

)
, and C2 =

(
0
1

)
. (19)

Since the structural break divides the model into two separate linear models, the CARMA
representations (B1,A1, C1) and (B2,A2, C2) are unique. From the proof of [41, Theorem 3.3]
we obtain that B2eA2(t−u)C2 = B2eA2(t−u)C2 for all t > 1 and u ∈ (1, t].

On the one hand, we have

Y(t) = 1{t≤1}

( ∫ t

−∞
B(t)′�A(t, u)C(u)L(du)

)

+ 1{t>1}

(
B(t)′�A(t, 1)X(1) + B(t)′�A(t, 1)

∫ t

1
�A(u, 1)−1C(u)L(du)

)

= 1{t≤1}

( ∫ t

−∞
B′

1eA1(t−u)C1L(du)

)

+ 1{t>1}

(
B′

2eA2(t−1)X(1) +
∫ t

1
B′

2eA2(t−u)C2L(du)

)
,

(20)

where �A(s, s0) denotes the solution of the aforementioned IVP with respect to A. On the other
hand, Y(t) can be written as

Y(t) = 1{t≤1}

( ∫ t

−∞
B1

′eA1(t−u)C1L(du)

)

+ 1{t>1}

(
B′

2eA2(t−1)X (1) +
∫ t

1
B′

2eA2(t−u)C2L(du)

)
.

(21)
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From (19) it follows that

X(1) =
∫ 1

−∞
eA1(1−u)C1L(du) =

∫ 1

−∞
eA1(1−u)C1L(du) =X (1).

Thus, combining (20) and (21), using (19) and the independent increments of the Lévy process,
the equality B′

2eA2(t−1)X(1) =B′
2eA2(t−1)X(1) has to hold almost surely for all t > 1. Therefore,

for almost all x in the support of X(1) we obtain

B′
2eA2(t−1)x =B′

2eA2(t−1)x. (22)

In the sequel we give a particular Lévy process and coefficient functions that lead to a
contradiction in (22).

Assume that the Lévy process is a Brownian motion. Thus, it has the triplet (0, �, 0) for
some � > 0. From [40] it follows that X(t) is a Lévy process with triplet (0, �t

X, 0), where

�1
X =

∫ 1

−∞
eA1(1−u)C1�C′

1eA′
1(1−u)du = �

∫ ∞

0
eA1uC1C′

1eA′
1udu ∈ M2×2(R).

The regularity of �1
X can be shown by investigating Im(�1

X), where Im(D) = {Dx : x ∈Rd}
denotes the image of a matrix D ∈ Md×d(R). Using [6, Lemma 12.6.2] (see also [41, p. 54]),
we obtain

Im

( ∫ ∞

0
eA1uC1C′

1eA′
1udu

)
= Im

([
C1 A1C1 · · · Ap−1

1 C1

])
.

Therefore, in our setting, it is sufficient to find A1, C1 such that [C1 A1C1] is regular, which
also implies that �1

X is positive definite. Then X(1) has characteristic function

E

[
ei〈z,X(1)〉] = e− 1

2 〈z,�1
Xz〉,

which corresponds to a two-dimensional N(0, �1
X)-distributed random variable having positive

density for all values x ∈R2. To contradict (22), it is enough to show that for some t > 1,

B′
2eA2(t−1)x �=B′

2eA2(t−1)x for all x ∈ I, where I ⊂R2 with λ(I) > 0.

We define

B1 =
(

1

2

)
, B2 =

(
1

1

)
, B2 =

(
5

2

)
, A1 =

(
0 1

1 1

)
, A2 =

(−2 0

0 −3

)
,

A2 =
(

0 1

−6 −5

)
, C1 =

(
0

1

)
, C2 =

(
1

1

)
, and C2 =

(
0

1

)
.

From this we obtain that the CARMA model has the same transfer function as the state space
model, since

B′
2(z12 − A2)−1C2 = 2z + 5

z2 + 5z + 6
=B′

2(z − 12A2)−1C2.
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Moreover,

[C1 A1C1] =
(

0 1

1 1

)

is regular. Given a vector x = (x1, x2)′, it remains to investigate B′
2eA2(t−1)x − B′

2eA2(t−1)x. For
a matrix D ∈C2×2 with eigenvalues σ (A) = {μ, λ}, [6, Proposition 11.3.2] gives that

eD =
⎧⎨⎩eλ((1 − λ)12 + D) if μ = λ,

μeλ−λeμ

μ−λ
12 + eμ−eλ

μ−λ
D if μ �= λ.

Since σ (A2(t − 1)) = {−2(t − 1), −3(t − 1)}, we obtain

B′
2eA2(t−1)x − B′

2eA2(t−1)x

= (
5 2

) (−3(t − 1)e−2(t−1) − (−2)(t − 1)e−3(t−1)

−3(t − 1) − (−2)(t − 1)

(
1 0

0 1

)

+ e−3(t−1) − e−2(t−1)

−3(t − 1) − (−2)(t − 1)

(
0 1

−6 −5

)
(t − 1)

)(
x1

x2

)

− (
1 1

) ( (
e−2(t−1) 0

0 e−3(t−1)

))(
x1

x2

)

= 2x1

(
e−2(t−1) + e−3(t−1)

)
+ x2

(
e−2(t−1)

)
> 0

for all x ∈ I = {x ∈R2 : x1 > 0, x2 > 0} and t > 1. �
Under more rigorous conditions on the coefficient functions, the concept of controllability

from linear system theory allows for a characterization for special canonical forms, which
occur in the state space representation of CARMA processes (A is in companion matrix form).
The following results summarize the key aspects of this characterization, which is based mainly
on [42], but also on [5, 32, 33].

Definition 9. ([38, Chapters 9 and 10].) Let Y(t) be a state space model as defined in (15),
where A(t) is (p − 1) times continuously differentiable and C(t) is p times continuously
differentiable. We define the controllability matrix Wp(t) as

Wp(t) = [K0(t) K1(t) · · · Kp−1(t)], where

K0(t) = C(t), Ki+1(t) = −A(t)Ki(t) + d

dt
Ki(t), i = 1, . . . , p − 2.

