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Abstract. We present sufficient conditions for the triviality of the automorphism group of
regular Toeplitz subshifts and give a broad class of examples from the class of B-free
subshifts satisfying them, extending the work of Dymek [Automorphisms of Toeplitz
B-free systems. Bull. Pol. Acad. Sci. Math. 65(2) (2017), 139–152]. Additionally, we
provide an example of a B-free Toeplitz subshift whose automorphism group has elements
of arbitrarily large finite order, answering Question 11 of S. Ferenczi et al [Sarnak’s
conjecture: what’s new. Ergodic Theory and Dynamical Systems in their Interactions with
Arithmetics and Combinatorics (Lecture Notes in Mathematics, 2213). Eds. S. Ferenczi, J.
Kułaga-Przymus and M. Lemańczyk. Springer, Cham, 2018, pp. 163–235].
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1. Introduction
1.1. Toeplitz subshifts. Let η ∈ {0, 1}Z be a non-periodic Toeplitz sequence [17] with
period structure p1 | p2 | p3 . . .→∞. That means for each k ∈ Z, there exists n ≥ 1 such
that η|k+pnZ

is constant, but η is not periodic (the latter excludes trivial cases). Denote the
orbit closure of η under the left shift σ on {0, 1}Z by Xη. Each such subshift is called a
Toeplitz shift. It follows from the work of Williams [25] that such systems are in fact almost
1-1 extensions of their maximal equicontinuous factor (MEF), in this case of an associated
odometer (G, T ), where G is the compact topological group lim←− Z/pnZ built from the
period structure (pn)n≥1, and T is the translation by (1, 1, . . .). Recall that odometers are
minimal, equicontinuous and zero-dimensional dynamical systems, and the conjunction of
these three properties characterizes them among all topological dynamical systems, see [8].
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1.2. The centralizer. For any subshift (Y , σ), that is, a shift invariant closed subset
Y ⊆ {0, 1}Z, the automorphism group (or centralizer) is the group of all homeomorphisms
U : Y → Y which commute with σ . Its elements are sliding block codes [16]. Therefore,
the automorphism group is countable. Since all powers of the shift are elements of the
centralizer, it contains a copy of Z as a normal subgroup. We say that the automorphism
group is trivial if it consists solely of powers of the shift.

Centralizers are studied for various classes of systems. Bułatek and Kwiatkowski [2]
do it for Toeplitz subshifts with separated holes (Sh) using elements of the associated
odometer (G, T ). Moreover, in [3], they deliver examples of Toeplitz subshifts with
positive topological entropy and trivial automorphism group. More recently, Cyr and Kra
study automorphism groups of subshifts of subquadratic and linear growth in [4, 5]. In [5],
they prove that the cosets of powers of the shift in the centralizer of any topologically
transitive subshift of subquadratic growth form a periodic group. In [4], they show that any
minimal subshift with non-superlinear complexity has a virtually Z automorphism group,
answering the question asked in [24]. In [6], the same result is shown independently with
different methods by Donoso et al. However, the centralizer can be quite a complicated
group. In [23], Salo gives an example of a Toeplitz subshift with not finitely generated
automorphism group. We provide another example with this property, see equation (53)
and Corollary 3.25.

1.3. This paper’s contributions to general Toeplitz shifts. Let η be a Toeplitz sequence
with period structure (pn)n≥1 and recall from [2] that a position k ∈ Z is called a hole at
level N if η|k+pNZ is not constant. We refine this concept and call such a hole essential
if the residue class k + pNZ contains holes of each level n ≥ N , see Definition 2.2.
The minimal period τ̃N of the set of essential holes at level N divides pN and, under a
(seemingly strong) additional assumption, Theorem 2.8 provides restrictions on the size
of the centralizer in terms of the quotients pN/τ̃N . A direct application of this result to a
variant of the Garcia–Hedlund sequence is discussed in Example 2.19. After that, using a
mixture of topological and arithmetic arguments, we show that the additional assumption
is satisfied more often than one may expect—the main tool is Theorem 2.31. Along this
way, we exploit suitable topological variants of the separated holes condition (Sh) from [2]
in Proposition 2.16, and verify these conditions under arithmetic assumptions tailor-made
for the B-free case in Proposition 2.30. We note that our techniques generalize the setting
from [2], but are kind of transverse to the setting from [3], see Remark 2.10.

