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ON GORENSTEIN SURFACES DOMINATED BY P
2

R. V. GURJAR, C. R. PRADEEP and D.-Q. ZHANG

Abstract. In this paper we prove that a normal Gorenstein surface dominated
by P

2 is isomorphic to a quotient P
2/G, where G is a finite group of automor-

phisms of P
2 (except possibly for one surface V ′

8). We can completely classify
all such quotients. Some natural conjectures when the surface is not Gorenstein
are also stated.

§1. Introduction

Let V be a normal projective surface defined over C. V is said to

be a log del Pezzo surface if V has at worst quotient singularities and the

anti-canonical divisor −KV is ample. The rank of V is the Picard number

ρ(V ) = dimQ Pic(V ) ⊗ Q. It is easy to see that any quotient of P2 by

a finite group of automorphisms is a log del Pezzo surface of rank one.

Miyanishi and Zhang have raised the question of giving a criterion for a

projective normal surface to be isomorphic to P2/G, where G is a finite

group of automorphisms of P2. In [9] certain rank 1 log del Pezzo surfaces

are shown to be quotients of P2 modulo a finite group.

Our main theorem is the following result.

Theorem 1. Let V be a Gorenstein normal surface and let f : P2 →
V be a non-constant morphism. Then we have the following assertions:

(1) If π1(V \ Sing V ) is trivial then V is isomorphic to one of the fol-
lowing surfaces.

(i) The projective plane P2,

(ii) The quadric cone Q := {X2 + Y 2 + Z2 = 0} in P3,

(iii) A surface of singularity type A1 + A2, or

(iv) The surface V ′
8 which has a unique singular point, which is analytically

the E8 singular point. (cf. Theorem 2 below).
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(2) If π1(V \ Sing V ) is non-trivial then f factors as P2 → W → V ,
where W is one of the surfaces (i) or (ii) in (1) above and W → V is étale
over V \ Sing V .

(3) V is always isomorphic to a quotient P2/G for a finite group of
automorphisms of P2, except for the surface V ′

8 in the case (iv) above. The
surface V ′

8 is not isomorphic to any quotient of P2 modulo a finite group of
automorphisms.

Remarks. (1) We can give a very precise description of any V in part
(3) above, particularly its singularity type and π1(V \ Sing V ) and the cor-
responding surface W as in part (2) above. (See Section 5.)

(2) The surfaces V8, V ′
8 are “twin” surfaces. Theorem 1 says that there

is no non-constant morphism P2 → V8. It is most probable that there is
no such map P2 → V ′

8 but we have been unable to prove this. This is the
exception in part (iv) above.

We will also prove the following result which will be used in the proof of

Theorem 1. This result is stated in [9] and a sketch of proof is given there.

In view of the importance of this result for our proof of Theorem 1 we

will give a complete proof. We would like to point out that the uniqueness

assertion made in Lemma 7 of [9] is not quite correct. For K2
V = 1 we have

found two non-isomorphic surfaces.

Theorem 2. Let V be a Gorenstein log del Pezzo surface of rank 1
such that π1(V \Sing V ) = (1). Let d := (KV )2. Then we have the following
assertions :

(i) 1 ≤ d ≤ 9 and d = 9 implies V ∼= P2. If d = 1 then V is one of the
following two surfaces in the weighted projective space P(1,1, 2, 3).

V8 : {W 2 + Z3 + X5Y = 0}.

V ′
8 : {W 2 + Z3 + X5Y + X4Z = 0}.

Both these have a unique singularity of type E8. The surface V8 contains a
rational curve C with only one ordinary cusp (and otherwise smooth) such
that C ∼ −KV . The surface V ′

8 contains a rational curve C with only one
ordinary double point (and otherwise smooth) such that C ∼ −KV . In both
these cases C does not pass through the singular point of V.
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(ii) If d > 1, then V contains a cuspidal rational curve C as in (i) above
such that C ∼ −KV and C does not pass through the singular point of V .
The surface V is uniquely determined by the integer d.

(iii) If d 6= 8 then V contains an irreducible curve ∆ such that ∆
generates the Weil divisor class group of V and −KV ∼ d∆. If d = 8 then
V contains an irreducible curve ∆ which generates the Weil divisor class
group of V and −KV ∼ 4∆.

(iv) In case 1 < d ≤ 5 or d = 1 and V = V8 the affine surface V \ C
is isomorphic to C2/G, where G is a finite group of automorphisms of C2

isomorphic to the fundamental group at infinity of V \ C.

We now mention several results proved by other mathematicians which

are closely related to our Theorems 1 and 2.

(1) Demazure has proved important results about Gorenstein log del

Pezzo surfaces in [3], particularly about the linear systems | − nKV |.
(2) In [4] general results about embeddings of Gorenstein log del Pezzo

surfaces are proved.

(3) In [9] a classification of rank 1 Gorenstein log del Pezzo surfaces is

given.

(4) In [7] R. Lazarsfeld has proved that any smooth variety which is

dominated by Pn is isomorphic to Pn.

(5) In [5] and [8] it is proved that if there is a proper map f : C2 → V

onto a normal algebraic surface V then V is isomorphic to C2/G for a finite

group of automorphisms of C2.

(6) In [6], Mohan Kumar has shown that if a normal rational sur-

face S has a singularity of type E8 then the local ring of S at this sin-

gular point is isomorphic to one of the (non-isomorphic) local rings, viz.

C [X,Z,W ](X,Z,W )/(W 2 + Z3 + X5) or, C [X,Z,W ](X,Z,W )/(W 2 + Z3 +

X4Z + X5). This result will be used in Section 3.

(7) In [1] it is proved that a surface of the form P2/G cannot have a

unique singular point of the type E6, E7 or E8. This is a special case of our

Theorem 1.

Our proof of Theorem 1 is almost self-contained. We do not use the

classification mentioned in (3) above. All we need is some general results

about embeddings given by | − KV | and | − 2KV | which are proved in [4].

Nevertheless, the paper [9] has been important for us while thinking of the

proofs in this paper.

Recently, the first named author has proved the following general result

using the results of this paper in an important way.
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Let π : P2 → P2 be a non-constant morphism. Let C be an irreducible

curve of degree > 1 in P2 which is ramified for π. Then the greatest com-

mon divisor of the ramification indices of the irreducible curves lying over

C is 1. In particular, π−1(C) cannot be irreducible.

§2. Preliminaries

All the algebraic varieties we consider are defined over the field C of

complex numbers. A smooth complete rational curve C on a smooth alge-

braic surface S is called a (−n)-curve if C2 = −n. Let Z be an irreducible

normal variety such that π1(Z \ Sing Z) is finite. Let W ′ be the universal

covering space of Z \ Sing Z. Then W ′ is also a variety. The normalization,

W , of Z in the function field of W ′ is called the quasi-universal cover of Z.