Then the state space process X(t) is called

(a) controllable on [t0, t1], t0 < t1, if there exists t ∈ [t0, t1] with Rank(Wp(t)) = p, and

(b) instantaneously controllable if Rank(Wp(t)) = p for all t ∈R.
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Proposition 8. ([42, Theorem 1.].) Consider a state space process satisfying (15) such that A is
(p − 1) times continuously differentiable and C is p times continuously differentiable. Then it is
equivalent to a CARMA process satisfying (11) if and only if it is instantaneously controllable.
Equivalence means that there exists a regular matrix T(t) ∈ Mn×n(R[t]) which is continuously
differentiable and satisfies

X (t) = T(t)X(t)

almost surely. The relationship between the two systems is given by T(t) =Wp(t)Wp(t)−1,

A(t) =
(

T(t)A(t) + d
dt T(t)

)
T(t)−1, and C = T(t)C(t), where Wp(t) and Wp(t) are the control-

lability matrices of the state space model and the CARMA process.

Corollary 1. The class of time-varying Lévy-driven state space models as defined in (15) with
(p − 1) times continuously differentiable coefficient functions A, p times continuously differen-
tiable coefficient functions C, and controllability matrices Wp(t) that have rank p everywhere is
equivalent to the class of time-varying CARMA(p, q) processes as defined in (11) with (p − 1)
times continuously differentiable coefficient functions A and controllability matrices Wp(t) that
have rank p everywhere.

Proof. Any time-varying CARMA(p, q) process is obviously also a time-varying state
space process. For the converse, let Y(t) be a time-varying state space process defined by (15)
which is instantaneously controllable with controllability matrix Wp(t). Then, by Proposition 8,
the state system dX(t) = A(t)X(t)dt + C(t)L(dt) is equivalent to the CARMA system dX (t) =
A(t)X (t)dt + CL(dt) with

X (t) = T(t)X(t), C = T(t)C(t), and A(t) =
(

T(t)A(t) + d

dt
T(t)

)
T(t)−1,

where T(t) =Wp(t)Wp(t)−1 is regular. Thus,

Y(t) = B(t)′X(t) = B(t)′T(t)−1X (t) =B(t)′X (t) and

dX (t) =A(t)X (t)dt + CL(dt),

which is a representation for Y(t) as a time-varying CARMA(p, q) process in (11). �

4.3. Locally stationary linear state space models—Peano–Baker series

We investigate sufficient conditions for sequences of time-varying state space processes,
which obviously also include sequences of time-varying CARMA processes, to be locally
stationary.

Let {YN(t), t ∈R}N∈N be a sequence of time-varying linear state space processes
defined by

YN(t) = B(t)′XN(Nt) and

XN(Nt) = �N(Nt, 0)
∫ Nt

−∞
�N(u, 0)−1C

(
u

N

)
L(du),

where �N(s, s0) is the solution of the matrix differential equation
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�N(s0, s0) = 1p,

d

ds
�N(s, s0) = A

(
s

N

)
�N(s, s0), for all s, s0 ∈R with s > s0,

which can be expressed as follows (see [2, Section 2]):

�N(s, s0) = 1p +
∫ s

s0

A

(
τ1

N

)
dτ1 +

∫ s

s0

A

(
τ1

N

) ∫ τ1

s0

A

(
τ2

N

)
dτ2dτ1 + . . . .

The substitution s �→ s + Nt in (9) is necessary to achieve a dependence of the kernel func-
tion g0

N(t, ·) on Nt − u. Therefore, we define �̃N,t(0, −(Nt − u)) for a fixed point t ∈R as the
solution of the matrix differential equation

�̃N,t(s0, s0) = 1p,

d

ds
�̃N,t(s, s0) = A

(
s

N
+ t

)
�̃N,t(s, s0), for all s, s0 ∈R with s > s0,

which can again be expressed as

�̃N,t(s, s0) = 1p +
∫ s

s0

A

(
τ1

N
+ t

)
dτ1 +

∫ s

s0

A

(
τ1

N
+ t

) ∫ τ1

s0

A

(
τ2

N
+ t

)
dτ2dτ1 + . . . .

From [7, Theorem 4.2] we obtain

�N(Nt, 0)�N(u, 0)−1 = �N(Nt, 0)�N(0, u) = �N(Nt, u).

Since

�N(Nt, u) = 1p +
∫ Nt

u
A

(
τ1

N

)
dτ1 +

∫ Nt

u
A

(
τ1

N

) ∫ τ1

u
A

(
τ2

N

)
dτ2dτ1 + . . .

= 1p +
∫ 0

u−Nt
A

(
τ1

N
+ t

)
dτ1 +

∫ 0

u−Nt
A

(
τ1

N
+ t

) ∫ τ1

u−Nt
A

(
τ2

N
+ t

)
dτ2dτ1 + . . .

= �̃N,t(0, −(Nt − u)),

we neglect the superscript tilde and define a sequence of time-varying linear state space
processes as follows.

Definition 10. A sequence of time-varying linear state space processes {YN(t), t ∈R}N∈N is
defined as

YN(t) =
∫
R
1{Nt−u≥0}B(t)′�0

N,t(0, −(Nt − u))C

(
u

N

)
L(du) (23)

with (limiting) kernel function (in view of Definition 5) given by

g0
N(Nt, Nt − u) = 1{Nt−u≥0}B(t)′�0

N,t(0, −(Nt − u))C

(−(Nt − u)

N
+ t

)
and

g(t, Nt − u) = 1{Nt−u≥0}B(t)′�t(0, −(Nt − u))C(t),
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where �0
N,t(0, −(Nt − u)) and �t(0, −(Nt − u)) are the solutions of the matrix differential

equations

�0
N,t(s0, s0) = 1p,

d

ds
�0

N,t(s, s0) = A

(
s

N
+ t

)
�0

N,t(s, s0),

�t(s0, s0) = 1p, and
d

ds
�t(s, s0) = A(t)�t(s, s0)

(24)

for s > s0.

