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Abstract
Significant advances have been achieved in bilingual word-level alignment, yet the challenge remains for
phrase-level alignment. Moreover, the need for parallel data is a critical drawback for the alignment task.
This work proposes a system that alleviates these two problems: a unified phrase representation model
using cross-lingual word embeddings as input and an unsupervised training algorithm inspired by recent
works on neural machine translation. The system consists of a sequence-to-sequence architecture where a
short sequence encoder constructs cross-lingual representations of phrases of any length, then an LSTM
network decodes themw.r.t their contexts. After training with comparable corpora and existing key phrase
extraction, our encoder provides cross-lingual phrase representations that can be compared without fur-
ther transformation. Experiments on five data sets show that our method obtains state-of-the-art results
on the bilingual phrase alignment task and improves the results of different length phrase alignment by a
mean of 8.8 points in MAP.
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1. Introduction
Bilingual phrase alignment from comparable corpora is the task of making explicit translation
equivalent relations that exist between the phrases of two texts without a source text–target text
relationship. Unsupervised bilingual phrase alignment is difficult. In this work, a phrase refers to
single words and multiword expressions of any type, such as nominal or verbal phrases. Hence,
the first challenge consists in learning a unified phrase representation, so that phrases can be
compared independently of their length. The second challenge is the alignment, which cannot
be solved directly without supervised cross-lingual information.

In this work we tackle these two challenges, first, we propose a method for learning a length-
independent phrase representation, then we integrate this method into an end-to-end training
architecture to learn bilingual representations in an unsupervised manner. Consequently, bilin-
gual phrase alignment becomes a vector comparison task using the bilingual representations
previously learned.

1.1 Unified phrase representation
Learning unified phrase representation can be seen as a short sequence language modeling task
with one special property: the modeled representation should be one single unit (e.g., one vector)
for inputs of variable length. As with a long sequence (e.g., a sentence) modeling task, both the
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compositionality and the hierarchical syntactic relation of the composing words should be taken
into consideration. For instance, althoughmost phrases are freely combined like in “wind turbine”
and “life quality”, the meaning of some idiomatic or semi-idiomatic phrases can diverge from
their constituent words as in “couch potato”. Besides, even among more compositional phrases,
the inner syntactical structure determines how constituent words are connected, hence influenc-
ing the overall semantics. For example, in the compound noun “sneaker shoe”, the “sneaker”
constituent dominates the semantics of the phrase when associated with “shoe”.

Naively, we can pretrain phrase embeddings if we consider them as a single token, but it
ignores compositionality and inner component relations of the phrase. Furthermore, learning
phrase embeddings as individual vocabulary entries is extremely memory intensive and will lead
to a data sparsity problem. Finally, phrases not seen during training cannot be handled by this
approach. Artetxe, Labaka, and Agirre (2018b) proposed a generalized skip-gram that learns n-
gram embeddings on-the-fly while keeping the desirable property of unigram invariance to handle
compositional phrases but it still suffers from the sparsity and memory problem. Regarding the
compositional method, two major approaches have been exploited in previous works. They both
use word-level vectors for composing phrase representation. The first one consists in simple lin-
ear functions like addition, element-wise multiplication, or concatenation (Mitchell and Lapata
2009; Mikolov et al. 2013b; Garten et al. 2015; Goikoetxea, Agirre, and Soroa 2016; Hazem and
Daille 2018; Liu, Morin, and Peña Saldarriaga 2018). The first two vector combination methods
are simple and proved to be very effective in many NLP tasks; however, they ignore the syntac-
tical structure of the phrase. In other words, these methods do not distinguish the word order.
For example, “service department” and “department service” will have the same representation
while they do not convey equal semantics. The concatenation method does register word order
but variable length phrases are no longer semantically comparable even if we pad them. In addi-
tion, they all ignore the inner structure of the phrase. The second family of approaches includes
more complex information, as they usually involve neural networks trained with extra informa-
tion such as the phrase textual context (the words before and after the phrase) or a syntax tree
structure (a part-of-speech parsing tree). Several works (Socher, Manning, and Ng 2010; Socher
et al. 2013b; Irsoy and Cardie 2014; Paulus, Socher, and Manning 2014; Le and Zuidema 2015)
have had promising results by using recursive neural networks (Goller and Küchler 1996) to cap-
ture syntactical information. However, the recursive neural network requires a tree structure for
each training sample which may not always be available. To address this limitation, we propose
a new tree-free recursive neural network to encode phrases of variable length into a single vector
while preserving the compositionality and the syntactic information within the phrase.

More recently, contextualized word representations (Peters et al. 2018; Devlin et al. 2018;
Radford et al. 2019) have achieved appealing improvements on a range of NLP tasks, but the
models are mainly evaluated in classification-like or span prediction tasks, whether on sequence-
or token-level (Rajpurkar et al. 2016; Wang et al. 2018; Williams, Nangia, and Bowman 2018;
Zellers et al. 2018). While our final task, bilingual phrase alignment, is a vector comparison task,
we would like to evaluate these approaches on similar comparative tasks such as the phrase syn-
onymy or similarity by extracting the vectors calculated by the previous layers before the final
classification layer. Note that these models generate a sequence of vectors so we still have to apply
some extra procedures to retrieve one single fixed-length vector to represent the whole sequence in
our scenario. The two major strategies are also eligible: we could simply use the mean vector over
the sequence or choose one specific vector to represent all the sequence, otherwise we could stack
other neural networks which can generate a single fixed-length vector given a sequence input.

Our tree-free recursive neural network can be trained in a typical encoder–decoder architec-
ture exploited in many neural machine translation frameworks or a Siamese-like system (Bromley
et al. 1993). The advantage of these end-to-end systems is that they can be easily scaled up or
incorporated in other networks without extra training information.
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We evaluate our system on four data sets: two open domain data sets from Semeval 2013 and
2017 and two specialized domain data sets. The first corpus, from a European public project, cov-
ers the renewable energy domain in English and French, while the second will be released with this
paper and covers a cancer subtopic in the medical domain. The results obtained improve state-of-
the-art approaches on the similarity and synonymy tasks. Furthermore, several ablation tests are
conducted to evaluate the impact of our phrase encoder, its training objective, and contextualized
embeddings used as input.

1.2 Unsupervised bilingual phrase alignment
Beginning with the seminal works of Fung (1995) and Rapp (1999) based on word co-occurrences
for BWA (bilingual word alignment), significant improvements have been recently achieved by
neural network-based approaches (Mikolov, Le, and Sutskever 2013a; Faruqui and Dyer 2014;
Xing et al. 2015; Artetxe, Labaka, and Agirre 2018a; Peng, Lin, and Stevenson 2021), but most
work on the subject focuses on single terms. The alignment of multiword expressions (MWE)
from comparable corpora is discussed less (Robitaille et al. 2006; Morin and Daille 2012). Our
work is in line with Liu et al. (2018), where the objective is to rank all the candidates in a given list
containing phrases of variable length based on a source phrase. Moreover, unlike Liu et al. (2018),
our work can align phrases in an unsupervised manner without explicit cross-lingual information.

We adapt our tree-free recursive neural network as a phrase encoder for bilingual phrase align-
ment tasks because it can generate one single-fixed length vector for phrases of variable length
while conserving the syntactical relation between words.

Concerning the model training, since the meaning of domain-specific phrases is highly con-
text related, the commonly used sequence-to-sequence systems better fit our needs. After phrase
encoding, we can decode its representation to predict its context, thus establishing a relation
between the phrase and its context. Unlike common neural machine translation sequence-to-
sequence systems, our model encodes a phrase and decodes it with regard to its syntactic context
via our tree-free recursive neural network. In order to be able to align phrases in different
languages, we make the encoder cross-lingual which means that the input vectors in different
languages share the same vector space (Artetxe et al. 2018a; Liu et al. 2018). We also incorporate a
back-translation mechanism (Sennrich, Haddow, and Birch 2016) of single words during training
by using pretrained bilingual word embeddings (BWE). Moreover, our model relies exclusively
on monolingual data, and is trained in an unsupervised manner. After completion of the training
phase, we obtain a shared cross-lingual phrase encoder that can generate a unified representation
of phrases of any length.