There is a proper morphism with finite fibers W → Z which is unramified

over Z \ Sing Z. For any normal variety Z we will denote the Zariski-open

subset Z \ Sing Z by Z0. Let Z be an irreducible normal variety. An alge-

braic action of C∗ on Z is said to be a good C∗-action if Z contains a point

z which is in the closure of every orbit. In this case we also say that Z is a

quasi-homogeneous variety.

In this section we collect a few results which we will use (at least im-

plicitly) to prove Theorems 1 and 2. The following is from lemma 6 of [9].

Recall that d := K2
V . The integer d is called the degree of V .

Lemma 1. (Reproved in Theorem 2) Let V be a Gorenstein log del
Pezzo surface of rank one and let V ◦ denote the smooth locus of V . If π1(V

◦)
is trivial then V has one of the following combinations of singularities :
A1, A1 + A2, A4, D5, E6, E7, E8. The values of K2

V in these cases
are 8, 6, 5, 4, 3, 2, 1 respectively. (Note that the case K2

V = 7 does not
occur.)

Here A1 + A2 means that there are two singular points on V , one of

type A1 and the other of type A2. We will call these as the Dynkin types

of V . Sometimes we also say that V is of type A1, A2.

The following result plays an important role in our proof (see Corollary

4.5 of [4]):

Lemma 2. Let V be a Gorenstein log del Pezzo surface of degree d. If
d ≥ 3 then the linear system | − KV | is very ample and gives a projectively
normal embeding of V in Pd.
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If d = 2 then | − 2KV | is very ample and gives a projectively normal em-
bedding of V in P6.

We will need the following result in our proof (see Lemma 6.1 of [11]).

Lemma 3. Let G be an algebraic group which acts algebraically on a
normal variety Y. Suppose f : Z → Y is a finite morphism with Z a normal
variety. If Z contains a non-empty G-equivariant Zariski-open subset Z0

such that f restricted to Z0 is G-equivariant then there is a unique action
of G on Z such that f is a G-morphism.

§3. Proof of Theorem 2

In this section we will prove Theorem 2 (cf. Introduction). This and

some of the arguments in the proof of Theorem 2 will be used in proving

Theorem 1. So let V be a Gorenstein log del Pezzo surface of rank 1 such

that π1(V \ Sing V ) is trivial.

Let g : Ṽ → V be a minimal resolution of singularities. Then K2
Ṽ

=

K2
V > 0. By assumption, |nKṼ | = φ for n > 0. Since π1(V \ Sing V )

is trivial the surface Ṽ is simply-connected. Now it follows by Noether’s

theorem that Ṽ is rational. Hence K2
Ṽ

+ b2(Ṽ ) = 10. This implies that

1 ≤ K2
Ṽ

≤ 9. If b2(Ṽ ) = 1 then V is smooth and hence isomorphic to P2.

From now onwards, we will assume that 1 ≤ K2
Ṽ

≤ 8. We will assume in

what follows that V is not smooth. Consider first the case d = 8. Then Ṽ

contains a (−2)-curve C. This implies that Ṽ is the Hirzebruch surface Σ2

and V is obtained by contracting the (−2)-curve to an A1-singularity. In

this case V is isomorphic to the quadric cone Q := {X2 + Y 2 + Z2 = 0}

in P3. Let x, y, z denote suitable homogeneous coordinates on P2. Then

the group G := Z/(2) acts on P2 by sending [x, y, z] → [−x,−y, z]. The

line at infinity {z = 0} is pointwise fixed and we see easily that P2/(G) is

isomorphic to Q. Then Theorem 2 (ii), (iii) are clear.

Claim. The case d = 7 cannot occur.

To see this, assume that d = 7. Then Ṽ is obtained from a Hirzebruch

surface Σn by one blowing-up with E the exceptional curve. Let S be the

unique curve with self-intersection −n ≤ 0 on Σn and L be a fiber of the

P1-fibration on Σn. We can assume that the blown-up point p ∈ L. We have

the formula KΣn ∼ −2S − (2+ n)L. If p 6∈ S then KṼ ∼ −2S − (2+ n)L′ −

https://doi.org/10.1017/S0027763000008345 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000008345


168-03 : 2002/12/6(17:14)

46 R. V. GURJAR, C. R. PRADEEP AND D.-Q. ZHANG

(1+n)E, where L′ is the proper transform of L. Clearly, Ṽ contains a (−2)-

curve different from S, say C. Since K ·C = 0, the curve C is disjoint from

S,L,E. This is impossible. If p ∈ S then K ∼ −2S − (2 + n)L′ − (2 + n)E.

Again there is a (−2)-curve C different from S. We get a contradiction as

above.

In view of these observations, for the rest of the section we assume

that 1 ≤ d ≤ 6. First we will give a construction of such surfaces with

1 ≤ d ≤ 6 and later on prove that these are all the surfaces we are

looking for. We will construct examples of rank 1, Gorenstein log del

Pezzo surfaces Vi, 3 ≤ i ≤ 8, and a rank 1, Gorenstein log del Pezzo

surface V ′
8 such that K2

Vi
= 9 − i, K2

V ′

8
= 1 , and of singularity types

A1 + A2, A4,D5, E6, E7, E8, E8 respectively. Moreover, Vi, V
′
8 are compact-

ification of C2 with an irreducible boundary curve. In particular, these

surfaces have simply-connected smooth parts.

Let X (resp. X ′) be a relatively minimal rational elliptic surface with

a unique section E (see Claim 2 in Lemma 4) and singular fibres of types

II∗, II (resp. II∗, I1, I1). Such X (resp. X ′) is unique modulo fibration-

preserving isomorphisms. The construction and uniqueness is shown by

letting X → P2 (resp. X ′ → P2) be the composition of blow-downs of the

section E and all components in the type II∗ fibre except for a multiplicity

3 component C ′
3. We get a pencil in P2 generated by a cuspidal cubic and

three times the tangent line at an inflexion point (resp. a pencil generated

by a nodal cubic and three times the tangent line at an inflexion point).

The pair of a cuspidal (resp. nodal) cubic curve and the tangent line at an

inflexion point is unique upto projective transformations. Write the type

II∗ fibre as
∑6

i=1 iCi + 4C ′
4 + 2C ′

2 + 3C ′
3 so that

∑6
i=1 Ci + C ′

4 + C ′
2 is an

ordered linear chain.

Let X → V8 (resp. X ′ → V ′
8) be the contraction of E and the type E8

divisor in the type II∗ fibre to a smooth point and a singularity of type E8.

Then V8 and V ′
8 are two non-isomorphic rank 1, Gorenstein log del Pezzo

surfaces of singularity type E8. Let ∆ be the image on V8 or V ′
8 of C1.

For 3 ≤ i ≤ 8 (resp. i = 1), we let X → Vi be the contraction of E and

all components in the type II∗ fibre, except C9−i (resp. C ′
4); denote by ∆

the image on Vi of C9−i (resp. C4).