Using the Peano–Baker series, if necessary, the solutions of the above matrix differential
equations are given by �t(s, s0) = eA(t)(s−s0) and

�0
N,t(s, s0) = 1p +

∫ s

s0

A

(
τ1

N
+ t

)
dτ1 +

∫ s

s0

A

(
τ1

N
+ t

) ∫ τ1

s0

A

(
τ2

N
+ t

)
dτ2dτ1 + . . . .

Proposition 9. Let {YN(t), t ∈R}N∈N be a sequence of time-varying state space processes as
in Definition 10. If

(C1) the coefficient functions A(·), B(·), and C(·) are continuous,

(C2) ‖B(s)‖ < ∞ for all s ∈R, sups∈R ‖C(s)‖ < ∞, and

(C3)
∥∥�0

N,t(0, u)
∥∥ ≤ Ft(u) for some real function Ft ∈ L2((−∞, 0]) for all N ∈N and t ∈R,

then YN(t) is locally stationary.

Proof. Consider YN(t), g0
N , g, �0

N,t, and �t as defined above. For fixed u, t ∈R it holds that∣∣∣g0
N(Nt, −u) − g(t, −u)

∣∣∣ = 1{u≤0}
∣∣∣∣B(t)′

(
�0

N,t(0, u) − �t(0, u)
)

C

(
u

N
+ t

)

+ B(t)′�t(0, u)

(
C

(
u

N
+ t

)
− C(t)

)∣∣∣∣
≤ 1{u≤0}

(∥∥B(t)
∥∥∥∥∥�0

N,t(0, u) − �t(0, u)
∥∥∥( sup

s∈R

∥∥C(s)
∥∥)

+ ∥∥B(t)
∥∥∥∥�t(0, u)

∥∥∥∥∥∥C

(
u

N
+ t) − C(t)

∥∥∥∥) =: P1 + P2.

Since C(·) is continuous, we immediately obtain P2 → 0 as N → ∞. In view of P1, it is
sufficient to show that for all ε > 0 and sufficiently large N,∥∥∥�0

N,t(0, u) − �t(0, u)
∥∥∥ ≤ ε. (25)

Thanks to the equivalence of all norms on Mp×p(R), it is sufficient to prove (25) for the norm of

each column. By �
0(j)
N,t (0, u) and �

(j)
t (0, u) we denote the jth column, j = 1, . . . , p, of �0

N,t(0, u)

and �t(0, u). Then, for functions fN,t(s, x) = A( s
N + t)x and f̃t(s, x) = A(t)x, we obtain
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�
0(j)
N,t (u, u) = ej,

d

ds
�

0(j)
N,t (s, u) = fN,t

(
s, �

0(j)
N,t (s, u)

)
,

�
(j)
t (u, u) = ej, and

d

ds
�

(j)
t (s, u) = f̃t

(
s, �

(j)
t (s, u)

)
,

where ej denotes the jth unit vector. Note that fN,t and f̃t are Lipschitz continuous in the second
argument, with Lipschitz constant

L = sup
s∈[u,0]

∥∥∥∥A

(
s

N
+ t

)∥∥∥∥ + A(t) < ∞.

Moreover,∥∥∥ft
(

s, �
(j)
t (s, u)

)
− fN,t

(
s, �

(j)
t (s, u)

)∥∥∥ ≤ δ

∥∥∥�
(j)
t (s, u)

∥∥∥ ≤ δc, s ∈ [u, 0],

since
∥∥A( s

N + t) − A(t)
∥∥ < δ for any δ > 0 for sufficiently large N, and �

(j)
t (·, u) is continuous

and thus bounded on [u,0]. An application of [46, Section 12.V] gives (25). Finally, by using
the dominated convergence theorem with majorant∣∣∣g0

N(Nt, −u)
∣∣∣ ≤ 1{u≤0}

∥∥B(t)
∥∥( sup

s∈R

∥∥C(s)
∥∥)∥∥∥�0

N,t(0, u)
∥∥∥

≤ 1{u≤0}ctFt(u) ∈ L2(R)

for some constant ct > 0, where the last inequality follows from (C1) and (C2), we can deduce

that
∥∥∥g0

N(Nt, ·) − g(t, ·)
∥∥∥

L2
→ 0 as N → ∞. �

In fact, the assumption (C3) in Proposition 9 is an immediate consequence if the state space
system is uniformly exponentially stable.

Definition 11. ([38, Chapter 6, Definition 6.5 and Theorem 6.7].) A sequence of linear state
space models as in Definition 10 is called uniformly exponentially stable if there exist γ > 0
and λ > 0 such that ∥∥∥�0

N,t(s, s0)
∥∥∥ ≤ γ e−λ(s−s0)

for all s, s0, where s > s0, N ∈N, and t ∈R.

If a linear state space model as in Definition 10 is uniformly exponentially stable, then the
condition (C3) from Proposition 9 is satisfied for Ft(u) := γ eλu and some γ, λ > 0.

Proposition 10. Each of the following two conditions is sufficient for a state space model
{YN(t), t ∈R}N∈N as in Definition 10 to be uniformly exponentially stable:

(a) Let λmax(t), t ∈R, denote the largest eigenvalue of A(t) + A(t)′. If there exist positive
constants γ and λ such that∫ s

s0

λmax

(
ν

N
+ t

)
dν ≤ −λ(s − s0) + γ

for all s, s0, t, and N with s ≥ s0, then by [38, Corollary 8.4], YN(t) is uniformly
exponentially stable.
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(b) Suppose A(t) is continuously differentiable and there exist positive constants α, μ, and β

such that ‖A(t)‖ ≤ α,
∥∥∥ d

dt A(t)
∥∥∥ ≤ β, and the eigenvalues λj(t) of A(t) for j = 1, . . . , p sat-

isfy Re(λj(t)) ≤ −μ for all t. Then by [38, Theorem 8.7], YN(t) is uniformly exponentially
stable.