1.4. The centralizer of B-free Toeplitz shifts. For any set B ⊆ {2, 3, . . .}, let

MB :=
⋃
b∈B

bZ

be the set of multiples of B and

FB := Z \MB

the set of B-free numbers. One can easily modify a set B to have the same set of multiples
and to be primitive, that is, b � b′ for different b, b′ ∈ B. So, we will tacitly assume that
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B is primitive. The investigation of sets of multiples and B-free numbers has a quite long
history, see [15]. Recently, the subshifts associated with B-free numbers are under intensive
study, see e.g. [12, 18] and references therein. Namely, let η ∈ {0, 1}Z be the characteristic
function of the B-free numbers. Minimality of (Xη, σ) is equivalent to η being Toeplitz
is shown in [18, Theorem B], whenever B is taut. The tautness assumption was removed
in [11, Theorem 3.7]. So, in the B-free context, (Xη, σ) is minimal if and only if η is a
Toeplitz sequence.

In the case of B-free Toeplitz subshifts, the previously cited results for low complexity
systems are not useful, because even very simple B-free Toeplitz systems may have
superpolynomial complexity, see §3.6, where this is shown for B = B1 := {2ncn : n ∈ N}
with pairwise coprime odd cn. Although the separated holes condition (Sh) is satisfied
for this simple example, we were not able to use the results from [2] to determine
the centralizer. However, its triviality was shown with more direct methods in [10].
Nevertheless, there are many B-free Toeplitz systems which do not satisfy (Sh) anyway, see
the example discussed at the end of this introduction, so that there is need for techniques
relying neither on low complexity nor on (Sh).

We mention briefly that Mentzen [22] proves the triviality of the automorphism
group for any Erdős B-free subshift, that is, when B is infinite, pairwise coprime and∑

b∈B(1/b) <∞. This is extended to taut B containing an infinite pairwise coprime subset
in [19, 20]. This class of B-free subshifts is kind of opposite to the B-free Toeplitz shifts.

1.5. This paper’s contributions to B-free Toeplitz shifts. In §3, the results from §2 are
applied to B-free examples. This is possible because Theorem 3.17 provides an arithmetic
characterization of the sets of essential holes in terms of sets of multiples derived explicitly
from the set B. Then we can use the general results to produce examples of minimal
B-free systems, including not only the case B = B1 treated in [10] but also many systems
violating the separated holes condition (Sh), which have trivial centralizers, see §3.3. (The
reader will notice that a very broad class of examples can be treated along the same
lines.) The fact that the general results fail to guarantee triviality of the centralizer for
some examples, to which even the basic Theorem 2.8 applies, is not a shortcoming of our
approach. This is illustrated in §3.4, where we consider simple variants of B = B1, still
satisfying condition (Sh), but having non-trivial centralizers—just as big as Theorem 2.8
allows them to be. This provides a negative answer to [13, Question 11]. Indeed, a slight
generalization of this construction provides examples for which the centralizer contains
elements of arbitrarily large finite order, see Remark 3.24. It should be noticed that our
examples have superpolynomial complexity, see Proposition 3.30, so that the complexity
based results from the literature discussed above do not apply.

1.6. The formal setting. We recall some notation and results from [1], where a
cut-and-project scheme is associated with a Toeplitz sequence η ∈ {0, 1}Z.