We will show that Vi, V ′
8 are as described above. Denote by C the

image on Vi (resp. V ′
8) of the fibre of type II (resp. I1). Then one has

−KV ∼ C ∼ (9 − i)∆, V = Vi, V ′
8 (i 6= 1) and − KV ∼ 4∆ for i = 1,
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where ∆ is the generator of the Weil divisor class group Div(V ). The last

assertion here comes from the observation that the lattice on X or X ′ which

is generated by the section E, an elliptic fibre and the type E8 sublattice

in the type II∗ fibre, is unimodular and hence equals Div(X) or Div(X ′).

By Kodaira’s canonical bundle formula we have KX ∼ −F , where F

is any scheme-theoretic fiber of the elliptic fibration. This implies that

KVi ∼ −C and hence −KVi is ample. Similarly −KV ′

8
is ample.

When i = 3, the type A1, A2 singular points of V3 lie on the smooth

rational curve ∆; when 4 ≤ i ≤ 8, each of Vi and V ′
8 has the unique

singularity at the cusp of the cuspidal rational curve ∆.

We assert that Vi \∆ and V ′
8 \ ∆ are all isomorphic to the affine plane

C2. Indeed, Vi \ ∆ = V8 \ ∆, and hence we have only to consider V8 \ ∆

(V ′
8 \ ∆ is similar). Now S0 = 2(E +

∑6
i=1 Ci) + C ′

3 + C ′
4 is the unique

singular fibre of a P1-fibration ϕ : X → P1 with C ′
2 as a section. The

assertion follows from the observation that V8 \ ∆ = X \ (S0 + C ′
2)

∼= C2.

Lemma 4. (1) V8 and V ′
8 are not isomorphic to each other.

(2) Every rank 1, Gorenstein log del Pezzo surface V satisfying 1 ≤
K2

V ≤ 6 with π1(V
0) = (1) is isomorphic to one of the 7 surfaces Vi (3 ≤

i ≤ 8), V ′
8.

Proof. Some of the results and arguments in the proof below are well-
known to the experts, but we are giving them for the sake of completeness.
At any rate, the assertion in part (2) above seems to be new.

Let U → V be a minimal resolution of singularities.

Claim 1. | − KU | has a reduced irreducible member. Here we do not
need the assumptions that ρ(V ) = 1 and π1(V

0) = (1).

Recall that by Kawamata-Viehweg vanishing theorem the group
H1(U, 2KU ) = (0) [KMM, Theorem 1-2-3]. Hence by the Riemann-Roch
theorem, one has dim | − KU | = K2

U . Suppose that a member A of | − KU |
contains an arithmetic genus ≥ 1 irreducible component A0. The Riemann-
Roch theorem implies that |A0 + KU | 6= ∅. From this and 0 = A + KU =
(A0 + KU ) + (A−A0), we deduce that A0 = A with pa(A0) = 1 and Claim
1 is true.

So we may assume that every member of | − KU | is a union of smooth
rational curves. The Stein factorization and the fact that q(U) = 0 imply
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that a general member of | −KU | is of the form M1 + · · · + Mk + F , where
F is the fixed part of the linear system, Mi

∼= P1, and Mi ∼ Mj.

Suppose that K2
U = 1. If F = 0, then k = 1 and M2

1 = 1 and
Claim 1 is true. Since −KU is nef and big, it is 1-connected by a re-
sult of C.P. Ramanujam. Hence 1 = K2

U ≥ (kM1 + F ).kM1 ≥ 1 + k2M2
1 .

Thus M2
1 = 0, k = 1,M1.F = 1,KU .F = 0. Now intersecting the relation

−KU ∼ M1 + F with the smooth rational curve M1 of self intersection 0,
one gets a contradiction. So Claim 1 is true when K2

U = 1.

For K2
U ≥ 2, let U1 → U be the blow-up of a point on M1 \ (M2 +

· · · + Mk + F ). Then −KU1
is linearly equivalent to the proper transform

of M1 + · · ·+ Mk + F and hence nef and big. If U1 → V1 is the contraction
of all (−2)-curves then V1 is a Gorenstein log del Pezzo surface. For U1, we
argue as in the case of U and we can reduce the proof of Claim 1 to the
case K2

U = 1, which has been dealt with in the previous paragraph. This
proves Claim 1.

We continue the proof of Lemma 4. Suppose again first that K2
U = 1.

Then dim | − KU | = 1 and hence | − KU | has a single base point, say p.
Let A1, A2 be two general members of | − KU | meeting at p. Let Y → U
be the blow-up of p with E the exceptional curve. Then Y has a relatively
minimal elliptic fibration Y → P1 with the proper transforms of A1, A2 as
fibres and E as a section.

Claim 2. (1) The singular fibre type of Y → P1 is II∗ + II or II∗ +
I1 + I1. Hence Y = X or Y = X ′ as described earlier in this section.

(2) The section E is the only (−1)-curve on Y . All (−2)-curves are in
the type II∗ fibre. There are no other negative curves on Y .

By the assumption of Lemma 4, Pic V is of rank 1. Since V is simply
connected, Pic V is also torsion free. Since K2

V = 1, one has Pic V = ZKV .
The assumption that π1(V

0) = (1) implies that the Weil divisor class group
Div(V ) is torsion free and of rank 1 so that Div(V ) = ZC for some divisor
C. Write C = aKV with a rational number a ≤ 1. Then a = C.KV is
an integer. So a = 1 and Div(V ) = PicV . Note that Div(U) is the direct
sum of the pull back of Div(V ) and the lattice generated by components of
the exceptional divisor of the resolution U → V . Now the unimodularity of
Div(U) implies that V has exactly one singularity and it is of type E8.

Clearly, the fibre on Y containing the inverse of the type E8 divisor on
U (contractible to the singular point on V ) is of type II∗. There are no
other reducible fibres by noting that ρ(Y ) = 10 and that the section E, a
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general fibre and the 8 components in the type II∗ fibre which is of Dynkin
type E8, already give rise to 10 linearly independent classes of Div(Y ). The
fact that the Euler number of Y is 12 implies that the singular fibre type
of the elliptic fibration Y → P1 is II∗ + II or II∗ + I1 + I1. This proves
part (1) of Lemma 4 and part (1) of Claim 2.

Note that this also proves that V8, V ′
8 are the only rank 1, Gorenstein

log del Pezzo surfaces with K2
V = 1.

Let E1 be another (−1)-curve on Y . Then the observation that
−KY .E1 = 1 and the fact that −KY is linearly equivalent to an elliptic
fibre F by Kodaira’s canonical bundle formula imply that E1 is a section
of the elliptic fibration. Hence we can write E1 = E + aF + D where a
is rational and D supported by the type E8 divisor in the type II∗ fibre.
Since D2 < 0 and D ∩ E = φ when D 6= 0, one has D = 0 by using D to
intersect the expression of E1. This leads to −1 = (E + aF )2 = −1 + 2a
and a = 0, a contradiction. This proves (2) of Claim 2.

In view of what has been proved so far, we will assume that 2 ≤ d ≤ 6.
Denote 9 − d by c. From d ≤ 6 we get c ≥ 3.