As for the data sets, we use the same specialized corpora as in our monolingual evaluation:
one covers the renewable energy domain and the other covers the cancer subtopic of the medical
domain. We manually create 3 gold standards for the first domain with 3 different language pairs:
English-Spanish, English-French and English-Chinese, and 1 English-Spanish gold standard for
the medical domain corpus. Our experiments on these data sets show that our method signifi-
cantly outperforms existing unsupervised methods for the different length phrase alignment by a
mean of 8.8 MAP points.

2. Background
2.1 Sequence representationmodeling
The simple additive approach for encoding a sequence of word vectors into one single vector is
always considered as an effective baseline (Mikolov et al. 2013b; Del, Tättar, and Fishel 2018; Liu
et al. 2018; Laville et al. 2020; Huang et al. 2020). Another possible improvement is to use a recur-
sive neural network (RNN) (Goller and Küchler 1996). It is a generalized version of the recurrent

https://doi.org/10.1017/S1351324922000328 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324922000328


646 J. Liu et al.

Figure 1. Diagram of a recursive neural network.

neural network (Elman 1990) which always applies a left binary tree, where the first two leaves
are combined to form a node, then the node is combined to the next leaf to form the next level
node, etc. The recursive neural network encodes a sequence of word vectors along a tree structure,
for example a parse tree, by recursively applying the weight matrices to each node association.
This architecture has been successfully exploited in a variety of tasks, Socher et al. (2013a) use an
untied weight RNN for constituent parsing where they use different weight matrices depending
on the constituent syntactic category, Le and Zuidema (2014) collect the context information by
adding an outer representation for each node. Their system is served in a dependency parsing task.
Moreover, various works (Socher et al. 2013b; Irsoy and Cardie 2014; Paulus et al. 2014) apply the
RNN to generate sentence-level representations for the sentiment analysis task using labeled data.

Figure 1 shows an example of a sequence of length four. Suppose we have a parse tree, each
input is a word vector vi ∈R

d. The network applies a linear function with a weight matrix Wl ∈
R
d∗d for each left node child and a weight matrixWr ∈R

d∗d for each right node child in the given
tree. So, for each non-leaf node η, the corresponding vector xη is calculated as follows:

xη =Wlvl(η) +Wrvr(η) + b (1)

where vl(η) and vr(η) mean, respectively, the left and the right child vector of the node η.
The disadvantage of RNN in our scenario is the need of a tree structure because, as stated above,

not only it is not always available in all languages but it is also not possible to retrieve the context
sentence for the parsing if we meet a new freely combined phrase that has never occurred in the
corpus. The recurrent neural network or the LSTM does not need a tree structure but applies a
universal left binary tree to all sequences, The convolutional neural network, however, with a ker-
nel size of 2 can be considered as a specialized RNN where it adopts element-wise multiplication
rather than matrix multiplication with only one layer by a pooling operation. The more advanced
and purely self-attention-based model, Multi-Head Attention cell (Vaswani et al. 2017) has shown
great potential in sequence modeling, but it has many more parameters compared to the previ-
ously mentionedmodels. It is obvious that if a model has more parameters, it is more powerful. As
a consequence, it is not directly comparable to other models that have significantly fewer learnable
parameters.

Figure 2 shows how the recurrent and a 2 kernel sized convolutional neural network can model
a sequence with 4 tokens. Wxh ∈R

h∗d and Whh ∈R
h∗h are the parameters in a typical recurrent

neural network where h is the hidden dimension, and for the convolutional network with a kernel
size of 2, we can consider the convolution operation as two element-wise multiplications (dashed
line in Figure 2) with a left multiplier vl ∈R

d and a right multiplier vr ∈R
d. Stacking vl and vr

forms the actual convolution kernel. The final vector is obtained by a pooling operation such
as max or average. Note that the addition-based approach (Liu et al. 2018) can be viewed as a
specialized version of CNN where the values in vl and vr equal to one and pooling is done by
averaging the vectors.
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Figure 2. Diagram of a recurrent neural network (left) and 2 kernel sized convolutional neural network (right). For the
purpose of clarity, we omit the output layer in the recurrent neural network.

Recently, published language models like BERT (Devlin et al. 2018) or ELMo (Peters et al.
2018) can also encode a sequence of word vectors of a phrase into one single vector if we use the
output vector at one particular step, for example, the last token in ELMo or the first special [CLS]
token in BERT. The additive approach can also be applied to all the output vectors. Like the static
word embedding models, these models are pretrained on large general corpora. By default, they
all encode a sequence of word vectors into a new sequence of word vectors that are also known
as contextualized word embeddings. Consequently, the tasks similar to sequence labeling (e.g.,
sentence tagging) and span prediction (e.g., question answering) naturally fit these models. The
sequence-level classification task can be achieved by representing the sequence with the output
vector of a special token position like the first or last token of a sequence. To the best of our
knowledge, these models have been applied mostly on classification or span prediction tasks.

2.2 Feature-based and fine-tuning-based language representations
The feature-based strategy has existed since the 1990s. The traditional co-occurrence count-based
method (Church and Hanks 1990; Dagan, Pereira, and Lee 1994; Niwa and Nitta 1994; Bullinaria
and Levy 2007; Turney and Pantel 2010) represents a word by a sparse co-occurrence vector
and often applies the pointwise mutual information to associate the word and its context. Neural
network-based methods (Mikolov et al. 2013b; Pennington, Socher, andManning 2014) represent
a word by a dense embedding vector, which has led to significant improvements in major NLP
tasks. These word-level static vectors can be incorporated into other systems as the basic input
units to generate higher level representations.

Contextualized models (Peters et al. 2018; Devlin et al. 2018; Radford et al. 2019) are
sequence-level representations with word-level granularity. In fact, they all exploit word-level
representations as the basic input and output units. Once pretrained, we can use these models
in a specific task by stacking supplementary layers onto them. The difference between the fea-
ture based and the fine-tuning based approach lies in whether we freeze the parameters of these
pretrained models or not when we incorporate them into a task-specific training framework. The
feature-based approach extracts the output of the pretrained model and uses this output as static
features of the input by omitting the gradients of the parameters, while the fine-tuning based
approach updates its parameters during the back-propagation of the training. The advantage of
the fine-tuning-based approach is that the whole system can be readjusted to the task-specific
training corpus, but it takes up much more time and space consuming compared to the feature-
based approach. Moreover, according to Devlin et al. (2018), similar performance can be obtained
(with –0.3 points in F1 CoNLL-2003 NER) using the same BERT model in the feature and the
fine-tuning based settings. This is particularly interesting because fine tuning a large model with
millions of parameters can be exceedingly long while updating only a few layers is much more
efficient.
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2.3 Cross-lingual word embeddings
In order to map phrases of different languages into one common space with compositional mod-
els, word-level mapping is an essential prerequisite. Following the success of word embeddings
(Mikolov et al. 2013b) trained on monolingual data, a large proportion of research concentrated
on at mapping word embeddings into a common space for multiple languages. Cross-lingual word
embeddings were pioneered by Mikolov et al. (2013a) by using a linear transformation matrix. A
large number of works tried since then to improve the linear transformation method (Lazaridou,
Dinu, and Baroni 2015; Artetxe, Labaka, and Agirre 2016; Liu et al. 2018). Artetxe et al. (2018a)
compiled a substantial amount of similar works (Mikolov et al. 2013a; Faruqui and Dyer 2014;
Xing et al. 2015; Shigeto et al. 2015; Zhang et al. 2016; Artetxe et al. 2016; Smith et al. 2017) into
a multistep bilingual word embedding framework. More recently, Lample and Conneau (2019)
proposed pretrained cross-lingual transformer-based language models using masked language
modeling like Devlin et al. (2018) and a translation language modeling training objective with
parallel data to further improve the quality of pretrained cross-lingual embeddings for languages
that share the same alphabet.

