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Identifying point defects and other structural anomalies using scanning transmission electron 

microscopy (STEM) is important to understand a material’s properties caused by the disruption of the 

regular pattern of a crystal. Thanks to the high spatial resolution of aberration-corrected transmission 

electron microscopes, atomic-resolution images with a field of view of several hundred nanometers can 

be taken [1]. Such data, which often contains thousands of atomic columns need to be analyzed. This 

process has been done manually in the past, but recent developments in machine learning (ML) can be 

very useful to speed it up. 

 

Standard image recognition ML methods are not optimal in anomaly detection since there are many 

types of anomalies and even those of the same type can appear different than one another. The only 

thing in common is that anomalies differ from the regular pattern of a bulk sample, therefore, our 

approach aims to use a convolutional variational autoencoder (VAE) that can be trained to learn the 

pattern of a bulk sample and generate a prediction (example) of a given input image based on the trained 

features [2]. For the purposes of this work, we will focus on SrTiO3 as model system, due to the large 

amount of experimental data available and numerous kinds of point or extended defects that have been 

studied already.   

 

Figure 1 shows how the VAE’s predictions look compared to the respective inputs of SrTiO3 [001]. The 

first row consists of the input samples: one bulk and three copies of it modified to reassemble three types 

of point defects, including anti-sites, vacancy, and ferroelectric distortions. The second row shows the 

respective prediction to the inputs above. We can see how in every case the predictions are similar to the 

bulk and do not reproduce the defect structures of their input. Finally, in the third row, the predictions 

are subtracted to the respective input and all pixels with a magnitude higher than 0.2 are isolated to 

obtain a heatmap of the difference. These “difference” images allow us to isolate the point defects in the 

input and can be used to differentiate between a bulk or defect sample. In Figure 2, histograms of the 

average pixel intensity near maximum for bulk and various point defects are shown. The region confined 

by              of the bulk samples is represented by the dotted lines. If the average near 

maximum for the difference between input and prediction of an image falls in this range it is labeled as 

bulk and as a defect otherwise. Test samples with 1,000 images each are listed in the legend with the 

respective fraction of entries found inside and outside of the set region. Table 1 summarizes the 

percentages of correctly detected samples using the method described in Figure 2. For the majority of 

defect types, 99%-100% of defect inputs are found, while the hardest defects to spot are anti-sites which 

still have a high ratio of 90% and 93.1%. On average 96.9% of all defects were detected. 

 

In this contribution, we demonstrate that the performance of a VAE in replicating an input image can be 

used to differentiate between bulk or defects. In the case of a bulk input, the VAE can replicate well the 

input within a threshold value. For a defect input, the VAE will fail to output a prediction within the set 

threshold, allowing for a clear and automatic distinction of defects [3].
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Figure 1. Input, prediction, and difference of input-prediction for bulk, Anti Ti site, Ti Vacancy and 

Ferroelectric Ti. 
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Figure 2. Average pixel intensity near maximum for sets of bulk and point defects with 1000 entries 

each. 

 

Table 1. Percentage of inputs successfully detected for each defect type and bulk samples. 
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