Claim 3. There is a composition of blow-ups U7 → U6 → · · · → Uc =
U , so that if Ui → Wi (c ≤ i ≤ 7) is the contraction of all (−2)-curves then
Wi is a rank 1, Gorenstein log del Pezzo surface with π1(W

0
i ) = (1) and

K2
Wi

= 9 − i.

Let A be an irreducible member of | −KU | and Ec a (−1)-curve on U .
Such a (−1)-curve exists because K2

V < 7 and hence U is not a relatively
minimal surface. Then A meets Ec at a point q. Let Uc+1 → U be the
blow-up of q with Ec+1 the exceptional curve. Then −KUc+1

is linearly
equivalent to the proper transform Ac+1 of A. Since K2

c+1 > 0, the divisor
−Kc+1 is nef and big. Moreover, the curves having 0 intersection with
Ac+1 are precisely the inverse images of the (−2)-curves on U (contractible
to singular points on V ) and the proper transform E′

c of Ec. It follows that
the contraction of all the (−2)-curves on Uc+1 gives a surface Wc+1 as in
the first part of Claim 3.

We will prove that π1(W
0
c+1) = (1). Let Γ denote the union of the

(−2)-curves in Uc. Then Γ can be considered as a divisor on Uc+1 since A
is disjoint from Γ. By assumption, π1(Uc − Γ) = π1(Uc+1 − Γ) is trivial.
Consider the natural map π1(Uc+1 − Γ − E′

c) → π1(Uc+1 − Γ) = (1). By
an application of Van Kampen theorem, we see that the kernel of this map
is the normal subgroup of π1(Uc+1 − Γ − E′

c) generated by a small loop
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around E′
c. Since Ec+1 intersects E′

c transversally once, this loop can be
taken to be in Ec+1. But Ec+1 − (Γ∪E′

c)
∼= C. Hence this loop is trivial in

π1(Uc+1 − Γ − E′
c). This proves that π1(Uc+1 − Γ − E′

c) is trivial.
We will now use the assertions of Claims 2 and 3 to complete the proof of
Lemma 4.

We will first prove that any rank 1, Gorenstein log del Pezzo surface
V with simply-connected smooth locus and K2

V = 2 is isomorphic to the
surface V7 constructed earlier in this section. We will show that | − KU |
contains a cuspidal rational curve C (of arithmetic genus 1). Again let A
be an irreducible member of | − KU | and L a (−1)-curve on U. Let U8 be
the blow-up of A∩L. The contraction of all the (−2)-curves in U8 produces
either V8 or V ′

8 , since these are the only surfaces with d = 1. If U8 is the
minimal resolution of V8 then we already know that | − KU8

| contains a
cuspidal curve. In fact, we know in this case by Claim 2 that there is a
unique (−1)-curve in U8 and the contraction of this curve is the minimal
resolution of V7. In this case V ∼= V7. So assume that U8 is the minimal
resolution of V ′

8 . Recall that X ′ is obtained by resolving the base locus of
a pencil in P2 generated by a nodal cubic B′ and 3 times a line tangent at
an inflexion point of the cubic.

By the proof of Claim 2, the first 7 blow-downs of (−1)-curves start-
ing from E are unique, viz. the curves E,C1, . . . , C6 in this order. The
contraction of E produces U8. Hence the morphism X ′ → P2 factors as
X ′ → U → P2. The existence of a cuspidal curve C ∈ |−KU | is equivalent
to the existence of a cuspidal cubic B in P2 which has the same inflexion
point and local intersection number 7 at the inflection point with B′. We
can assume that the equation of B′ is {Y 2Z = X3 + XZ2 +

√

−4/27Z3},
the point [0, 1, 0] as the inflexion point, the tangent line being {Z = 0}. We
can then take B to be the cubic {Y 2Z = X3}. Now we see immediately
that the blow-up of the point B ∩ L is the minimal resolution of V8. Then
again V is the surface V7.

Now by Claim 2 we easily deduce that any rank 1, Gorenstein log
del Pezzo surface with simply-connected smooth locus and 3 ≤ K2 ≤ 7
is one of the surfaces Vi, 3 ≤ i ≤ 7. Consider the degree 6 hypersurface
Za = {W 2 + Z3 + X5Y + aX4Z = 0} in the weighted projective space
P(1,1, 2, 3) with coordinates X,Y,Z,W of weights 1, 1, 2, 3 respectively.

Lemma 5. When a = 0 (resp. a 6= 0), Za is isomorphic to V8 (resp.
V ′

8).

Proof. The affine open subset {X 6= 0} of Za is isomorphic to C2. Za
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has a unique singularity of type E8 at [0, 1, 0, 0] (see [6]). It is easy to see
that the boundary curve {X = 0 = W 2 + Z3} is isomorphic to a cuspidal
cubic in P2; in particular it is irreducible and hence Za has rank 1. If a = 0
then the curve C := {Y = 0} is a cuspidal rational curve and does not pass
through the singular point of Z0. Futher, we have KZ0

∼ −C. Hence Z0 is
isomorphic to V8. If a 6= 0 then C := {Y = 0} does not pass through the
singular point of Za. The curve C = {W 2 +Z3 +aX4Z = 0} in P(1, 2, 3) is
easily seen to be a smooth elliptic curve and KZa ∼ −C. In [6] it is shown
that the local rings of Z0 and Za at their singular points are not isomorphic.
Hence Za is isomorphic to V ′

8 . This completes the proof of lemma 5.

We have also proved parts (i), (ii) of Theorem 2. The part (iii) is shown

in the construction of Vi, noting that d = K2
Vi

= 9 − i.

Proof of part (iv)

Recall that C is a cuspidal rational curve on Vi not passing through the

singular point of Vi, where 3 ≤ i ≤ 8 and −KVi ∼ C. Then C2 = 9 − i. By

blowing up Vi minimally at the singular point of C we get a normal cross-

ing divisor with smooth rational irreducible components ∪3
0Bi on a normal

projective surface V ′′
i , where B2

0 = −1, B2
1 = −2, B2

2 = −3, B2
3 = 3 − i, B0

intersects B1, B2, B3. The curves B1, B2, B3 are mutually disjoint and B3

is the proper transform of C. Mumford’s presentation for the fundamental

group G of the boundary of a nice tubular neighborhood of ∪Bi is as follows

(see [10]).

〈e2, e3| (e2e3)
2 = e3

2 = ei−3
3 〉

Now assume that 4 ≤ i ≤ 8. Then this group is finite. This is the

fundamental group at infinity of the affine surface Vi − C.

Lemma 6. For 4 ≤ i ≤ 8 the surface Vi − C is isomorphic to C2/G.

Proof. Denote the surface Vi−C by S. We have proved above that S has
a unique singular point, say p. First we treat the case d = 1. As seen above,
in this case S is isomorphic to the affine subset {W 2 + Z3 + X5 = 0} of the
projective surface {W 2+Z3+X5Y = 0} considered above given by {Y 6= 0}.
It is a classical fact that this S is isomorphic to the quotient of C2 modulo
the binary icosahedral group of order 120. Since d = 1, the fundamental
group at infinity of S has the presentation < e2, e3|(e2e3)

2 = e2
2 = e5

3 > .
This group is the binary icosahedral group.
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Now we assume that 4 ≤ i ≤ 7.