2.4 Training objectives in languagemodeling
Predicting the next word or sentence is the most common training objective in a wide range of
previous works with an architecture similar to encoder–decoder (Bahdanau, Cho, and Bengio
2014; Sutskever et al. 2014; Cho et al. 2014; Luong, Pham, and Manning 2015; Gehring et al.
2017; Vaswani et al. 2017; Peters et al. 2018; Devlin et al. 2018; Radford et al. 2019). In addition,
the BERT model jointly has another training objective of predicting only the randomly masked
tokens. The corresponding ablation studies have proven this to be beneficial. This objective can be
considered as a special version of the denoizing objective (Vincent et al. 2008), which reconstructs
the original sentence from a randomly noised version.

2.5 Encoder–decoders in neural machine translation with low-resource
To train our network, we use the widely exploited encoder–decoder model in neural machine
translation (NMT). Although there are many different models, they all implement an encoder–
decoder architecture optionally combined with an attention mechanism (Bahdanau et al. 2014;
Luong et al. 2015) to tackle long sequences. This type of model has become the main trend in the
recent years producing the current state-of-the-art results. It takes advantage of longer context
information, and continuous representations can be easily trained in an end-to-end system.

Cho et al. (2014) proposed a model to learn representations of variable-length sequences, how-
ever, their approach requires parallel phrase pairs for training. Therefore, we looked at NMT
models making use of monolingual corpora to enhance translation in low-resource scenarios.
When no parallel data exist between source and target languages, several works proposed the use
of a pivot language (Firat et al. 2016; Saha et al. 2016; Chen et al. 2017) acting as a bridge between
source and target. Following the same idea, Johnson et al. (2017) proposed a multilingual NMT
model that creates an implicit bridge between language pairs for which no parallel data are used
for training. Whether explicit or implicitly, all these works still require the use of parallel corpora
between the pivot language and other languages.

More interestingly for our work, some research has recently conducted on training NMTmod-
els with monolingual corpora only (Lample et al. 2018; Artetxe et al. 2018c; Yang et al. 2018). They
all use pretrained cross-lingual word embeddings as input. Then a shared encoder is involved to
encode different noised sequences in the source and the target languages. The decoder decodes
the encoded vector to reconstruct its original sequence. This strategy is called denoizing (Vincent
et al. 2008) with the objective to minimize the following cross-entropy loss:

Ldenoising(θenc, θdec)= −Ex∈DlH(x, dec→l(enc(N (x)))) (2)
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where θenc and θdec, respectively, mean the parameters in the encoder and the decoder, x ∈Dl is a
sampled sequence from the monolingual data, and dec→l(enc(N (x))) represents a reconstructed
sequence from the noised version of the original sequence x.

In addition, the back-translation mechanism (Sennrich et al. 2016; Zhang and Zong 2016)
has been dominantly exploited in unsupervised neural machine translation (Lample et al. 2018;
Artetxe et al. 2018c) to build the link between the two languages by alternatively applying
the source-to-target model to source sentences in order to generate inputs for training the
target-to-source model (and vice versa):

Lbacktranslation(θenc, θdec)= −Ex∈Dl1H(x, dec→l1(enc(y))),
y= transl(x)= dec→l2(enc(x)) (3)

where Dl1 and Dl2 are the two language corpora, dec→l1 means that the decoder will decode the
sequence in l1 language (or l2 resp.). Suppose y is the translation of x ∈Dl1, then dec→l1(enc(y))
represents the reconstructed source sentence from the synthetic translation. The goal is to generate
pseudo parallel sentence pairs to train the models with a reconstruction loss.

Also pertaining to our work, Yang et al. (2018) introduce a semi-shared encoder to retain
specific properties of each language and directional self-attention to model word order. More
recently, Wu, Wang, and Wang (2019) propose an alternative approach that extracts and edits
candidate translation sentences with comparative loss.

To sum up, most of the previous works use either compositional approaches, for instance,
the average of all word vectors of a sentence, or a representative vector of a neural network, for
instance, the special CLS token in BERT to represent a sequence. While for the bilingual phrase
alignment, the previous studies exploit essentially the cross-lingual word embeddings. This work
is an extension of Liu et al. (2020) for the bilingual phrase alignment part which also uses cross-
lingual word embeddings as input. Moreover, we provide full study on the phrase representation
learning.

3. Unified phrase representation learning
3.1 Tree-free recursive neural network
In order to encode phrases of variable length without tree structures in a fixed-length vector, we
propose a new network a tree-free recursive neural network (TF-RNN). We consider it as a variant
of the original recursive neural network because the basic idea is always to associate each token
following a bottom-up structure. This structure is required as input of the original recursive neural
network, while in the TF-RNN we eliminate this requirement by recursively splitting each node
into a left and a right semantic part, then associating the left part with its right-hand neighbor and
the right part with its left-hand neighbor. This is motivated by our hypothesis that the semantics
of a pair of words could be retrieved by combining their meaning with some position-specific
weights, and consequently the semantics of a sequence of words could be retrieved by recursively
combining the semantics of each word pair. In fact, by doing this, we create a pseudo binary
tree structure where we associate each adjacent node pair without parsing it twice. This kind of
structure can be seen as an approximation of a generalized sentence syntax as each language unit
is directly associated with its adjacent neighbors and hierarchically associated with other units
eventually yielding the overall semantics of all the units.

Let
[
v01, v

0
2, v

0
3, ..., v0n

]
with v0i ∈R

d be the input word vector sequence with n words, the TF-
RNN outputs a single fixed-length vector vo ∈R

p by following steps:

vji,l = tanh(Wlv
j
i + bl)

vji−1,r = tanh(Wrv
j
i−1 + br)

https://doi.org/10.1017/S1351324922000328 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324922000328


650 J. Liu et al.

Figure 3. Diagram of the tree-free recursive neural network (TF-RNN).

v j+1
i = tanh(v ji,l + v ji−1,r)

...
vo = tanh(Uvn0 + b) (4)

where j indicates the pseudo-tree structure layer level, a phrase with n word components will have
n levels in such a structure. Wl ∈R

d∗d and Wr ∈R
d∗d, respectively, represent the left and right

weight matrices for the extraction of the word semantics; bl ∈R
d and br ∈R

d are the correspond-
ing bias vectors. A node vector on level j+ 1, vj+1

i is calculated in terms of a pair of adjacent node
vectors from the previous level j. Once we reach the final level n, the final output vector vo can
be calculated by a linear layer on top with U ∈R

p∗d and b ∈R
p as its parameters. A nonlinear

activation function is applied after each operation. An example of a sequence of length three is
illustrated in Figure 3.

3.2 Complexity
We compare the complexity of different neural network layers that can encode sequences of vari-
able length, the RctNN and self-attention encode the input sequence to another sequence of equal
length while our proposal TF-RNN and CNN with padding and pooling (right part of Figure 2)
encode to one fixed-length vector.

We comparemainly two criteria for one layer of each architecture, the first is the computational
complexity that represents how many weight parameters are involved in the linear transfor-
mation; the second is the maximum dependency length which is the length of the paths that
forward and backward signals have to traverse in the network. This is critical for learning long-
range dependencies in many sequence transduction tasks. We show the complexity comparison
in Table 1.

For the computational complexity, the RctNN has n times linear transformations with matrices
inR

d∗d, while the CNN is more expensive than RctNN by a factor of the kernel width k which can
be seen as having k times the weight matrices in a RctNN. The self-attention is faster for most
cases since usually n< d. Our proposal seems to be the most expensive since the complexity is
quadratic in terms of input length and model dimension; however, it should be noted that our
objective is to encode phrases which are most of the time n-gram with n ∈ [1, 5]. For unigrams
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Figure 4. Proposed training system in monolingual context, wi is the ith word in a sentence, wrap is the token represented
by the randomly generated vector for filling the phrase blank when generating the context. In the example, [w3, w4, w5] is
the phrase sequence.

and bigrams, our encoder is less complex than RctNN and CNN. Also, our encoder is a one-layer
architecture compared to the self-attention which has a “depth” of 8 heads in the Transformer-
base architecture.