Remark 5. Part (b) of Proposition 10 corresponds to the condition (C2) in Proposition 6 for
sequences of tvCAR(1) processes.

Remark 6. There is a strong structural resemblance between the above results and known
results from the theory on locally stationary processes in discrete time. Indeed, let us consider
a sequence of time-varying AR(p) processes given by Xt,T = ∑p

j=1 aj(t/T)Xt−j,T + σ (t/T)εt,
where εt is a sequence of i.i.d. random variables such that E[εt] = 0 and Var(εt) = 1, aj(u) is a
family of arbitrary coefficient functions, and σ (u) is an arbitrary function. For a comprehensive
discussion on the sequence of processes Xt,T we refer to [11]. In the following we consider the
matrix function

A(u) :=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1(u) a2(u) . . . . . . ap(u)

1 0 . . . . . . 0

0 1
. . . . . .

...

...
...

. . .
. . .

...

0 . . . 0 1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

In this setting, the authors of [11, 23] show that Xt,T is locally stationary if aj(u) is continuous
for all j = 1, . . . , p and the eigenvalues λi(u), i = 1, . . . , p, of A(u) satisfy |λi(u)| ≤ δ for some
δ ∈ (0, 1). Moreover, in [11, Theorem 2.3(ii)], the authors consider the aj(u) to be parameter-
ized and derive suitable properties for the treatment of maximum likelihood estimates under
the additional assumption that the aj(u) as well as their derivatives are uniformly bounded.

If the commutativity assumption (14) holds, the transition matrix is given by

�0
N,t(0, u) = e

∫ 0
u A( s

N +t)ds.

Then YN(t) simplifies to

YN(t) =
∫ Nt

−∞
B(t)′e

∫ 0
−(Nt−u) A( s

N +t)dsC

(
u

N

)
L(du).

Proposition 11. Let {YN(t), t ∈R}N∈N be a sequence of time-varying state space processes as
in Definition 10. If (C1) and (C2) from Proposition 9 hold, {A(t)}t∈R is mutually commutative,
the eigenvalues λj(t) of A(t) for j = 1, . . . , p satisfy Re(λj(t)) ≤ −μ for all t ∈R and some
μ > 0, and either

(D1) A(t) is diagonalizable for all t ∈R or

(D2) there exists τ > 0 such that
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sup
τ≤x<∞

∥∥∥∥∥1

x

∫ x

τ

A

(
s

N
+ t

)∥∥∥∥∥ < C

for all N and a constant C > 0,

then YN(t) is locally stationary.

Proof. It is sufficient to check (C3) from Proposition 9. We start by assuming that (D1)
holds. Then, by [19, Theorem 1.3.12], {A(t)}t∈R is simultaneously diagonalizable. Thus, there
exists a non-singular matrix S such that S−1A( s

N + t)S = diag(λ1( s
N + t), . . . , λp( s

N + t)) =:
D( s

N + t). Considering the spectral norm, we obtain for all u ≤ 0∥∥∥�0
N,t(0, u)

∥∥∥ =
∥∥∥e

∫ 0
u A( s

N +t)ds
∥∥∥ =

∥∥∥e
∫ 0

u SD( s
N +t)dsS−1

∥∥∥ ≤ ∥∥S
∥∥∥∥∥S−1

∥∥∥∥∥∥e
∫ 0

u D( s
N +t)ds

∥∥∥
≤ C max

{√
μ : μ ∈ σ

(
e
∫ 0

u D( s
N +t)∗+D( s

N +t)ds
)}

= C max
j=1,...,p

√
e2

∫ 0
u Re(λj( s

N +t))ds

= C max
j=1,...,p

e
∫ 0

u Re(λj( s
N +t))ds ≤ Ce

∫ 0
u −μds = Ceμu

for some constant C > 0.
In the case where (D2) holds, we have∥∥∥�0

N,t(0, u)
∥∥∥ =

∥∥∥e
∫ 0

u A( s
N +t)ds

∥∥∥ =
∥∥∥e

∫ −u
0 A( −s

N +t)ds
∥∥∥

≤ 1{−u∈[0,τ ]}e|τ | sups∈[0,τ ]‖A(−s
N +t)‖

+ 1{−u>τ }e|τ | sups∈[0,τ ]‖A(−s
N +t)‖∥∥∥e

∫ −u
τ A(−s

N +t)ds
∥∥∥,

where we used that the integrals
∫ τ

0 A
(−s

N + t
)

ds and
∫ −u
τ

A
(−s

N + t
)

ds commute. Therefore,
it is sufficient to bound ∥∥∥e

∫ −u
τ A( −s

N +t)ds
∥∥∥.

In the following we use [26, Theorem 7.7.1]. Since the family {A(t)}t∈R is mutually
commutative, the family can be reduced simultaneously to an upper triangular form by
a single unitary transformation, i.e. there exists a unitary matrix U ∈ Mp×p(C) such that
U∗A(t)U = T(t) is an upper triangular matrix for all t ∈R (see [19, Theorem 2.3.3]). For
each x > τ , the diagonal entries (and hence also the eigenvalues) of 1

x

∫ x
τ

T
( s

N + t
)

ds

are 1
x

∫ x
τ

λ1
( s

N + t
)

ds, . . . , 1
x

∫ x
τ

λp
( s

N + t
)

ds. Moreover, these are also the eigenvalues of
1
x

∫ x
τ

A
( s

N + t
)

ds, since

1

x

∫ x

τ

T

(
s

N
+ t

)
ds = 1

x
U∗

∫ x

τ

A

(
s

N
+ t

)
ds U.