Claim. For a small nice neighborhood U of p in Vi, the natural homo-
morphism π1(U − {p}) → π1(S − {p}) is an isomorphism.

Proof. We will illustrate the proof by giving the argument for d = 2.
Other cases are dealt in exactly the same way. The surface V7 is obtained
from the elliptic surface X by contracting the curves E,C1 and all the other
irreducible components of the type II∗ fiber F0 except for C2, giving rise
to an E7-singularity. Let D denote the inverse image of p in X. Clearly,
S−{p} = X−(C∪E∪C1∪D). Let N denote a suitable tubular neighborhood
of F0 in X. It is easy to see that N − (E ∪C1 ∪D) is a strong deformation
retract of X − (C ∪E ∪C1 ∪D). The neighborhood N is a union of tubular
neighborhoods N1, N2, ND of C1, C2, D respectively. Since E ∩ C1 is
a single point (N2 ∪ ND) − (C1 ∪ D) is a strong deformation retract of
N − (E ∪ C1 ∪ D). Since C1 ∩ C2 is a single point ND − D is a strong
deformation retract of (N2 ∪ ND) − (C1 ∪ D). But ND − D is nothing but
U − {p}. This proves the claim.

Let W ′ denote the universal covering space of S−{p} and let W be the

normalization of S in the function field of W ′. By the claim just proved,

W contains a unique point, say q, over p. This point is smooth by the

claim just proved. Since V7 has rank 1 we see that χ(S − {p}) = 0 where

χ denotes the topological Euler number. Therefore, χ(W ′) = 0 and hence

χ(W ) = 1. Now W is smooth, simply-connected and b2(W ) = 0, hence it is

contractible.

Using −KV7
∼ C we see easily that the canonical bundle of V ′′

7 is

linearly equivalent to a strictly negative linear combination of the curves

B0, B1, B2, B3. It follows that κ(S − {p}) = −∞. The map W ′ → S −
{p} being unramified and proper we get κ(W ′) = −∞. This implies that

κ(W ) = −∞. Since W is contractible, by a fundamental result of Miyanishi-

Sugie-Fujita, W is isomorphic to C2. This easily implies that S ∼= C2/G,

as desired. This completes the proof of Theorem 2.

§4. Proof of Theorem 1

Let V be a Gorenstein normal projective surface such that there is a

surjective morphism f : P2 → V . We claim that π1(V
◦) is finite, where

V ◦ = V \ Sing V . Since f−1(Sing V ) has codimension 2 in P2, the com-

plement P2 \ f−1(Sing V ) is simply-connected. If W ′ is the universal cover
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of V ◦, then by the standard properties of topological coverings the restric-

tion of f factors through P2 \ f−1(Sing V ) → W ′. This easily proves the

claim. Let W → V be the quasi-universal cover of V . Then f factors as

P2 → W → V . Now π1(W
◦) = (1) and W is Gorenstein of rank 1. From

now onwards we will assume that V ◦ is simply-connected.

First we deal with the case d = 1.

Assume that V = V8. We will show that there is no non-constant

morphism P2 → V8.

Consider the surface V4. Let p be the singular point and C the cuspidal

rational curve on V 0
4 such that KV4

∼ −C. As in Theorem 2, one has

C ∼ 5∆, where ∆ is the image of the curve C5 in X. By Theorem 2

we have a quotient map α of degree 5, C2 → V4 − C. Since α is proper,

a neighborhood of infinity of C2 maps onto a neighborhood of infinity of

V4 − C. Since C2 is simply connected at infinity, we can use an argument

similar to the one at the beginning of this section to show that the order of

the fundamental group at infinity of V4 −C is at most 5. There is a unique

point, say p̃, in C2 over p. Let Z be the normalization of V4 in the function

field of C2. We will show that Z is isomorphic to V8.

Since V 0
4 is simply-connected, the curve C is ramified. Hence its inverse

image in Z, say D, is irreducible and maps homeomorphically onto C. If

q is the singular point of C then the local analytic equation of C at q is

z2
1 +z3

2 = 0. Hence the equation of Z at its point q̃ over q is z2
1 +z3

2 +z5
3 = 0.

This is the only singular point of Z and it is clearly an E8-singularity. As

Z contains C2, we see that Z is a rank 1, Gorenstein log del Pezzo surface

such that π1(Z
0) = (1). To see that Z is isomorphic to V8 we argue as

follows.

There is a unique point in Z over C∩∆. Since ∆−{p}− (C∩∆) ∼= C∗,

we can prove easily that the inverse image of ∆ in Z, say ∆̃, is irreducible

and rational and it is smooth outside p̃. Note that on V4 we have −KV4
∼

5∆ ∼ C. From the simple-connectedness of Z0 we deduce that on Z we

have D ∼ ∆̃. This implies that on Z there is a cuspidal rational curve ∆̃

contained in the smooth locus of Z such that −KZ ∼ ∆̃. By Theorem 2

we infer that Z is isomorphic to V8. As remarked above we will show that

there is no non-constant morphism P2 → V4. This will prove that V8 is not

dominated by P2.

The cases d = 2, 3, 4, 5.
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First consider the cases d = 3, 4, 5. By Lemma 2, | − KV | embeds V

in Pd and the image is projectively normal. Let T ⊂ Cd+1 be the cone

over this embedding. The map T \ {vertex}
σ
→ V is a locally trivial C∗-

bundle. It is the associated principal bundle of the line bundle ∓KV over

V . The sign does not play any significant role in our argument so we use

the negative sign. This gives the exact sequence

π1(C
∗) → π1(T

◦) → π1(V
◦) → (1)

where T ◦ = T \ Sing T . Since π1(V
◦) = 1, we see that π1(C

∗) → π1(T
◦) is

surjective.

Lemma 7. The fundamental group of T ◦ is isomorphic to Z/(d).

Proof. Let C ⊂ V ◦ be the cuspidal rational curve with C ∼ −KV .
Then C2 = d. The inverse image σ−1(C) is the total space of the principal

bundle over C of the line bundle −KV |C which has degree d. If C
β
→ C

is the normalization then β is a homeomorphism. The pull-back of the
C∗-bundle on C to C is a C∗-bundle of degree d. Since C ∼= P1, this pull-
back has fundamental group isomorphic to Zd. It follows that π1(T

◦) is a
homomorphic image of Zd.