As the self-attention is a dynamic fully-connected layer, it traces each input position with one
linear transformation. As for our proposal, we can see that it is linearly related to the input length,
yet again since our inputs are mostly short sequences, this is not considered as problematic in our
scenario.

3.3 Encoder–decoder training with wrapped context prediction
We use a fairly standard encoder–decoder architecture to train the phrase encoder. Our TF-RNN
is used as encoder, thus phrases of variable length can be represented by a fixed-length vector
without the need of a tree structure. The decoder is a two-layer LSTM. Furthermore, instead of
predicting the next word or phrase like in many other similar systems, we let the generator gener-
ate the context of the phrase. However, one disadvantage of predicting only the context is that the
syntax of the output sequence is misguided by the missing phrase. Since most of the phrases are
either nominal or verbal, we decide to use a single random vector to wrap all the tokens of a phrase
to help the generator reconstruct a syntactically complete context during the system training.

Apart from the static word embeddings, we also incorporate the recent works of contextu-
alized embeddings as the input for our TF-RNN phrase encoder. As mentioned in Section 2.2,
feature-based usage of these models degrades the results only slightly and the results compared to
the fine-tuning based usage which takes up far more time and space. In our framework, we apply
the feature-based approach to accelerate our experiments with relatively low resources. More con-
cretely, this means that we freeze all the parameters in the contextualized embeddingmodels when
back-propagating the whole network. After the training, the encoder serves as a phrase vector gen-
erator which takes either static or contextualized embedding vectors. Figure 4 shows an instance
of the framework.

Note that in the case of the static embeddings, the embedding layer is actually a look-up table
while for the contextualized ones, it is a forward pass of the pretrained model. More specifically,
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Figure 5. Illustration of the tree-free phrase encoder.

to get the word vector from the static embeddings, one can directly use one row or column of the
hidden layer matrix with the word index. For the contextualized embeddings, it passes the entire
sentence (or several words between the word) to the neural network and run a forward pass to get
the context-dependant word vector.

4. Toward unsupervised bilingual phrase alignment
4.1 Tree-free phrase encoder in cross-lingual context
We would have used the same encoder explained in Section 3.3, however, in our preliminary
experiments, it did not perform well as the synthetic translations are sometimes of low quality
and the accumulated translation errors affect with the recursivity more radically (Wu et al. 2019).
The same phenomenon occurs also in other similar networks such as the recurrent or LSTM net-
work. Meanwhile, since the additive approach (Liu et al. 2018) manages to maintain a decent
performance, we decided to adapt the tree-free recursive neural network to the cross-lingual con-
text by levelling the network. Consequently, the network has more additive features while being
able to distinguish the word order and distribute different weights. More concretely, there are
three layers in the adapted version, in the first we always split the semantics of each word into two
parts by a linear transformation: the right side and the left side. Then we associate these nodes by
concatenation, the left side is supposed to be associated with the right side of the previous token
and vice versa. The second layer is composed of a fully connected layer that maps the input vectors
to output vectors in a specified dimension. Finally, the third layer consists in the addition of all
intermediate level nodes and outputting a single fixed-length vector. The sum operation is moti-
vated by the additive characteristics mentioned in Mikolov et al. (2013b) as the additive approach
has showed interesting results in our preliminary experiments. Figure 5 shows the schema of the
proposed network which is clearly a flat version of the TF-RNN presented in Section 3.1.

We use pretrained cross-lingual embeddings as the input vector sequence [v1, v2, v3, ..., vn] with
vi ∈R

d, the output vector vo ∈R
p is calculated as follows:
vi,l = tanh(Wlvi + bl)
vi−1,r = tanh(Wrvi−1 + br)
vinter,i = tanh(U[vi−1,r ;vi,l]+ b)

vo =
n∑

i=1
vinter,i

(5)
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Figure 6. Overviewof the cross-lingual alignment training architecture. For a phrase x in languageDl1, we first use the shared
tree-free phrase encoder, then the system can be trained into two subnetworks: the first one is the encoder–decoder system
given the original phrase x w.r.t Dl1, and if x is a single-word phrase, we apply a second encoder–decoder system given the
translated phrase BWE(x) also w.r.t Dl1. We alternatively iterate through all phrases in the two languages. The objective of the
decoder is to reconstruct awrapped sentence containing x.

where Wl ∈R
d∗d and Wr ∈R

d∗d denote the left and the right weight matrix, respectively, in the
linear transformation of the semantic association, bl ∈R

d and br ∈R
d are the corresponding bias

vectors, and U ∈R
p∗d and b ∈R

p are the parameters in the fully connected layer with d the input
dimension and p the output vector dimension.

Consequently, our phrase encoder produces vector representations that are word order sensi-
tive and that can distribute different weights for the different phrase components without using
structured input.

4.2 Unsupervised training
The general encoder–decoder architecture of our method is shown in Figure 6. Since the input
sequence is always a short sequence of under 7 tokens, usually a two or three word phrase, we
did not use an attention mechanism which is intended to capture long-range dependencies. The
network tries to predict the sentence containing the input phrase from its encoded vector. One
can argue that our system is only unsupervised under the prerequisite of pretrained bilingual
embeddings. This is true. However, since pretrained embeddings are largely available and can
easily be obtained with general public parallel data, we consider that our system is unsupervised
because we do not need specific parallel data.

As illustrated in Figure 6, in addition to our phrase encoder, we incorporate a pseudo back-
translationmechanism for single words based on bilingual word embeddings (Artetxe et al. 2018a;
Liu et al. 2018). The decoder consists of a single-layer LSTM and a fully connected layer on top
of it. The goal of the decoder is to reconstruct the wrapped sentence which contains the current
input phrase. We name this process context prediction. The intuition behind context prediction
is based on the distributional hypothesis (Harris 1954), that is words in similar contexts tend to
have similar meanings. This idea is studied in Del et al. (2018): instead of an end-to-end system,
they first learn all the phrase embeddings by Skip-gram considering them as a single word, and
then learn the composition function by a regression model that predicts the pretrained phrase
embeddings from its composing word embeddings. However, they limit the phrase length to 2,
while we would like to propose a unified end-to-end framework which is able to learn the phrase
composition of variable length and the mapping simultaneously. Overall, the system uses three
key concepts:
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Wrapped sentences. Like in NMT, we use special tokens to mark the start and the end of a sen-
tence. Apart from the standard special tokens, we exploit the same training strategy as in our
monolingual system: the wrapped sentence. In addition to what we have stated in Section 2.4,
this allows the system to recognize the phrase when decoding and to strengthen links between
languages.

Shared encoder. The system treats input phrases in different languages via the universal encoder
detailed in Section 4.1. Works using a similar idea are He et al. (2016), Lee, Cho, and Hofmann
(2017) and Artetxe et al. (2018c). As the input embeddings are already mapped to a common
space, the representation generated by the shared encoder is also a cross-lingual vector. After the
training, we use exclusively the shared encoder to generate cross-lingual phrase representations,
which is essential for our final task: bilingual phrase alignment.

Pseudo back-translation. Since we do not have cross-lingual data, a direct link between a phrase
in language l1 and one in language l2 is not feasible. However, synthetic translations of single
words can be easily obtained using bilingual word embeddings. By using translated single-word
phrases to train ourmodel, we create stronger links between the two languages. This can be viewed
as pseudo back-translation as we generate synthetic translations by BWE while in NMT systems
the translation is generated by the corresponding decoder (Sennrich et al. 2016; Artetxe et al.
2018c).