For the real part of the eigenvalues we obtain

Re

(
1

x

∫ x

τ

λi

(
s

N
+ t

)
ds

)
= 1

x

∫ x

τ

Re

(
λi

(
s

N
+ t

))
ds ≤ −μ

(
x − τ

x

)
≤ −μ
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for all i = 1, . . . , p, N ∈N, and x ∈R. Hence

⋃
τ≤t<∞

σ̃

(
1

x

∫ x

τ

A

(
s

N
+ t

)
ds

)
⊂

⋃
τ≤t<∞

σ

(
1

x

∫ x

τ

A

(
s

N
+ t

)
ds

)
⊂ {

z ∈C : Re(z) ≤ −μ
}

for all N ∈N, where σ̃ (B) denotes the collection of all distinct eigenvalues of the matrix B and
σ (B) the spectrum of B. Finally, an application of [26, Theorem 7.7.1] gives∥∥∥e

∫ −u
τ A(−s

N +t)ds
∥∥∥ ≤ Ceμu

for some constant C > 0. �
Sequences of time-varying CARMA processes, i.e. where the family {A(t)}t∈R forms a

family of companion matrices, cannot be covered by Proposition 11, since companion matrices
are in general not commutative. The following proposition brings further insight when a family
of companion matrices is mutually commutative.

Proposition 12. Let {A(t)}t∈R be a family of companion matrices and τ ∈R fixed. For any
t ∈R, the matrix A(t) commutes with A(τ ) if and only if it is a polynomial of A(τ ) over C.

Proof. It is clear that any polynomial of A(τ ) commutes with A(τ ). For the other direction
we refer to [19, Exercise 3.3P17]. �

If, for a sequence of time-varying CARMA processes, the family {A(t)}t∈R is not mutu-
ally commutative, Proposition 9 provides sufficient conditions for local stationarity, where the
condition (C3) can be derived from Proposition 10.

5. Time-varying spectrum

For a stationary process {Y(t), t ∈R}, the autocovariance function γY (h) := Cov(Y(t + h),
Y(t)) is related to the spectral density fY (λ) by

γY (h) =
∫ ∞

−∞
eihλfY (λ)dλ and fY (λ) = 1

2π

∫ ∞

−∞
e−ihλγY (h)dh.

To describe the time-varying spectrum of a discrete-time locally stationary time series, [11]
uses the Wigner–Ville spectrum (see also [9, 18, 29]). A comparable approach is presented in
[31, Section 11.2], where the author uses the evolutionary spectrum. However, in contrast to
this approach, the Wigner–Ville spectrum has the important consequence of a unique spectral
representation as discussed in [9, p. 74] and [11, p. 143]. In view of this property, we follow
the approach of [11] and define the Wigner–Ville spectrum and time-varying spectral density
for a continuous-time locally stationary process as follows.

Definition 12. Let {YN(t), t ∈R}N∈N be a sequence of locally stationary processes. For N ∈N
we define the Wigner–Ville spectrum as

fN(t, λ) = 1

2π

∫ ∞

−∞
e−iλsCov

(
YN

(
t + s

2N

)
, YN

(
t − s

2N

))
ds,
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and the (time-varying) spectral density of the process YN(t) as

f (t, λ) = �L

2π
|A(t, λ)|2,

where A(t, λ) denotes the limiting transfer function from Definition 6.

The following theorem is a continuous-time analogue to [11, Theorem 2.2].

Theorem 3. Let {YN(t), t ∈R}N∈N be a sequence of locally stationary processes in the form
(7). If

(a)
∥∥∥A0

N

(
N
(

t ± s
2N

)
, ·
)

− A(t, ·)
∥∥∥

L2
−→

N→∞ 0 for all s, t ∈R,

(b) A0
N and A are uniformly bounded in L2, i.e

∥∥∥A0
N(Nt, ·)

∥∥∥
L2

≤ K and ‖A(t, ·)‖L2 ≤ K for

all t ∈R, N ∈N and a constant K > 0, and

(c) A0
N(Nt, ·) and A(t, ·) are differentiable for all t ∈R, N ∈N, and the derivatives

d
dμ

A0
N(Nt, μ), d

dμ
A(t, μ) are uniformly bounded in L2, i.e.∥∥∥∥∥ d

dμ
A0

N(Nt, ·)
∥∥∥∥∥

L2

≤ K and

∥∥∥∥∥ d

dμ
A(t, ·)

∥∥∥∥∥
L2

≤ K,

for all t, N and a constant K > 0,

then the Wigner–Ville spectrum tends pointwise for each t ∈R in mean square to the time-
varying spectral density, i.e. ∫

R
|fN(t, λ) − f (t, λ)|2 dλ

N→∞−→ 0.

Remark 7. Since A0
N and A are defined as Fourier transforms of g0

N and g in L2, they exist as
elements in L2, i.e. as representatives of equivalence classes. As usual, this does not allow for
taking derivatives in the usual sense, but would lead to the concept of weak derivatives.

However, for a function f ∈ L1 such that uf (u) ∈ L1, the derivative of the Fourier transform
f̂ (μ) can be expressed as d

dμ
f̂ (μ) = ̂(−iuf (u))(μ), by [20, Theorem 1.6, Chapter VI]. An appli-

cation of this theorem to the Fourier transform pairs A0
N and g0

N , as well as A and g, ensures
the existence of the pointwise derivatives in (c). The conditions on the kernel functions can
be readily obtained, for instance, if the sequence of locally stationary state space models con-
sidered is uniformly exponentially stable, since then the kernel functions are of exponential
decay.

Lemma 2. Let f :R→R be differentiable, such that either f ∈ L1(R) and f ′ ∈ L1(R), or f ∈
L2(R) and f ′ ∈ L2(R). Then limx→±∞ f (x) = 0 and f ∈ Lp(R) for all p > 2.