(i) p1 | p2 | p3 . . .→∞ is a period structure of η.
(ii) Pi

n := {k ∈ Z : η|k+pnZ
= i} denotes pn-periodic positions of i = 0, 1 on η and

Hn := Z \ (P0
n ∪ P1

n) denotes the set of holes at level n.
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(iii) G := lim←− Z/pnZ and � : Z→ G, where �(n) = (n+ p1Z, n+ p2Z, . . .)

denotes the diagonal embedding.
(iv) T : G→ G denotes the rotation by �(1), that is, (T g)n = gn + 1+ pnZ for all

n ∈ N.
(v) The topology on G is generated by the (open and closed) cylinder sets

Un(h) := {g ∈ G : gn = hn}, h ∈ G.

(vi) V i :=⋃
n∈N

⋃
k∈Pi

n∩[0,pn)
Un(�(k)) for i = 0, 1.

(vii) The window W := V 1 = G \ V 0 is topologically regular, i.e. int(W) = W .
(viii) φ : G→ {0, 1}Z is the coding function: (φ(g))n = 1W(g +�(n)). Observe that

φ(�(0)) = η.

1.7. More background material and an outline of the paper. The odometer (G, T ) is
the MEF of (Xη, σ), see [25]. Let F : Xη → Xη be an automorphism commuting with σ ,
and denote by π : (Xη, σ)→ (G, T ) that factor map onto the MEF which is uniquely
determined by π(η) = �(0). Then there is yF ∈ G such that the rotation f : y �→ y + yF

on G represents F in the sense that π ◦ F = f ◦ π (see e.g. [6, Lemma 2.4]). Observe that
yF = π(F (η)).

Denote by Cφ the set of continuity points of φ : G→ {0, 1}Z. Then, |π−1{π(x)}| = 1
if and only if π(x) ∈ Cφ and, in this case, x = φ(π(x)). This is folklore knowledge, but
the reader may consult [21, Remark 4.2] and also [8, §§5–7] for a related and more general
perspective on this point.

Since F is a bijection respecting the fibre structure Xη =⋃
h∈G π−1{h}, we have

|π−1{π(F (x))}| = |π−1{π(x)}| for all x ∈ Xη. In particular, f (Cφ) = Cφ , that is, Cφ +
yF = Cφ , see also [8, Lemma 4.2]. As the set of discontinuities of the indicator
function 1W is precisely the boundary ∂W , a moment’s reflection shows that Xη \ Cφ =⋃

k∈Z ∂W +�(k), so

∂W + yF ⊆
⋃
k∈Z

∂W +�(k). (1)

We will use only this property of yF to investigate the nature of possible automorphisms F.
It is quite natural to expect that this will be much facilitated if the union on the right-hand
side of equation (1) is disjoint. Indeed, for general Toeplitz sequences, Bułatek and
Kwiatkowski [2] studied the centralizer problem under this assumption, because their
condition (Sh) is equivalent to the disjointness condition

∂W ∩ (∂W +�(k)) =H for all k ∈ Z \ {0}. (D)

Namely, condition (Sh) is satisfied if and only if each T-orbit in G hits the set of
discontinuities of φ at most once, which is clearly equivalent to condition (D), see also
[9, remark after Definition 1].

As in [2, Proposition 3], it follows that:
(1) each fibre over a point in the MEF contains either exactly one or exactly two points;

and
(2) there exists N ∈ N such that ∂W + yF ⊆⋃

|k|�N ∂W +�(k).
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We will introduce a weaker disjointness condition which also implies condition (2), see
Proposition 2.12:

for all k ∈ Z \ {0} : ∂W ∩ (∂W −�(k))

is nowhere dense with respect to the subspace topology of ∂W . (D′)

Moreover, we need a strengthened version of this condition which, in many examples, will
help to show that ∂W + yF ⊆ ∂W +�(k0) for a single k0 ∈ Z:

for all k ∈ Z \ {0} for all β ∈ G : ∂W ∩ (∂W − β) ∩ (∂W − 2β −�(k))

is nowhere dense with respect to the subspace topology of ∂W . (DD′)