Therefore, the system potentially has four objective loss functions when we alternatively iterate
all phrases in the two languages l1 and l2:

Lcp l1→l1
(
θenc, θdec→l1

) = −Ex∈Dl1H(ws(x), dec→l1(enc(x))), (6)

Lcp l2→l1
(
θenc, θdec→l1

) = −Ex∈Dl1H(ws(x), dec→l1(enc(BWE(x)))), (7)

Lcp l2→l2
(
θenc, θdec→l2

) = −Ex∈Dl2H(ws(x), dec→l2(enc(x))), (8)

Lcp l1→l2
(
θenc, θdec→l2

) = −Ex∈Dl2H(ws(x), dec→l2(enc(BWE(x)))) (9)

where Lcp lp→lq means the context prediction loss from an encoded phrase in language lp to the
context of language lq, dec→l(enc(x)) is the reconstructed version of the wrapped sentence, ws(x)
denotes the real wrapped sentence containing the phrase x and BWE(x) is the translated single-
word phrase for x using bilingual word embedding.

5. Experiment settings
5.1 Phrase synonymy and similarity
Data and resources. For the phrase synonymy task, we use two specialized domain corpora:Wind
Energy (WE)a and a new Breast Cancer (BC) corpus. The WE corpus comes with 6 languages.
In this work, we only evaluate on the English and the French corpora which have, respectively,
13,338 and 33,887 sentences. The BC corpus is in English and contains 26,716 sentences. The aim
of the phrase synonymy task is to find a phrase synonym in a given corpus. Usually a large list
of candidates is first extracted from the corpus so we can select candidates which are the most
likely phrase synonyms. In order to build the candidate list, we use the IXA pipes (Agerri et al.
2014) libraryb to preprocess the corpora with the built-in preprocessing tools following this order:
normalization, tokenization and pos-tagging. Then a list of phrases of a maximum of 7 words is
extracted using the open source tool PKE.c Finally, 8923 and 6412 phrases are extracted from

ahttps://www.ls2n.fr/ressources-langagieres.
bhttp://ixa2.si.ehu.es/ixa-pipes/.
chttps://github.com/boudinfl/pke.

https://doi.org/10.1017/S1351324922000328 Published online by Cambridge University Press

https://www.ls2n.fr/ressources-langagieres
http://ixa2.si.ehu.es/ixa-pipes/
https://github.com/boudinfl/pke
https://doi.org/10.1017/S1351324922000328


Natural Language Engineering 655

the English and French WE corpora and 8989 phrases from the BC corpus after filtering hapaxes
(threshold 1). We use the same gold standard as Hazem and Daille (2018) for the WE corpus. The
gold standard for the BC corpus was built based on the MeSH 2018 thesaurusd and contains 108
phrases.

As for the phrase similarity task, two public open domain data sets are obtained from the task
2 of previous Semeval campaigns. One is from task 2 of Semeval 2017 (Camacho-Collados et al.
2017)e and the other one from the task 5 of Semeval 2013 (Korkontzelos et al. 2013).f The Semeval
2017 data set has a gold standard of 95 pairs of phrases after filtering those with only single words,
an evaluation script, a 64-dimensional static word embedding model and a wiki corpus with 46
million sentences which contains the context information of the phrases. The Semeval 2013 data
set only contains a gold standard of 7814 pairs of multiword phrases.

Input embeddings. Regarding the embedding model, we use deeplearning4jg to train domain-
specific 100-dimensional word embeddings using the Skip-gram model, with 15 negative samples
and a window size of 5. Since the specialized corpora are fairly small, we concatenate these embed-
dings with the 300-dimensional fastText vectors pretrained on wikipedia (Grave et al. 2018),h
resulting in 400-dimensional vectors. This technique has proven to be very effective for special-
ized domain corpora (Hazem andMorin 2017; Liu et al. 2018). For the general domain corpus, we
simply use the Semeval 2017 given model. Pertaining to the contextualized embedding model, we
incorporate the implementation of BERTi and ELMoj because they both have pretrained models
on multiple languages. The BERT implementation has a multilingual model that contains 104 lan-
guages, while the ELMo implementation has 44 separate language models. It is worth mentioning
that all these models are pretrained on large general corpora (1B words for ELMo and 3.3B for
BERT). Finally, we have two types of input embeddings:

• Static. The 400-dimensional static word embedding vectors obtained from concatenat-
ing the pretrained fastText vectors and vectors trained on small specialized domain cor-
pora for the phrase synonymy task and also the 64-dimensional static word embedding
vectors provided by the Semeval 2017 data set for the phrase similarity task.

• BERT or ELMo. Pretrained contextualized embeddings with feature-based usage setting.

5.2 Bilingual phrase alignment experiments
Data and resources. For the bilingual phrase alignment task, we use the same Wind Energy
(WE) comparable corpus as in the monolingual tasks. This time we evaluate the English, French,
Spanish, and Chinese corpora. Furthermore, we extend the Breast Cancer corpus (BC) to an
English-Spanish comparable corpus by crawling from a scientific website.k

The English BC corpus has 26,716 sentences and the Spanish one has 62,804 sentences. The
gold standard was constructed based on the MeSH 2018 thesaurusl and contains 108 phrase pairs
which exist in our corpus. Concerning the WE corpora, the English, French, Spanish and Chinese
parts respectively contain 13,338, 33,887, 29,083 and 17,932 sentences. Hazem and Morin (2016)
proposed a reference list consisting of 139 single words for the English-French corpus, while Liu

dhttps://meshb.nlm.nih.gov.
ehttp://alt.qcri.org/semeval2017/task2/index.php?id=data-and-tools.
fhttps://www.cs.york.ac.uk/semeval-2013/task5.
ghttps://deeplearning4j.org.
hhttps://github.com/facebookresearch/fastText/.
ihttps://github.com/huggingface/pytorch-pretrained-BERT.
jhttps://github.com/HIT-SCIR/ELMoForManyLangs.
khttps://www.sciencedirect.com.
lhttps://meshb.nlm.nih.gov/search.
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Table 1. Comparison of complexity. n is the input sequence length, dmeans themodel dimen-
sion where we assume d= dinput = dhidden = doutput for simplifying the comparison. k is the
kernel width for CNN

RctNN CNN Self-Att TF-RNN

Computational complexity O(n · d2) O(k · n · d2) O(n2 · d) O( n(n−1)2 · d2)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Dependency length O(n) O( nk ) O(1) O( n2 )

Table 2. Detailed term length distribution

Data set-language 1 2 3 4 5 6 Total

BC-en 78 24 5 1 0 0 108
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

BC-es 96 30 18 4 0 0 148
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

WE-en 17 62 8 3 0 0 90
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

WE-fr 17 73 33 8 8 0 139
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

WE-es 22 73 50 15 1 3 164
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

WE-zh 34 66 7 3 2 0 112

et al. (2018) provided a gold standard with 73 multiword phrases for the same corpus. Based on
the reference list of Liu et al. (2018), we propose a new gold standard including also single words.
Moreover, we extended this gold standard to other languages while ensuring that all reference lists
share the same 90 English phrases to be aligned. Finally, alignment reference lists were obtained
for three language pairs: English-French, English-Spanish and English-Chinese. For the sake of
comparability, we report results on the data sets of Liu et al. (2018) and Hazem andMorin (2016).
Table 2 shows the detailed gold term distribution in terms of length for BC and WE corpus. Note
that for one English term, we can have multiple correct alignments in the target language.

For the preprocessing and phrase extraction, we also use the IXA pipes library to tokenize and
lemmatize French and Spanish corpora. It should be noted that the WE Chinese corpus is already
pre-segmented. Then we use the Stanford CoreNLP librarym pos-tagger for all languages, then for
the phrase extraction we use the same PKE tool as mentioned in monolingual tasks. After hapax
filtering, each corpus contains roughly 6000 candidate phrases of maximal length 7.