We will now construct a cyclic d-fold étale cover of T ◦. Since π1(V
◦) =

(1) and rank of V is one, the class group of V is cyclic. Let ∆ be the
generator of the Weil divisor class group as given in Theorem 2, so that
−KV ∼ d∆ in Div(V ), or O(−KV ) ∼= O(∆)⊗d restricted to V ◦. We can find
a suitable covering {Ui} of V ◦ of Euclidean balls and transition functions
fij for O(∆)|V ◦ such that fd

ij are the transition functions for O(−KV )|V ◦ .
If T → V ◦ is the total space of the associated C∗-bundle for O(∆), then
the maps Ui × C∗ → Ui × C∗ defined by (z, λ) 7→ (z, λd) patch to give an
étale cover of T \ Sing T of degree d. This proves the lemma.

The map P2 → V ⊂ Pd gives rise to a finite morphism C3 π
→ T . If

W → T is the quasi-universal Z/(d)-cover then π factors as C3 → W
τ
→ T .

By lemma 3, W admits an action of C∗. This is easily seen to be a good

C∗-action such that C3 → W is a C∗-equivariant map. For a general fiber

F of σ in T ◦, τ−1(F ) is smooth and irreducible because π1(C
∗) → π1(T

◦)

is surjective. Further, (W \ {vertex})//C∗ ∼= V .

We claim that the coordinate ring Γ(W ) of W is a UFD. Since the map

C3 → W is proper we see that Div(W ) is finite. Any non-trivial torsion
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line bundle on W 0 gives rise to a non-trivial topological covering of W 0.

But π1(W \ Sing W ) = (1). Hence Γ(W ) is a UFD. Recall that d = 3, 4 or

5. Then G/Γ ∼= Z/(d), where Γ = [G,G] and G is defined in Lemma 6.

Let Z be the inverse image of V \ C in W \ {vertex}. Then Z \ l is

the total space of the principal C∗-bundle associated to the line bundle

O(∆)|V \C , where l is the inverse image in Z of the singular point of V .

Consider the following action of G on C2 ×C∗. We consider the surjection

µ : G → G/Γ(∼= Z/(d)). Let g be a generator of G/Γ and g a lift of g in G.

Any element of G has the unique expression γ.gb, γ ∈ Γ and 0 ≤ b ≤ d− 1.

Let h = γgb act on (z, λ) by h(z, λ) = (hz,ωbλ), where ω = exp(2πi/d).

Lemma 8. With the above action we have (C2 × C∗)/G ∼= Z.

Proof. Recall that the inverse image of V \ C in T is isomorphic to
(V \C)×C∗ ≈ (C2/G)×C∗. This is because KV |V \C is a trivial line bundle.

Define the map α : C2×C∗ → (C2/G)×C∗ given by (z, λ) 7→ (z, λd). If γgb

is an arbitrary element of G as above, then α((γgb)(z, λ)) = (z, λd). Hence
the map α factors through α : (C2 × C∗)/G → (C2/G) × C∗. If q ∈ C2/G
is a smooth point of C2/G then α−1(q, λ) has d|G| points. Hence α−1(q, λ)
has d points and α is étale outside {0}×C∗. We see easily that the inverse
image of an orbit q ×C∗ in (C2 ×C∗)/G is connected. On the other hand,
for the map W \ {vertex} → T \ {vertex}, we have proved that any good
orbit q × C∗ ⊂ T \ {vertex} lifts to a single orbit in W \ {vertex}. From
these two observations, we deduce that C2 ×C∗/G is naturally isomorphic
to Z, proving the lemma.

We now come to the punch line (deducing a contradiction to the fact

that the affine open subset Z ⊆ W also has a UFD as the coordinate ring).

Lemma 9. The affine 3-fold (C2 × C∗)/G is not a UFD.

Proof. The map C2 ×C∗ → (C2 ×C∗)/G is unramified outside {0}×
C∗, which has codimension 2. Let U be the group of units in the coordinate
ring R of C2 × C∗. Then U ∼= C∗ × Zt. Here C∗ is the multiplicative unit
group of the underlying base field and Zt generates the group of units of
C∗ (modulo the non-zero constants). By Samuel’s descent theory (see [12],
Chapter III), the divisor class group of (C2×C∗)/G is H1(G,U). Consider
the short exact sequence of G-modules

(1) → C∗ → U → Zt → (1)
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Here, we consider U/C∗ ∼= Zt as a G-module. The long exact cohomology
sequence corresponding to this looks like

(1) → H0(G,C∗) → H0(G,U) → H0(G,Zt)

→ H1(G,C∗) → H1(G,U) → · · ·

Now H0(G,Zt) is the cyclic subgroup of Zt of index d invariant under G
and H0(G,U) is a direct sum H0(G,C∗)⊕H0(G,Zt). Hence H1(G,C∗) is
a subgroup of H1(G,U). On the other hand, since G acts trivially on the
field of constants C, H1(G,C∗) = Hom(G,C∗) ∼= Hom(G/Γ,C∗) ∼= Z/(d).
But d 6= 1 by assumption. This proves the lemma.

So we have proved that V cannot be an image of P2, for those V = Vi

with d = K2
Vi

= 9 − i = 1, 3, 4, 5.

Next we consider the cases d = 2, 6, 8.

The case d = 2.

In this case |−KV | does not give an embedding of V but |−2KV | gives

a projectively normal embedding of V in P6. Let T denote the affine cone

over this embedding. Then we work with this cone T . An easy modification

of the argument for 3 ≤ d ≤ 5 shows that Vi (i = 9−d = 7) is not an image

of P2.

The case d = 6.

In this case V \C is not isomorphic to C2/G. In fact V \C has singularity

type A1 + A2. Consider the action of Z6 on P2 given by σ[x0, x1, x2] =

[x0, ωx1,−x2] where ω = exp(2πi/3). Let x, y be suitable affine coordinates

on P2 \ {x0 = 0}. Then σ(x, y) = (−x, ωy) and σ2(x, y) = (x, ω2y) which

implies that σ2 is a pseudo-reflection. Similarly σ3 is a pseudo-reflection.

Hence C2/〈σ〉 is smooth and hence isomorphic to C2.

Consider P2 \ {x1 = 0}. Now σ(x, y) = (ω2x,−ω2y) and σ3(x, y) =

(x,−y) and hence σ3 is a pseudo-reflection. The ring of invariants of σ3 is

C[x, y2]. The action of σ on C[x, y2] is (x, y2) 7→ (ω2x, ωy2). This gives an

A2-singularity.

Finally consider P2 \ {x2 = 0}. In this case σ(x, y) = (−x,−ωy) which

implies that σ2(x, y) = (x, ω2y). The invariants are C[x, y3] and hence

σ(x, y3) = (−x,−y3). This gives an A1-singularity on the quotient.

By Theorem 2, P2/〈σ〉 = V3 where d = K2
V3

= 9 − 3 = 6. In other

words, V3 (d = 6) is the quotient of P2 by an action of Z/(6).

The case d = 8.
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In this case V is the quadric cone Q in P3. Let Z/(2) act on P2 by

σ[x0, x1, x2] = [−x0,−x1, x3]. Then V ∼= P2/Z/(2).