Conditions (D′) and (DD′) and an additional growth restriction on the arithmetic structure,
see equation (42), play essential roles for proving that the assumption of our basic
Theorem 2.8 is satisfied. To prove conditions (D′) and (DD′), we assume in equation (AS)
below that the sets of essential holes have some particular arithmetic structure motivated
by the intended applications to B-free Toeplitz shifts, see Propositions 2.20, 2.28 and 2.30.
We note here that the additional growth restriction excludes irregular Toeplitz shifts, see
Remark 2.29. In Theorem 3.17, we show that B-free Toeplitz subshifts indeed satisfy the
structural assumption in equation (AS).

A characterization of the triviality of the centralizer is provided in [2, Theorem 1]. The
example B1 = {2ncn : n ∈ N} with coprime odd cn > 1 from [10] satisfies condition (D),
but we were unable to evaluate the criterion from [2, Theorem 1] for it. Instead, we will
show that the example not only satisfies ∂W + yF ⊆⋃

|k|�N ∂W +�(k), but that there
exists a single integer k0 such that ∂W + yF ⊆ ∂W +�(k0), i.e. ∂W + (yF −�(k0)) ⊆
∂W , see Example 3.20. The same holds for the example B′1 = B1 ∪ {c2

1} and for further
generalizations of this kind. We shall see that this is the key to control the centralizer with
modest efforts in Corollary 2.21: in the case of B1, the centralizer is trivial (see also [10]),
while for B′1, our approach only yields that the c1th iterate of each centralizer element is
trivial. Indeed, we will show for this example that the centralizer has an element of order
c1, see Proposition 3.23 and Remark 3.24. More generally, we will show that elements of
the centralizer can be of arbitrarily large finite order, see Corollary 3.25.

Already, the example B2 = {2ncn, 3ncn : n ∈ N}, with coprime cn > 1 also coprime
to 2 and 3 and satisfying

∏
n∈N(1− 1/cn) > 1

2 , violates condition (Sh) but satisfies
conditions (D′) and (DD′), see Example 3.21. In §3.6, we show that the shift determined
by B2 has superpolynomial complexity (the same holds for B1), so that the results from
[4–6] do not apply. We also deliver examples for which not all holes are essential, see
Examples 3.27 and 3.29.

2. The abstract regular Toeplitz case
2.1. A first basic theorem. Let η ∈ {0, 1}Z be a non-periodic Toeplitz sequence with
period structure p1 | p2 | p3 . . .→∞. That means for each k ∈ Z, there exists n ≥ 1
such that η|k+pnZ

is constant, but η is not periodic. For i = 0, 1, denote Pi
n = {k ∈ Z :

η|k+pnZ
= i} (we use this notation, because it is shorter than Perpn(η, i) established in the

literature) and Hn = Z \ (P0
n ∪ P1

n). Here, Hn is called the set of holes at level n.
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The odometer group G = lim←− Z/pnZ with the Z-action ‘addition of 1’ (T : G→ G,
(T g)n = gn + 1) is the MEF of the subshift Xη, which is the orbit closure of η under
the left shift σ on {0, 1}Z. In symbols, π : (Xη, σ)→ (G, T ). Observe that Hn ⊆ HN if
n > N .

In [1], a cut and project scheme is associated with η by specifying a compact and
topologically regular window W ⊆ G: for h ∈ G, let Un(h) = {g ∈ G : gn = hn} and
define

V i =
⋃
n∈N

⋃
k∈Pi

n∩[0,pn)

Un(�(k))

for i = 0, 1. From [1, Theorem 1 and its proof], we see:
(1) W := V 1 = G \ V 0 is topologically regular, i.e. int(W) = W ;
(2) ∂W = G \ (V 0 ∪ V 1);
(3) �(k) ∈ V i if and only if ηk = i for i = 0, 1 and all k ∈ Z, in particular ηk = 1 if and

only if �(k) ∈ W .