Input cross-lingual embeddings. We implement the bilingual word embedding framework men-
tioned in Section 2.3 using deeplearning4j 1.0.0-beta3.n We also use this method to obtain
400-dimensional word embedding vectors as in the monolingual tasks. Recall that this technique
follows the idea discussed in Hazem and Morin (2017) and Liu et al. (2018). We then apply the
bilingual word embedding framework so all word embeddings at input level in each experiment
are mapped to a common space. For each language pair, the seed lexicon is selected by a fre-
quency threshold of 50, obtaining around 2000 word pairs. We use unit length normalization,
mean centering, matrix whitening, re-weighting, and de-whitening to generate cross-lingual word
embeddings.o Since our goal is to evaluate the contributions of our system, we will notmeasure the
impact of different pretrained embeddings but prefer to focus on those achieving state-of-the-art
results to date.

mhttps://stanfordnlp.github.io/.
nhttps://deeplearning4j.org/.
oThis is the optimal application order reported by Artetxe et al. (2018a).
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5.3 Training settings
For all our experiments, the dimension of the encoded vector (vo in Figure 3) for the shared
encoder is set to 500. This is also the hidden size for the LSTM decoders. For the fastText or
ELMo input embeddings, sentences longer than 100 words are cutoff. While for BERT, sentences
longer than 150 tokens are cutoff. Because BERT uses SentencePiece (Kudo and Richardson 2018)
tokenizer and some words are tokenized into several tokens. By truncating sentences, the training
is quicker and more stable. We pad the special token [CLS] to the beginning of every sentence for
the models with BERT. To extract the features from the BERT model, we sum the output vectors
of the last four hidden layers (Devlin et al. 2018), this has shown to be the second best method,
with only 0.2 F-score point behind concatenating the last four layers which is 4 times less space
efficient. The model is trained by a minibatch of 20, which means that given one phrase, we cal-
culate the mean of the cross-entropy loss between 20 predicted and real sentences. We run our
experiments for a maximum of 200 epochs with an early-stop condition of three consecutive loss
increases. One model with static word embeddings takes about 2 days to train on a single Geforce
1080 Ti GPU with Pytorch 1.0 and Cuda 10 on Ubuntu 16.04, while training with contextualized
embeddings takes about 4 days with the feature-based strategy.

5.4 Evaluation settings
The generated phrase vectors are compared by cosine similarity. For the synonymy and bilingual
alignment tasks, we simply calculate the cosine of all pre-extracted phrase candidates and rank
them.We use the evaluation script provided with the Semeval2017 data set for the similarity task,p
and theMAP (Mean Average Precision) score (Manning et al. 2008) to evaluate the synonymy and
bilingual alignment task:

MAP = 1
|W|

|W|∑

1

1
Ranki

(10)

where |W| corresponds to the size of the evaluation list, and Ranki corresponds to the ranking of
a correct synonym candidate i.

5.5 Reference methods
Baseline approaches. Regarding the monolingual tasks, we have implemented three types of
baseline approaches:

• Skip-gram-ext. The extended version of Skip-gram (Artetxe et al. 2018b) with 300
dimensional vectors. The implementation is publicly available.q

• Static mean. The additive approach that has proven to be surprisingly effective (Mikolov
et al. 2013b; Liu et al. 2018).

• ELMo/BERT mean/reduce/concat. We extract a single fixed-length vector from the
feature-based output sequence of ELMo/BERT with two strategies. The mean is similar
to the additive approach where we simply calculate the mean vector over all normalized
vectors in the output sequence. The reduce strategy uses one vector to represent the whole
sequence: for ELMo it is the last token vector while for BERT we use the output of the hid-
den layer for the first [CLS] token. The concatenation for ELMo is based on the original
ELMo paper (Peters et al. 2018) where the authors propose to concatenate the first and the
last token to represent a sequence.

phttps://alt.qcri.org/semeval2017/task1/.
qhttps://github.com/artetxem/phrase2vec.
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Table 3. Overall MAP comparison for the phrase synonymy task

Method Synonymy data set

WE-fr WE-en BC-en

Baselines Skip-gram-ext <0.5 <0.5 23.30
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Static-mean 5.29 12.19 39.65
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

BERT-reduce 4.07 10.44 26.04
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

BERT-mean 4.49 16.59 36.58
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ELMo-reduce 1.54 4.09 26.23
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ELMo-mean 7.37 5.20 29.27
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ELMo-concat 8.97 9.60 28.28

Context based Static-CNN 7.42 15.71 35.75
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Static-RecurrentNN 12.89 20.53 42.60
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Static-Transf. 4.62 15.82 35.90
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Static-TF-RNN 15.06 33.47 44.84

For the bilingual alignment task, we have also implemented two baseline classes:

• Static mean. This is the same approach as in the monolingual tasks.
• Co-occurrence based approach. The compositional approach (Grefenstette 1999; Tanaka
2002; Robitaille et al. 2006) is a quick and direct method to align multiword expressions.
It is basically a dictionary look-up approach that translates each word via a dictionary and
sort all candidates by frequency. Morin and Daille (2012) proposed a co-occurrence based
approach called compositional approach with context-based method (CMCBP) to tackle the
problem of out of dictionary words. However, this approach can only align phrases of the
same length, so we compare only a subset of the multiword phrase pairs.

Encoder–decoder system with other phrase encoders. To compare our proposed TF-RNN
and the adapted cross-lingual version, we also implemented several neural networks which do not
require structured input: RecurrentNN, CNN, Transformer encoder, and LSTM, which is reported
to obtain the best results in Del et al. (2018). They all have the same output dimension, and the
CNN has a kernel size of 2 and a zero-padding so that even single-word phrases can be encoded.
A small Transformer encoder with 4 layers and 4 heads is also implemented, its hidden dimension
size of the feed forward is twice the model dimension. Note that it still has many more parameters
than other architectures (5 million parameters vs. roughly 0.5 million in other architectures).

6. Results and discussion
6.1 Phrase synonymy and similarity
Overall results on phrase synonymy and similarity tasks are shown in Tables 3 and 4.We compare
our proposal with several state-of-the-art methods that can be applied to our tasks.

Our approach with static word embeddings and the TF-RNN as phrase encoder has the best
results regarding the phrase synonymy task on specialized domain corpora. The TF-RNN has also
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Table 4. Overall correlation score comparison for the similarity task. The Semeval correlation
score is the harmonic mean of Pearson and Spearman scores. A † indicates that the corre-
sponding corpus for training a neural network is not available. In the case of the context-based
approaches, we use the network trained on the Semeval2017 corpus, as it is also a general
domain corpus

Method Similarity data set

Semeval2013† Semeval2017

Baselines Skip-gram-ext 0.378 76.827
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Static-mean 26.910 38.843
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

BERT-reduce 0.754 12.735
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

BERT-mean 19.482 36.378
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ELMo-reduce 35.112 37.968
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ELMo-mean 37.991 36.207
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ELMo-concat 36.233 31.420

Context based Static-CNN (29.890) 42.245
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Static-RecurrentNN (21.720) 42.961
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Static-Transf (39.524) 49.324
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Static-TF-RNN (22.003) 44.382

managed to obtain the third best result for the phrase similarity task on Semeval2017. Given that
the Semeval2013 data set does not provide any textual data and the model is trained on the tex-
tual corpus of Semeval2017, the results on Semeval2013 for the context prediction approaches are
biased by data availability. Moreover, compared to the approaches with contextualized embed-
ding input, the context prediction approaches (last four lines in both tables) have, for the most
part, better results on the data sets that provide a textual corpus to train the model. Although
the contextualized embedding models capture the inner relation between each component word
in a phrase, they cannot exploit the context information of the phrase during the test phase or if
the phrase is out of the training corpus. The encoder–decoder training-based approach, however,
memorizes and generalizes the context information of different phrases in the training corpus.
In addition, if we compare the four phrase encoders from the three unit length normalization,
mean centering, matrix whitening context-based approaches, our proposed TF-RNN outper-
forms the existing neural networks on the synonymy task on every data set and obtains tangible
improvements on the similarity task on the Semeval2017 data set and slightly better results on
the Semeval2013 data set compared to the recurrent neural network. Although the Transformer
encoder has better results on the similarity task, our encoder has comparable performance while
having fewer parameters (0.5M in TF-RNN vs. 5M in Transformer). Therefore, we believe that
carefully representing the phrase following a relevant syntactical structure can generate better
vector representations.