Proof. We first consider the case f ∈ L2(R) and f ′ ∈ L2(R). Let ε > 0. Then, as f ∈ L2(R)
and f ′ ∈ L2(R), there exist δ1, δ2 > 0 such that for any measurable sets E1 and E2 it holds that

λ(E1) < δ1 =⇒
( ∫

E1

f (s)2ds

) 1
2

<
ε√
2

and
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λ(E2) < δ2 =⇒
( ∫

E2

f ′(s)2ds

) 1
2

<
ε√
2
,

where λ denotes the Lebesgue measure. Let x, y ∈R with |x − y| < δ := min (δ1, δ2). Without
loss of generality we assume x > y and use Hölder’s inequality to obtain

∣∣∣f (x)2 − f (y)2
∣∣∣ =

∣∣∣∣∣
∫ x

y

d

ds
(f (s)2)ds

∣∣∣∣∣ ≤ 2

( ∫ x

y
f ′(s)2ds

) 1
2
( ∫ x

y
f (s)2ds

) 1
2

< ε. (26)

In fact, we showed that f 2 is uniformly continuous. Suppose now that limx→∞ f (x)2 = 0 does
not hold. Then there exist some ε > 0 and an increasing sequence (xn)n∈N such that xn → ∞ as
n → ∞ and

∣∣f (xn)2
∣∣ > ε for all n ∈N. By passing to a subsequence we can additionally assume

that xn+1 − xn > 1 for all n ∈N. Using (26) we find some 1 > δ > 0 such that |x − y| < δ

ensures that
∣∣f (x)2 − f (y)2

∣∣ < ε
2 . Now, define In := [xn, xn + δ] and let x ∈ In. Then

f (x)2 =
∣∣∣f (x2

n) − (f (xn)2 − f (x)2)
∣∣∣ ≥

∣∣∣f (x2
n)
∣∣∣ −

∣∣∣f (xn)2 − f (x)2
∣∣∣ ≥ ε

2
.

Finally, ∫
R

f (s)2 ≥
∞∑

n=1

∫
In

f (s)2ds ≥
∞∑

n=1

ε

2
δ = ∞

is a contradiction to f ∈ L2(R), and we conclude that limx→∞ f (x) = 0. Considering f (−x)
instead of f (x), we also obtain limx→−∞ f (x) = 0.

If f ∈ L1(R) and f ′ ∈ L1(R), similar yet slightly easier arguments also ensure that
limx→±∞ f (x) = 0.

Finally, define the set J = {x, |f (x)| ≥ 1}. Since limx→±∞ f (x) = 0, J is a compact set. Thus,
there exists a constant C such that |f (x)| ≤ C for all x ∈ J. Eventually,∫

R
|f (x)|p dx ≤

∫
J

Cpdx +
∫
R\J

|f (x)|2 dx < ∞.

�
Proof of Theorem 3. In the following, K denotes the constant from the conditions (b) and

(c). First, we note that the covariance of YN(t) is given by

Cov (YN(t1), YN(t2)) = �L

2π

∫
R

eiμ(t1−t2)NA0
N(Nt1, μ)A0

N(Nt2, μ)dμ.

Then we obtain for the Wigner–Ville spectrum and the (time-varying) spectral density

fN(t, λ) = 1

2π

∫
R

e−iλs �L

2π

∫
R

eiμ((t+ s
2N )−(t− s

2N ))NA0
N

(
N

(
t + s

2N

)
, μ

)

× A0
N

(
N

(
t − s

2N

)
, μ

)
dμ ds

= �L

(2π )2

∫
R

e−iλs
∫
R

eiμsA0
N

(
N

(
t + s

2N

)
, μ

)
A0

N

(
N

(
t − s

2N

)
, μ

)
dμ ds and
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f (t, λ) = �L

2π
|A(t, λ)|2 = �L

(2π )2

∫
R

e−iλs
∫
R

eiμs|A(t, λ)|2dμ ds.

We note that, because of the differentiability condition (c), the function A(t, ·) is differentiable,
A(t, ·) ∈ L2, and d

dμ
A(t, ·) ∈ L2. Then an application of Lemma 2 gives A(t, ·) ∈ L4, which

implies f (t, ·) ∈ L2. Moreover, for all t ∈R, N ∈N, we obtain from Plancherel’s theorem, the
Cauchy–Schwarz inequality, and the integration-by-parts formula, for some C > 0,∫

R

∣∣fN(t, λ)
∣∣2dλ = �L

4π2

∫
R

∣∣∣∣ ∫
R

e−iλs
∫
R

eiμsA0
N

(
N

(
t + s

2N

)
, μ

)

× A0
N

(
N

(
t − s

2N

)
, μ

)
dμ ds

∣∣∣∣2dλ

= C
∫
R

∣∣∣∣∣
∫
R

eiμsA0
N

(
N

(
t + s

2N

)
, μ

)
A0

N

(
N

(
t − s

2N

)
, μ

)
dμ

∣∣∣∣∣
2

ds

≤ C
∫

|s|<1
‖A0

N(N(t + s

2N
), ·)‖2

L2‖A0
N(N(t − s

2N
), ·)‖2

L2ds

+ C
∫

|s|≥1

∣∣∣∣∣
∫
R

eiμsA0
N

(
N

(
t + s

2N

)
, μ

)
A0

N

(
N

(
t − s

2N

)
, μ

)
dμ

∣∣∣∣∣
2

ds

≤ 2CK4 + C
∫

|s|<1

∣∣∣∣∣0 −
∫
R

eiμs

is

(
A0

N

(
N

(
t + s

2N

)
, μ

)
d

dμ
A0

N

(
N

(
t + s

2N

)
, μ

)

+ d

dμ
A0

N

(
N

(
t + s

2N

)
, μ

)
A0

N

(
N

(
t + s

2N

)
, μ

))
dμ

∣∣∣∣∣
2

ds

≤ 2CK4 + 4CK4
∫

|s|≥1

1

s2
ds < ∞,

where Lemma 2 implies limμ→±∞ A0
N(t, μ) = 0, since A0

N(t, ·) ∈ L2(R) and d
dμ

A0
N(t, ·) ∈

L2(R) for all t ∈R. Finally, the integral
∫
R |fN(t, λ) − f (t, λ)|2dλ is well-defined, since fN(t, ·)

and f (t, ·) are both in L2(R) for all t ∈R. From Plancherel’s theorem we obtain

(2π )2
∫
R

∣∣fN(t, λ) − f (t, λ)
∣∣2dλ

= �2
L

2π

∫
R

∣∣∣∣ 1√
2π

∫
R

e−iλs

( ∫
R

eiμs
(

A0
N

(
N

(
t + s

2N

)
, μ

)
A0

N

(
N

(
t − s

2N

)
, μ

)