LEMMA 2.1. h ∈ ∂W if and only if hN ∈ HN for all N ∈ N.

Proof. We have

h 
∈ ∂W ⇔ h ∈
⋃

i∈{0,1}
V i ⇔ h ∈

⋃
i∈{0,1}

⋃
n∈N

⋃
k∈Pi

n∩[0,pn)

Un(�(k))

⇔ there exists i ∈ {0, 1} there exists n ∈ N there exists

k ∈ Pi
n ∩ [0, pn) : hn = k

⇔ there exists i ∈ {0, 1} there exists n ∈ N : hn ∈ Pi
n

⇔ there exists n ∈ N : hn 
∈ Hn

Definition 2.2. (Essential holes) The set of essential holes at level N is defined as

H̃N := {k ∈ HN : Hn ∩ (k + pNZ) 
=H for all n ≥ N}. (2)

Definition 2.3. The minimal periods of Hn and H̃n are denoted by τn and τ̃n, respectively.

Remark 2.4.
(a) H̃n ⊆ H̃N if n > N .
(b) HN and H̃N are pN -periodic by definition—although this need not be their minimal

period. (For H̃N , just observe that k ∈ H̃N if and only if k + pN ∈ H̃N .) Hence, τN |
pN and τ̃N | pN , so that expressions like ‘τN | hN ’ or ‘gcd(τ̃N , hN)’ are well defined
when hN ∈ Z/pNZ. (This is consistent with the following general convention: an
element z of an abelian group Z is divisible by n ∈ N if z ∈ nZ. If Z is a cyclic
group and z1, z2 ∈ Z, then gcd(z1, z2) is a generator of the subgroup of Z generated
by z1 and z2. If Z = Z, then we choose gcd(z1, z2) to be positive by convention.
Finally, if n ∈ Z and z+ pZ ∈ Z/pZ, then we understand by gcd(n, z+ pZ) the
(positive) generator of the group generated by n and z+ pZ; this is the greatest
common divisor of the numbers n, z and p in the usual sense.)
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LEMMA 2.5.
(a) k ∈ H̃N if and only if UN(�(k)) ∩ ∂W 
=H.
(b) h ∈ ∂W if and only if hN ∈ H̃N for all N ∈ N.

Proof. (a) Let h ∈ UN(�(k)) ∩ ∂W . Then k ∈ hN + pNZ ⊆ HN + pNZ = HN by
Lemma 2.1, and for all n ≥ N , we have in view of Lemma 2.1: hn ∈ Hn ∩ (hN + pNZ) =
Hn ∩ (k + pNZ). For the reverse implication, let k ∈ H̃N . We construct h ∈ ∂W with
hN = k mod pN : for j > N , there is rj ∈ Hj ∩ (k + pNZ). Let h(j) = �(rj ) and fix any
accumulation point h of the sequence (h(j))j . Consider any n ≥ N . For some sufficiently
large jn ≥ n, we have hn = h

(jn)
n = rjn mod pn. Hence, hN ∈ rjN

+ pNZ = k + pNZ,
so that h ∈ UN(�(k)), and hn ∈ rjn + pnZ ⊆ Hjn + pnZ ⊆ Hn + pnZ = Hn, so that
h ∈ ∂W by Lemma 2.1.

(b) We have

h ∈ ∂W ⇔ for all N ∈ N : UN(h) ∩ ∂W 
=H
⇔ for all N ∈ N : UN(�(hN)) ∩ ∂W 
=H
⇔ for all N ∈ N : hN ∈ H̃N by part (a).

The following simple lemma is basic for our approach.

LEMMA 2.6.
(a) If h+ βZ ⊆ ∂W for some h, β ∈ G, then hn + gcd(βn, τ̃n)Z ⊆ H̃n for all n > 0.
(b) If ∂W + β ⊆ ∂W for some β ∈ G, then τ̃n | βn for all n > 0.