In conclusion, we have so far proved that if V is a rank 1, Gorenstein

log del Pezzo surface such that π1(V
0) is trivial and there is a non-constant

morphism P2 → V then V is isomorphic to either P2, Q, a surface of

singularity type A1 + A2, or V ′
8 . The values of d in these cases are 9, 8, 6, 1

respectively. We will next prove that if V is a rank 1, Gorenstein log del

Pezzo surface dominated by P2 such that π1(V
0) is non-trivial then its

quasi-universal cover is either P2 or Q. Let W be the quasi-universal cover

of V and g : W → V the covering map. Then W is a rank 1 Gorenstein,

log del Pezzo surface dominated by P2 such that π1(W
◦) = (1).

Assume first that K2
W = 1. Since KW ∼ g∗KV , we get K2

W = 1 = deg g ·K2
V .

This means that g is an isomorphism. Hence V8, V
′
8 cannot occur as the

quasi-universal cover of V .

Suppose that W is of singularity type A1 + A2. Let the singular points of

W be p, q. As g is unramified over V ◦, the images p′ := g(p), q′ := g(q) are

singular points of V. Also, 6 = K2
W = (deg g)K2

V . We analyse the possible

cases.

Case 1. Suppose that deg g = 2. Then any singular point of V other

than p′, q′ is an A1-singular point. Let Ṽ → V be a minimal resolution

of singularities. Since K2
V = 3 and ρ(V ) = 1, the number of irreducible

exceptional curves for the map Ṽ → V is 6. It is easy to see that p′, q′ are

of type A3, A5 respectively. This is a contradiction.

Case 2. Suppose that deg g = 3. Then K2
V = 2 and the number of

exceptional curves for Ṽ → V is 7. The type of p′ is A5 and q′ will give rise

to more than 2 exceptional curves. This is a contradiction.

Case 3. Suppose that deg g = 6. Now K2
V = 1 and the number of excep-

tional curves is 8. The local fundamental groups at p′, q′ have orders 12, 18

respectively. Looking at the possible Dynkin types of these singularities we

arrive at a contradiction.

This proves part (2) of Theorem 1.

Proof of Part (3).

As above, let f : P2 → V be a non-constant morphism. We will

assume that V is not V ′
8 . Assume that the quasi-universal cover of V is

Q. We will prove that V is isomorphic to P2/H for a suitable finite group
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of automorphisms H of P2. Of course this P2 may not be the same as the

projective plane dominating V .

Let q be the singular point of Q. It is easy to see that Q contains a

smooth rational curve D with D2 = 2 and not passing through q. Further,

π1(Q − D − {q}) = Z/(2). If Y is the universal cover of Q − D − {q} then

the normalization of Q in the function field of Y is isomorphic to P2 such

that the inverse image of D in P2 is a line. We will use this observation

below.

By assumption, V is isomorphic to Q/G with G = π1(V
0), and the

map Q → V is unramified over V 0. Then K2
Q = 8 = |G|K2

V . Therefore

|G| is of order 2, 4 or 8. The action of G extends uniquely to the minimal

resolution of singularities of Q, viz. to Hirzebruch surface Σ2. Let M be

the unique (−2)-curve on Σ2 and let L be a fiber of the P1-fibration on

Σ2. Then G acts naturally on |D| and D ∼ M + 2L. The linear system

|D| is parametrized by P3. The subspace of members of this of the form

M + 2L′, where L′ is a fiber of the P1-fibration is parametrized by P2.

This 2-dimensional subspace is clearly stable under the action of G. The

complement of this 2-dimensional subspace in |D| is parametrized by C3.

As G is a finite 2-group, by a standard result in Smith Theory the action of

G on C3 has a fixed point (see, [2]). This means that there is an irreducible

smooth rational curve D0 ∈ |D| which is stable under G. Hence the set

Q − D0 − {q} is also G-stable. This implies that the map Q → V is

unramified over Q−D0−{q}−A2 with a finite set A2 and Q−D0−{q}−A2

is the full inverse image of its image in V. From the observation made in the

beginning, we conclude that there is a line C in P2 such that the composite

map P2−C−{q1}−A1 → V −E−{q3}−A3 is unramified, where E, q3, A3

(resp. C, q1, A1) are images (resp. inverse images) of D, q, A2 in V (resp.

P2). Since P2 −C −{q1}−A1 is simply-connected, the morphism P2 → V

is a Galois map.

To complete the proof of part (3), we will now show that V ′
8 is not

isomorphic to a quotient P2/G. Suppose that V = V ′
8
∼= P2/G and let

f : P2 → V be the quotient map and deg f = n. Let Γ1, . . . ,Γm be

the irreducible components of the branch locus in V. Denote by Γij the

irreducible components of f−1Γi with ramification index ei. Then f∗Γi =

ΣjeiΓij. For the canonical bundle we have KP2 ∼ f∗KV + Σi,j(ei − 1)Γij .

Write Γi ∼ δiC, where C is an irreducible curve on V such that KV ∼ −C.

This gives KP2 ∼ Σif
∗(ei−1

ei
δi − 1)C. Since KP2 is negative, we infer easily

that the branch curve in V is irreducible and δi = 1. This means that the

https://doi.org/10.1017/S0027763000008345 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000008345


168-03 : 2002/12/6(17:14)

SURFACES DOMINATED BY P
2/G 59

branch curve is a member of | − KV |. But it can be easily seen from the

arguments used earlier that for any member D of | − KV | the complement

V \D is simply-connected. This shows that V ′
8 is not a quotient of P2. This

also completes the proof of Theorem 1.

§5. Classification of Gorenstein quotients of P2

Let V = P2/G be a normal Gorenstein quotient of P2.

Case 1. The quotient map f : P2 → V is a quasi-universal covering.

In this case 9 = (deg f)K2
V . Hence |G| = 3 or 9.

Case 1.1. Suppose that |G| = 3.

In this case every singular point of V is an A2-singularity. Let Ṽ → V

be the minimal resolution of singularities. Since K2
V = 3, the number of

irreducible components of the exceptional divisor for the map Ṽ → V is 6.

This means that V has exactly three singular points. It is easy to see that

in a suitable coordinate system, the action of a generator of G is given by

[X,Y,Z] → [X,ωY, ω2Z], where ω is a primitive cubic root of unity.

Case 1.2. Suppose that |G| = 9.

Now K2
V = 1. The number of irreducible components of the exceptional

divisor for the map Ṽ → V is 8. The map f is unramified outside finitely

many points. Hence the order of the local fundamental group at any singular

point of V divides 9. First, we claim that A8 cannot occur as a singularity

of V . For otherwise V has no other singularity and the map f is unramified

outside the singular point and there is a unique singular point in P2 over

this point. But χ(P2 \ {one point}) = 2 = χ(V \ {one point}). This

contradicts the multiplicativity of χ for topological coverings. We deduce

that V has exactly four A2-type singular points. There are exactly three

distinct points in P2 over each of these. We claim that G is isomorpic

to a direct sum Z/(3) ⊕ Z/(3) so that π1(V
0) ∼= Z/(3) ⊕ Z/(3). Assume

that G is cyclic, say G = 〈g〉. We can assume that the action of g sends

[X,Y,Z] → [ωX,ωqY,Z] for some integer q, where ω = exp(2πı/9). The

point [0, 0, 1] is fixed under the group and the action of G near this point

cannot have any non-trivial pseudo-reflection as the map f is divisorially

unramified. Since the singularities in V are Gorenstein we deduce that

q = 8. But this produces an A8-type singularity. This proves the claim.