− A(t, μ)A(t, μ)

)
dμ

)
ds

∣∣∣∣2dλ
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= �2
L

2π

∫
R

∣∣∣∣∣
∫
R

eiμs
(

A0
N

(
N

(
t + s

2N

)
, μ

)
A0

N

(
N

(
t − s

2N

)
, μ

)
− A(t, μ)A(t, μ)

)
dμ

∣∣∣∣∣
2

ds

=:
�2

L

2π

∫
R

∣∣∣∣̂aN

(
s

2N

)∣∣∣∣2ds,

where âN( s
2N ) = ∫

R eiμsaN( s
2N , μ)dμ. It remains to show that∫

R

∣∣∣∣̂aN

(
s

2N

)∣∣∣∣2ds −→
N→∞ 0. (27)

The proof of (27) consists of several steps. We start by showing that âN( s
2N ) −→

N→∞ 0. Indeed,

for fixed s, t ∈R we obtain∣∣∣∣̂aN

(
s

2N

)∣∣∣∣ ≤
∫
R

∣∣∣∣A0
N

(
N

(
t + s

2N

)
, μ

)
A0

N

(
N

(
t − s

2N

)
, μ

)
− A(t, μ)A(t, μ)

∣∣∣∣dμ

≤
∫
R

∣∣∣∣A0
N

(
N

(
t + s

2N

)
, μ

)
− A(t, μ)

∣∣∣∣∣∣∣∣A0
N

(
N

(
t − s

2N

)
, μ

)∣∣∣∣
+

∣∣∣∣A(t, μ)

∣∣∣∣∣∣∣∣A0
N

(
N

(
t − s

2N

)
, μ

)
− A(t, μ)

∣∣∣∣dμ

≤
∥∥∥∥A0

N

(
N

(
t + s

2N

)
, ·
)

− A(t, ·)
∥∥∥∥

L2

∥∥∥∥A0
N

(
N

(
t − s

2N

)
, ·
)∥∥∥∥

L2

+ ∥∥A(t, ·)∥∥L2

∥∥∥∥A0
N

(
N

(
t − s

2N

)
, ·
)

− A(t, ·)
∥∥∥∥

L2
.

Now, by the condition (a), it holds that∥∥∥∥A0
N

(
N

(
t − s

2N

)
, ·
)

− A(t, ·)
∥∥∥∥

L2
→ 0

as N → ∞. Moreover, using the conditions (b) and (c), there exists a constant D, which may
depend on s and t, such that

‖A(t, ·)‖L2 ≤ D and∥∥∥∥A0
N

(
N

(
t ± s

2N

)
, ·
)∥∥∥∥

L2
≤

∥∥∥∥A0
N

(
N

(
t ± s

2N

)
, ·
)

− A(t, ·)
∥∥∥∥

L2
+ ∥∥A(t, ·)∥∥L2 ≤ D

for sufficiently large N. Thus∣∣∣∣̂aN

(
s

2N

)∣∣∣∣ ≤
∥∥∥∥A0

N

(
N

(
t + s

2N

)
, ·
)

− A(t, ·)
∥∥∥∥2

L2

∥∥∥∥A0
N

(
N

(
t − s

2N

)
, ·
)∥∥∥∥2

L2

+ ‖A(t, ·)‖2
L2

∥∥∥∥A0
N

(
N

(
t − s

2N

)
, ·
)

− A(t, ·)
∥∥∥∥2

L2
→ 0,

(28)

as N → ∞.
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Next, we show that |̂aN( s
2N )| ≤ E

|s| , for all s ∈R, sufficiently large N ∈N, and some constant
E > 0, which may depend on t. On the one hand, we have∫

R

∣∣∣∣ d

dμ
aN

(
s

2N
, μ

)∣∣∣∣dμ =
∫
R

∣∣∣∣( d

dμ
A0

N

(
N

(
t + s

2N

)
, μ

))
A0

N

(
N

(
t − s

2N

)
, μ

)

+ A0
N

(
N

(
t + s

2N

)
, μ

)(
d

dμ
A0

N

(
N

(
t − s

2N

)
, μ)

)

−
(

d

dμ
A(t, μ)

)
A(t, μ) − A(t, μ)

(
d

dμ
A(t, μ)

)∣∣∣∣dμ

≤
∥∥∥∥ d

dμ
A0

N

(
N

(
t + s

2N

)
, ·
)∥∥∥∥

L2

∥∥∥∥A0
N

(
N

(
t − s

2N

)
, ·
)∥∥∥∥

L2
(29)

+
∥∥∥∥A0

N

(
N

(
t + s

2N

)
, ·
)∥∥∥∥

L2

∥∥∥∥ d

dμ
A0

N

(
N

(
t − s

2N

)
, ·
)∥∥∥∥

L2

+ 2 ‖A(t, ·)‖L2

∥∥∥∥ d

dμ
A(t, ·)

∥∥∥∥
L2

≤ E,

where the last inequality follows from (b) and (c). On the other hand, the integration-by-parts
formula gives∫

R
eiμs

(
d

dμ
aN

(
s

2N
, μ

))
dμ =

[
eiμsaN

(
s

2N
, μ

)]∣∣∣∣∞
μ=−∞

−
∫
R

(is)eiμsaN

(
s

2N
, μ

)
dμ.

In order to evaluate the limits in the first summand, we first note that (29) implies that
d

dμ
aN( s

2N , ·) ∈ L1(R). In addition, it holds that aN( s
2N , ·) ∈ L1(R), since A0

N(t, ·), A(t, ·) ∈
L2(R). Hence, using Lemma 2 we obtain limμ→±∞ aN( s

2N , μ) = 0. Overall,∫
R

eiμs
(

d

dμ
aN

(
s

2N
, μ

))
dμ = (−is)̂aN

(
s

2N

)
, (30)

Combining (29) and (30) we obtain∣∣∣∣̂aN

(
s

2N

)∣∣∣∣ ≤ 1

|s|
∫
R

∣∣∣∣ d

dμ
aN

(
s

2N
, μ

)∣∣∣∣dμ ≤ E

|s| .