Among the noncontext prediction-based approaches (the first six lines in both tables), first
the extended Skip-gram works very poorly for the synonymy task. This is because many phrases
during the inference are freely combined so they may not appear in the training corpus. As a con-
sequence, these phrases do not have any representation in the look-up table. This phenomenon
can also be observed on the Semeval2013 similarity task. However, it performs surprisingly well
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Table 5. Results of our system with the TF-RNN encoder and wrapped context objective with
different embeddings

Task Embeddings

ELMo BERT Static

WE-fr 9.57 6.47 15.06
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

WE-en 21.39 26.66 33.47
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

BC-en 23.61 26.01 44.84
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Semeval2013 24.279 3.262 22.003
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Semeval2017 47.703 29.078 44.382

for the similarity task on the Semeval2017. The reason probably lies in the fact that Semeval2017
has a large training corpus and contains all the phrases in our test. We also notice that the contex-
tualized embeddings (from the second to the fifth lines in both tables) are not better than the static
embeddings. In fact, the static embeddings hold the best results on the BC and the Semeval2017
data set. For the contextualized embedding models, it seems that the mean of each output vector
better fits our tasks, excepting for the ELMo model on the Semeval2013 data set. Comparing the
BERT and ELMo models with mean representation, the BERT model has relatively respectable
results on the English synonymy data sets while the ELMo model is more effective on the French
data set and the similarity task. Our explanation is that the BERT model is a multilingual model
mixed with 104 languages so it is not surprising that the model is biased by the English training
corpus. Conversely, the ELMo French model is a separate model trained only on French data. For
the similarity task, the ELMo model largely outperforms the BERT model on the Semeval2013
data set although the two models have similar results on the Semeval2017 data set.

In addition to the comparison with other existing methods, we have conducted a series of
ablation tests to better understand the behavior of the key components in our system.

Static versus contextualized input embedding results are reported in Table 5.
As stated before, the static embeddings for the synonymy task are open domain pretrained

vectors reinforced with specialized domain embeddings, trained on small specialized domain cor-
pora. This solution has been exploited to generate meaningful embedding vectors on specialized
domain corpora for bilingual lexicon extraction (Hazem and Morin 2017; Liu et al. 2018).

As shown in Table 5, the static embeddings concatenated with specialized domain information
achieve clearly better results on the specialized domain data sets (WE and BC). On the contrary,
the ELMo model trained on general domain corpora has the best results. We can the deduce
that the availability of domain-specific information outweighs the choice of a particular word
embedding architecture. For a specialized domain corpus, it is more effective to exploit domain
information to improve the model rather than using more advanced architectures or high-
coverage open domain resources. Besides, it shows that our system can efficiently incorporate the
contextualized embeddings as we obtain the best results on the general domain Semeval2017 data
set, improving the state-of-the art approach by nearly 9 points.

Results with the BERTmodel are the worst on the French and the Semeval data sets. Yet, it out-
performs the ELMo model on English synonymy data sets. Again, this confirms that the model
is less effective on non-English data sets as we previously discussed. As for the similarity task,
we assume that increasing the training size (e.g., 831 phrases in Semeval2017 vs. 8923 in WE-en)
would improve the system because the BERT model uses a subword tokenizer that often tok-
enizes often a word into multiple units. This could make it more difficult to generalize meaningful
parameter weights during training.
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Table 6. Results of our systemwith the TF-RNN encoder and static embeddings with different
training objectives

Task Training objectives

Plain Context Wrapped

WE-fr 9.40 13.35 15.06
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

WE-en 30.08 32.85 33.47
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

BC-en 39.48 41.49 44.84

Semeval2013 16.759 21.376 22.003
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Semeval2017 39.223 43.079 44.382

Table 7. Comparison of the encoder–decoder framework with a pseudo-
siamese network. The two systems use the TF-RNN as phrase encoder

Task Architecture

Pseudo-siamese Encoder–decoder

WE-fr 3.84 15.06
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

WE-en 11.71 33.47
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

BC-en 32.18 44.84

Semeval2013 0.345 22.003
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Semeval2017 4.164 44.382

Wrapped context prediction versus other training objectives results are shown in Table 6.
In order to prove the effectiveness of the proposed training objective, we evaluated two more

models using two different training objectives with exactly the same experimental settings. The
first one predicts all the sentence tokens, represented by “plain”. The second one predicts only the
context tokens around the phrase without the wrapped phrase token, represented by “context”.

We can clearly see that the wrapped context training objective consistently obtains the best
results compared to other possible objectives in our scenario. Although the context prediction
strategy is fairly close, adding a wrapped token to replace the phrase allows the system to learn
from a syntactically more complete sequence. Predicting all the tokens including the phrase is
worse than the context prediction objective even if it predicts a syntactically complete sequence.
The reason for this is possibly that predicting the phrase tokens makes the encoder over related
to the specific phrase components rather than the generalized features across different but similar
phrases, eventually it is difficult for the encoder to generate close vectors for these phrases.

Pseudo-Siamese network versus encoder–decoder system results are shown in Table 7.
There is another applicable framework for training our phrase encoder in an unsupervised way:

the pseudo-siamese network (Bromley et al. 1993; Zagoruyko and Komodakis 2015;Wang, Li, and
Lazebnik 2016). The idea is quite simple, instead of predicting a sequence of context tokens from
a decoder, the network minimizes the vector distance between the phrase and the context vector.
We use an LSTM to encode the context with a self-attention mechanism (Lin et al. 2017).

We can see that the pseudo-siamese network performs very poorly on all data sets, with
extremely large drops on the similarity. It is somewhat unexpected for us since both training
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Table 8. Overall MAP for all phrase alignment. sw, n2n, and p2q, respectively, mean single-word to single-word, same length
multiword, and variable length phrase alignment.We do not present the results of the distributional approach on the English-
Chinese corpus because we do not have enough resources to build the co-occurrence matrix as in the other language pairs
because the distributional approach requires a high coverage bilingual dictionary. Furthermore, if the dictionary does not use
the same Chinese word segmentation approach as the WE corpus, it is even harder to find the words. † means the original
data set used in Liu et al. (2018)

Data set Method Encoder Our

Corpus Phrases CMCBP ADD Rec. CNN LSTM TRAN. method

sw (72) 35.72 47.46 46.71 45.12 46.25 43.37 47.76


BC n2n (21) 68.73 81.10 28.52 62.10 50.05 59.26 86.11


en-es p2q (9) – 42.18 1.11 10.65 7.04 4.49 49.11


all (108) – 52.85 36.78 43.04 43.72 43.22 55.40


sw (15) 65.56 78.25 77.22 78.33 79.36 85.56 79.44


WE n2n (61) 42.09 57.37 6.16 40.84 18.64 41.82 62.19


en-fr p2q (14) – 15.83 <0.5 10.07 9.09 12.35 37.95


all (90) – 55.77 17.25 43.33 27.42 44.53 62.10
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

sw (15) 63.35 77.92 88.89 75.78 87.18 84.44 87.62


WE n2n (61) 35.94 62.68 7.31 40.33 23.07 44.68 61.35


en-es p2q (14) – 43.28 <0.5 28.57 17.86 37.20 46.21


all (90) – 62.20 19.77 44.41 32.94 50.14 63.38


sw (17) – 53.43 70.26 76.47 71.43 65.92 66.50


WE n2n (47) – 23.34 17.53 16.55 25.24 18.86 23.01


en-zh p2q (26) – 4.97 5.13 7.60 2.37 5.80 12.32


all (90) – 22.67 23.91 25.28 27.36 23.98 28.13
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

WE n2n (40) 67.32 78.36 46.07 68.51 44.82 48.47 88.01


en-fr p2q (33) – 34.38 2.38 20.01 7.93 28.25 41.83


Liu2018† all (73) – 58.48 26.06 46.59 28.13 39.33 67.13

approaches are inspired by the Harris distributional hypothesis (Harris 1954). This may be due
to the nature of the comparison tasks or the small size of our training samples. It perhaps explains
why encoder–decoder systems are becoming more popular in recent studies compared to others.