Proof. (a) hn + βnZ ⊆ H̃n for all n by Lemma 2.5(b). As H̃n is τ̃n-periodic, this implies
hn + gcd(βn, τ̃n)Z ⊆ H̃n.

(b) Let j ∈ H̃n. Then there is some h ∈ Un(�(j)) ∩ ∂W by Lemma 2.5(a).
Now, h+ βZ ⊆ ∂W by assumption. As hn = j , this implies, in view of part (a)
of the lemma, j + gcd(βn, τ̃n)Z ⊆ H̃n. As this holds for each j ∈ H̃n, we have
H̃n + gcd(βn, τ̃n)Z = H̃n, and as τ̃n is the minimal period of H̃n, we conclude that
τ̃n | βn.

Remark 2.7. If h+ βZ ⊆ ∂W , Lemma 2.6 implies

δ(Hn) ≥ δ(H̃n) ≥ 1
gcd(βn, τ̃n)

.

Therefore, the last lemma seems to be useful only for regular Toeplitz shifts, because
for irregular ones, infn δ(Hn) > 0 so that no useful lower bound on gcd(βn, τ̃n) can be
expected.

Each automorphism F of (Xη, σ) determines an element yF ∈ G such that π(F (x)) =
π(x)+ yF for all x ∈ Xη. Observe that

∂W + yF ⊆
⋃
k∈Z

(∂W +�(k)), (3)
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because F leaves the set of non-one-point fibres over the MEF invariant. We first focus on
a stronger property than equation (3).

THEOREM 2.8. Recall that τ̃n denotes the minimal period of H̃n.
(a) If an automorphism F of (Xη, σ) satisfies ∂W + yF ⊆ ∂W +�(k) for some

k = kF ∈ Z, then τ̃n | (yF )n − kF . In particular, if infinitely many H̃n have minimal
period pn, then yF = �(kF ).

(b) Suppose that for each automorphism F ∈ Autσ (Xη), there exists a unique kF ∈ Z

such that

∂W + yF ⊆ ∂W +�(kF ). (4)

If M := lim infn→∞ pn/τ̃n <∞, then

Autσ (Xη) = 〈σ 〉 ⊕ Tor,

where Tor denotes the torsion group of Autσ (Xη). Moreover, Tor is a cyclic group
(possibly trivial), whose order divides M. In particular, if infinitely many H̃n have
minimal period pn, then the centralizer of (Xη, σ) is trivial.

Proof. (a) The first claim follows from Lemma 2.6(b), the second one is just a special case
of this.

(b) In each residue class of Autσ (Xη)/〈σ 〉, there is exactly one element F for which the
associated integer kF satisfying equation (4) equals 0. These elements F form a subgroup
J of Autσ (Xη). Suppose for a contradiction that there are M + 1 different automorphisms
F1, . . . , FM+1 ∈ J . In view of Lemma 2.6(b), they all satisfy

τ̃n | (yFi
)Sn for all n ∈ N. (5)

Hence, there exists arbitrarily large n ∈ N such that M = pn/τ̃n and

(yFi
)Sn/τ̃n ∈ {0, . . . , M − 1} for all i = 1, . . . , M + 1.

It follows that there exist two different i, j ∈ {1, . . . , M + 1} for which (yFi
)Sn = (yFj

)Sn

for infinitely many n, which is only possible if yFi
= yFj

. In view of [6, Lemma 2.4],
this implies Fi = Fj mod 〈σ 〉, so that i = j , which is a contradiction. Hence, J is a
finite group of order m � M , say J = {F1, . . . , Fm}. In particular, J ⊆ Tor. However,
if F ∈ Tor, then ryF = �(0) ∈ G for some positive integer r. Hence, with the integer kF

satisfying equation (4), we have

∂W + yId −�(rkF ) = ∂W −�(rkF ) = ∂W + ryF −�(rkF ) ⊆ ∂W ,

but kId = 0, so equation (4) implies kF = 0. It follows that F ∈ J , and we proved that
J = Tor. Then [7, Theorem 3.2(2)] implies that Tor is cyclic, and Autσ (Xη) = J ⊕ 〈σ 〉 =
Tor ⊕ 〈σ 〉.