Finally, for s∗ ∈R,

(2π )2
∫
R

|fN(t, λ) − f (t, λ)|2 dλ = �2
L

2π

∫
s∈R

∣∣∣∣̂aN

(
s

2N

)∣∣∣∣2ds

= �2
L

2π

∫
|s|≥s∗

∣∣∣∣̂aN

(
s

2N

)∣∣∣∣2ds + �2
L

2π

∫
|s|<s∗

∣∣∣∣̂aN

(
s

2N

)∣∣∣∣2ds

≤ �2
LE2

πs∗ + �2
L

2π

∫
|s|<s∗

∣∣∣∣̂aN

(
s

2N

)∣∣∣∣2ds.
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The second term converges to zero by the dominated convergence theorem, where pointwise
convergence follows from (28) and a convergent majorant can be obtained from the bound-
edness conditions in (b) and the Cauchy–Schwarz inequality, noting that the support of the
integral is compact. Therefore, for all ε > 0 and sufficiently large s∗ and N, it holds that∫

R
|fN(t, λ) − f (t, λ)|2 dλ ≤ �2

LE2

πs∗ + �2
L

2π

∫
|s|<s∗

∣∣∣∣̂aN

(
s

2N

)∣∣∣∣2ds ≤ ε,

which concludes the proof. �
Corollary 2. Let YN(t) be a sequence of time-varying linear state space processes as in
Definition 10, such that both IVPs in (24) are uniformly exponentially stable, the condi-
tions (C1)–(C3) from Proposition 9 hold, and supt∈R ‖B(t)‖ < ∞. Then the sequence of
Wigner–Ville spectra tends in mean square to the time-varying spectral density.

Proof. It is sufficient to check the conditions (a), (b), and (c) from Theorem 3.

(a) For s, t ∈R we obtain from Plancherel’s theorem∥∥∥∥A0
N

(
N

(
t ± s

2N

)
, ·
)

− A(t, ·)
∥∥∥∥2

L2
= 4π2

∥∥∥∥g0
N

(
N

(
t ± s

2N

)
, ·
)

− g(t, ·)
∥∥∥∥2

L2

= 4π2
∫
R
1{u≤0}

∣∣∣∣B(
t ± s

2N

)′
�0

N,t± s
2N

(0, u)C

(
u

N
+ t ± s

2N

)

− B(t)′�t(0, u)C(t)

∣∣∣∣2du,

which tends to zero as N → ∞ by the dominated convergence theorem. Pointwise
convergence is secured by the continuity of A, B, and C in (C1) and the continuity of the
solution of an IVP on the input (see the proof of Proposition 9). Since the sequence YN(t)
is uniformly exponentially stable, we have

∥∥�0
N,t(s1, s0)

∥∥ ≤ γ e−λ(s1−s0) for some γ,

λ > 0 and all s1 > s0. Therefore, a convergent majorant can be obtained by noting that

1{u≤0}
∣∣∣∣B(

t ± s

2N

)
′�t± s

2N
(0, u)C

(
u

N
+ t ± s

2N

)∣∣∣∣
≤ 1{u≤0}

(
sup
t∈R

‖B(t)‖
)

γ eλu

(
sup
t∈R

‖C(t)‖
)

.

(b) For t ∈R and N ∈N it holds that
∥∥�0

N,t(s1, s0)
∥∥ ≤ γ e−λ(s1−s0) and ‖�t(s1, s0)‖ ≤

γ e−λ(s1−s0) for some γ, λ > 0 and all s1 > s0. Thus∥∥∥A0
N(Nt, ·)

∥∥∥2

L2
= 4π2

∥∥∥g0
N(Nt, ·)

∥∥∥2

L2

= 4π2
∫
R
1{u≤0}

∣∣∣∣B(t)′�0
N,t(0, u)C

(
u

N
+ t

)∣∣∣∣2du

≤ 2π2γ 2

λ

(
sup
t∈R

‖B(t)‖
)2(

sup
t∈R

‖C(t)‖
)2

< ∞ and
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‖A(t, ·)‖2
L2 = 4π2 ‖g(t, ·)‖2

L2 = 4π2
∫
R
1{u≤0}

∥∥B(t)′�t(0, u)C(u)
∥∥2

du

≤ 2π2γ 2

λ

(
sup
t∈R

‖B(t)‖
)2(

sup
t∈R

‖C(t)‖
)2

< ∞.

(c) Since YN(t) is uniformly exponentially stable, [20, Theorem 1.6] implies that

d

dμ
A0

N(Nt, μ) =
∫
R

e−iμu(−iu)g0
N(t, u)du and

d

dμ
A(t, μ) =

∫
R

e−iμu(−iu)g(t, u)du,

which are again in L2(R), since∥∥∥∥ d

dμ
A0

N(Nt, ·)
∥∥∥∥2

L2
= 4π2

∥∥∥(−i · )g0
N(Nt, ·)

∥∥∥2

L2

= 4π2
∫
R
1{u≤0}

∣∣∣∣(−iu)B(t)′�0
N,t(0, u)C

(
u

N
+ t

)∣∣∣∣2du

≤ 4π2

(
sup
t∈R

‖B(t)‖
)2(

γ 2
∫ 0

−∞
u2e2λudu

)(
sup
t∈R

‖C(t)‖
)2

= γ 2π2

λ3

(
sup
t∈R

‖B(t)‖
)2(

sup
t∈R

‖C(t)‖
)2

< ∞ and analogously

∥∥∥∥ d

dμ
A(t, ·)

∥∥∥∥2

L2
≤ γ 2π2

λ3

(
sup
t∈R

‖B(t)‖
)2(

sup
t∈R

‖C(t)‖
)2

< ∞.
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