6.2 Bilingual phrase alignment
Table 8 shows the overall results on all test phrases. Since the distributional approach (Morin
and Daille 2012) does not include the alignment of variable length phrases, we ignore the
corresponding results in the table.

It is clearly shown that the proposed method has a better overall performance. Especially when
it comes to different length phrase alignments, the new approach significantly improves the MAP
with an average score of 8.8 points. This proves that the proposed method is able to produce
high-quality alignment for phrases of variable length. Keep in mind that the different length
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Table 9. MAP% for single-word phrase alignment

BC WE

Method en-es en-fr en-es en-zh en-fr-HM

Mikolov et al. (2013a) 39.96 91.33 87.27 45.88 79.47
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Artetxe et al. (2018a) 49.13 95.56 90.39 73.52 84.01
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Our method 45.96 89.44 88.89 58.75 82.23

distribution represents a small proportion of all test phrases except for the English-Chinese cor-
pus, so the overall score would be furthermore improved if we had uniform distribution for all
kinds of alignment. The second best method is the previously described addition approach, which
obtains good results (Mikolov et al. 2013b; Del et al. 2018). However, we observe that between lin-
guistically distant language pairs (English-Chinese), all encoder–decoder systems outperform the
addition-based approach. The CNN has some interesting results in same length alignment, and
the LSTM is powerful concerning short phrase alignment but unlike in Del et al. (2018), it falls
behind on other types. This difference may be explained by the fact that they limit the alignment
to two-word phrases.

The transformer encoder does not obtain better results than the addition-based approach nor
better results than the other encoders. First, for all the addition is still more adaptive and effective
for short sequence comparison between linguistically close language pairs (Hazem and Morin
2017; Liu et al. 2018; Del et al. 2018). Second, as we set a maximum epoch of 200, we think that
the transformer encoder may not be converged after 200 epochs because it has a much bigger
parameter-sample ratio than the other encoders. Finally, transformer architectures are basically
multihead self-attentions, which are designed for capturing the relations in long sequences while
we encode mostly short sequences.

The relatively poor results on the English-Chinese corpus may be due to the segmentation of
Chinese words. More concretely, as the input vectors for the Chinese sequences are at word-level,
many words in our gold standard are not segmented in the same way as in the given corpus which
is already pre-segmented. We would like to replace the word-level embeddings by character-level
ones in our future works.

Concerning the single-word alignment on BC, 25 among the 72 single words are in fact
acronyms which are particularly difficult to align. This would explain why the single-word align-
ment has much poorer results than other distributions. The proposed method obtains strong
results for single-word alignment and we believe this happens because the system sees more
single-word alignment samples generated by the pseudo back-translation during training.

In order to show that the proposed method can still maintain a reasonable performance on
single words, we present in Table 9 the results for single words compared to state-of-the-art work
on bilingual word embedding (Artetxe et al. 2018a), including the 139 English-French single word
data set of Hazem and Morin (2016) (suffixed -HM in the Table 9). To be comparable, we only
test on single-word phrases and the candidate list is limited to all single words in the corpus
vocabulary. In our data sets, the source English words are the same 15 as in the sw line of Table 8.

We can see that in general, compared to Artetxe et al. (2018a), the proposed approach does not
significantly degrade the results except for the English-Chinese words. In addition, we succeed in
maintaining a better result with regard to the original transformation matrix method (Mikolov
et al. 2013a) with only one exception on the English-French wind energy data set. This shows that
our approach is not biased by the compositionality of the multiword expressions.
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Table 10. Alignment examples within top 2 candidates (“�” is the segmentation point for Chinese words)

Data set Source Addition Our method

BC breast cancer cáncer mamario cáncer de mama
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

en-es cell death muerte celular muerte
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

WE blade tip angle des pales côté supérieur de la pale
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

en-fr Darrieus rotor rotor tripale rotor vertical
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

WE airflow freno aerodinámico flujo de aire
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

en-es wind power plant electricidad del viento planta eólica
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

WE wind vane
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

en-zh electricity power

6.3 Bilingual phrase alignment qualitative analysis
For a better understanding of how the proposed method succeeds or fails to align different types
of phrases, we analyzed some of the alignments proposed by our system.

Table 10 shows examples extracted from the top 2 nearest candidates to the source phrase in
column 2. Again we see that the proposed method is capable of generating better results over
different types of alignment. In the first example, with the proposed approach, the source phrase
breast cancer is aligned to cáncer de mama (lit. “cancer of breast”), which is the expected phrase
in Spanish and is far more idiomatic than cáncer mamario (lit. “cancer mammary”) obtained by
the addition approach. In line 7, we see that the perfect translation for wind vane is found by
our proposal: , while the additive approach finds (lit. “yaw electric machine”).
Besides, examples in lines 3, 5, 6, 7, and 8 are all composed of phrases of variable length, and the
corresponding reference phrase can be found in the fourth column. Interestingly, we find that the
proposed system find paraphrases referring to fairly domain-specific phrases like blade tip, which
is aligned to côté supérieur de la pale (lit. “side top of the blade”). This is also the case for Darrieus
rotor aligned to rotor vertical, which is an outstanding result since the Darrieus rotor is a kind of
vertical rotor.

Though the proposed method performs generally well on phrases, we observe that it occasion-
ally over emphasizes occasionally toomuch the syntactic head in amultiword phrase. For instance,
in the second example, cell death is aligned tomuerte (“death”), while the addition-based approach
manages to align it tomuerte celular (lit. “death cellular”), which is the reference phrase in Spanish.
Undoubtedly, death is the syntactic head for the noun phrase cell death, it is clear that the proposed
method puts more weight on the syntactic information rather than the compositional property for
this phrase. In a more generalized manner, the translations for English source phrases with syn-
tactical patterns such as ADJ NOUN will be only NOUN. This also explains why we do not obtain
better results on equal-length phrase alignment on the English-Spanish and English-Chinesewind
energy corpora (Table 8). This bias could be due to the increased amount of single-word phrase
samples of the pseudo back-translation reinforced learning. This suggests that we could possibly
improve the system by adding synthetic translations for multiword phrases during the training.

7. Conclusion and perspective
Significant advances have been achieved in bilingual word-level alignment, yet the challenge
remains for phrase-level alignment. Moreover, the need for parallel data is a critical drawback
for the alignment task. This work proposes a system that alleviates these two problems: a unified
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phrase representation model using cross-lingual word embeddings as input and an unsupervised
training algorithm inspired by recent works on neural machine translation.

The proposed system consists in a encoder–decoder system where for the encoder part we
introduce a new short sequence encoder called a tree-free recursive neural network (TF-RNN),
that constructs cross-lingual representations of phrases of any length and takes into account word
order. For the decoder part, we use a two-layer LSTM that decodes these representations w.r.t
their contexts. As for the training strategy, in order to train the network in an unsupervised way,
we also incorporate a pseudo back translation mechanism. Experiments on five data sets show
that the adaptability that our method offers does not imply performance drawbacks. In fact, on
the bilingual phrase alignment task results are on par with the state of the art. As for the alignment
of phrases of different lengths, our method improves the latest results by a mean of 8.8 points in
MAP and seems mainly limited by segmentation issues, which we intend to address in future
works using character-level embeddings.

We would also like to continue studying more extensive evaluations in our future work and
further study the extract-edit approach (Wu et al. 2019) to improve our system. Based on amethod
similar to back-translation, we could use extracted and edited phrases as the synthetic translations
which would avoid any misleading caused by the poor translations. Finally, two strategies could
be more deeply explored regarding data selection: pretraining corpus merge and post-training
embeddingmerge. The former investigates the nature and the quality of the corpora and trains the
word embeddings with one finely merged corpus. The latter trains separately word embeddings
from the general and specialized domain corpora and then merges these word embeddings. We
would like to study the behavior of using different merging approaches such as a specific layer
related to the merge or multitask learning for both separated embeddings.
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