Now we will construct an explicit example giving such a surface. Let

G = Z/(3) ⊕ Z/(3) = (g1) ⊕ (g2), where g1 sends [X,Y,Z] 7→ [X,ωY, ω2Z]

where ω is a primitive cube root of unity and g2 sends [X,Y,Z] 7→ [Z,X, Y ].
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Let W = P2/(g1). The points [1, 0, 0], [0, 1, 0] and [0, 0, 1] are fixed by g1

and form a single g2-orbit. Their images in W are A2 type singular points.

The points [1, 1, 1], [1, ω, ω2] and [1, ω2, ω] are fixed by g2 and form a single

g1-orbit. Their image in W is another A2 type singular point. The points

[1, 1, ω], [1, ω, 1] and [1, ω2, ω2] form both a single g1-orbit and a single

g2-orbit. Their image in V is a singular point of type A2. Finally [1, ω2, 1],

[1, 1, ω2], [1, ω, ω] form both a single g1-orbit and a single g2-orbit. Their

image in V is the fourth singular point of type A2 in V .

Case 2. h : Q → V is the quasi-universal covering. Let H be the Galois

group.

Let q be the singular point of Q. In this case, 8 = (deg g)K2
V .

Case 2.1. Suppose that |H| = 2.

Since K2
V = 4 the number of exceptional irreducible components for

Ṽ → V is 5. The image of q is of A3-type. All other singular points

are of A1-type. Thus V has singularity type A3, A1, A1. By Theorem 1,

V ∼= P2/G with |G| = 4. The existence of type A3 singularity on V shows

that G ∼= Z/(4).

An explicit example in this case is given as follows. Let g be the automor-

phism of P2 of order 4 sending [X,Y,Z] 7→ [X, ıY,−ıZ] where ı is a square

root of −1. The point [1, 0, 0] is fixed by g and every point on X = 0 is

fixed by g2. No other point of P2 has a non-trivial isotropy group. The

image of [1, 0, 0] on V is an A3 type singularity and the images of [0, 1, 0]

and [0, 0, 1] on V are A1 type singular points. The quotient P2/(g2) is the

quadric Q.

Case 2.2. Suppose that |H| = 4.

Now K2
V = 2. The number of irreducible exceptional curves for Ṽ → V

is 7. The image of q in V, say q′, has local fundamental group of order 8. If

q′ is of type A7 then V has no other singular points. But this contradicts

the multiplicativity of χ.

Hence q′ is of D4-type. Then the other singular points of V are of type

A1, A2 or A1, A1, A1. But the order of the local fundamental group of

any other singular point is a divisor of 4. Hence we conclude that V has

singularity type D4 + 3A1. By Theorem 1, V ∼= P2/G with |G| = 8.

The existence of the type D4 singularity on V shows that G is the binary

dihedral group of order 8. An explict action of G is as follows. Let g1 map

[X,Y,Z] 7→ [X, ıY,−ıZ] and g2 map [X,Y,Z] 7→ [X, ıZ, ıY ]. Then g1, g2

generate a group of order 8 such that the subgroup (g1) has index 2 and
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hence normal in G. Arguing as in case 1.2 by considering the intermediate

quotient W = P2/(g1) we see that V has singularity type D4 + 3A1.

Case 2.3. Suppose that |G| = 8.

Now K2
V = 1 and the number of irreducible exceptional curves for

Ṽ → V is 8. The image q′ of q has local fundamental group of order 16.

This cannot be of A15-type. Hence q′ is of type D6. The other singular

points are of type A2 or A1, A1. Again A2 cannot occur because the order

of the local fundamental group is not a divisor of 8. Hence V is of singular-

ity type D6 + 2A1. We claim that this case cannot occur. Over a singular

point of type A1 there are four points in Q. This easily contradicts the

multiplicativity of χ.

Finally, we consider the surface V3 of singularity type A1 + A2. An

explicit action of Z/(6) on P2 which produces this quotient is as follows.

Let g be an automorphism of P2 of order 6 sending [X,Y,Z] 7→ [X,−Y, ωZ],

where ω is a primitive cube root of unity. The image of [0, 1, 0] in V is an

A1 type singularity. The image of [0,0,1] in V is an A2 type singularity.

We have thus proved the following result.

Lemma 10. If P2 is the quasi-universal cover of a normal, Gorenstein,
projective surface V (not isomorphic to P2) then either V 0 has fundamental
group Z/(3) and singularity type 3A2, or the fundamental group of V 0 is
Z/(3) ⊕ Z/(3) and V is of singularity type 4A2.
If Q is the quasi-universal cover of a normal projective Gorenstein surface
V (not isomorphic to Q) then either the order of the fundamental group of
V 0 is 2, V is of singularity type A3 + 2A1 and V ∼= P2/Z/(4), or the order
of the fundamental group of V 0 is 4, V is of singularity type D4 + 3A1 and
V ∼= P2/H with H the quaternion group of order 8.

The only other Gorenstein surface not covered by the above cases which
is isomorphic to a quotient of P2 is the surface V3 of singularity type A1 +
A2. The fundamental group of V 0

3 is trivial and V3
∼= P2/Z/(6).

§6. Log del Pezzo non-Gorenstein case

Assume that f : P2 → V is surjective and V is a log del Pezzo surface

such that π1(V
◦) = (1). Let V ⊂ PN be a suitable projectively normal

embedding and T the cone over V in CN+1. Then we get a finite map
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C3 → T . Denote by W the quasi-universal cover of W . As before T admits

a good C∗-action such that the map C3 → T is C∗-equivariant.

Conjecture 1. Let Y be a normal affine variety with a good C∗-
action. Suppose π : Cn → Y is a proper surjective morphism which is
C∗-equivariant. Assume that π1(Y \ Sing Y ) = (1). Then Y is isomorphic
to Cn with a suitable good C∗-action.

If this conjecture has an affirmative answer then Y//C∗ is a weighted

projective space P(a, b, c, . . .). In the case of log del Pezzo surface un-

der consideration, we know that W//C∗ ∼= V . Hence V is isomorphic to

P(a, b, c). Therefore an affirmative answer to the above conjecture gives an

affirmative answer to

Conjecture 2. Let V be a log del Pezzo surface with a surjective
morphism f : P2 → V . Then V is isomorphic to a quotient P(a, b, c)/G,
with G isomorphic to the fundamental group π1(V

◦).
In particular, if V ◦ is simply-connected then V is isomorphic to P(a, b, c).

Remark. In the Gorenstein case, d = 8 corresponds to P(1, 1, 2) and
d = 6 to P(1, 2, 3).
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