It remains to determine the order m of Tor: fix some F ∈ Tor. In view of equation (5),

pn = M · τ̃n | M · (yF )Sn ≡ (yFM )Sn mod pn

for all n ∈ N. Hence, FM = idXη , so that the order of F is a divisor of M.
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To apply this theorem, we need to verify the assumption in equation (4) and to determine
the periods τ̃n. So we focus next on finding sufficient conditions that imply ∂W +
(yF −�(k))Z ⊆ ∂W .

2.2. The separated holes conditions and its variants. The separated holes condition
(Sh) was introduced in [2]. It requires

for all k ∈ Z \ {0}, there exists N ∈ N for all n ≥ N : Hn ∩ (Hn − k) =H. (Sh)

As mentioned in the introduction, it is equivalent to the disjointness condition

for all k ∈ Z \ {0} : ∂W ∩ (∂W −�(k)) =H. (D)

Indeed, it is even equivalent to the separated essential holes condition

for all k ∈ Z \ {0}, there exists N ∈ N for all n ≥ N : H̃n ∩ (H̃n − k) =H. (Seh)

As we do not make use of this equivalence, we leave it as an exercise.
The following variants of the separated essential holes condition, which allow to study

Toeplitz subshifts that violate condition (Sh), will play important roles; however, so we
provide proofs for the corresponding equivalences:
(i) weak disjointness condition (D′), equivalent to weak separated essential holes

condition (Seh′):

for all k ∈ Z \ {0} : ∂W ∩ (∂W −�(k))

is nowhere dense with respect to the subspace topology of ∂W . (D′)

for all k ∈ Z \ {0} : there is no arithmetic progression r + pNZ such that

for all n ≥ N : H 
= (r + pNZ) ∩ H̃n ⊆ H̃n − k; (Seh′)

(ii) weak double disjointness condition (DD′), equivalent to weak double separated
essential holes condition (DSeh′):

for all k ∈ Z \ {0} for all β ∈ G : ∂W ∩ (∂W − β) ∩ (∂W − 2β −�(k))

is nowhere dense with respect to the subspace topology of ∂W , (DD′)

for all k ∈ Z \ {0} for all β ∈ G : there is no arithmetic progression r + pNZ

such that for all n ≥ N : H 
= (r + pNZ) ∩ H̃n ⊆ (H̃n − βn) ∩ (H̃n − 2βn − k).
(DSeh′)

Observe that for β = 0 conditions (DD′) and (DSeh′) reduce to conditions (D′) and (Seh′),
respectively. Moreover, conditions (D) and (Sh) clearly imply conditions (D′) and (Seh′),
respectively.

In the following, we will assume condition (DD′)—indeed, for some results, only the
weaker condition (D′) is needed. In the B-free setting, condition (DD′) will be verified
under suitable assumptions in Proposition 2.30.

Both equivalences above, namely ¬ condition (D′) ⇔ ¬ condition (Seh′) and ¬
condition (DD′)⇔ ¬ condition (DSeh′), follow immediately from the next lemma.
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LEMMA 2.9. Let k ∈ Z \ {0}, β ∈ G, N > 0 and r ∈ Z. Then,

H 
= UN(�(r)) ∩ ∂W ⊆ (∂W − β) ∩ (∂W − 2β −�(k)) (6)

if and only if

for all n ≥ N : H 
= (r + pNZ) ∩ H̃n ⊆ (H̃n − βn) ∩ (H̃n − 2βn − k). (7)

Proof. Suppose that equation (6) holds. Then, for all n ≥ N , there is rn ∈ r + pNZ such
that Un(�(rn)) ∩ ∂W 
=H, whence rn ∈ (r + pNZ) ∩ H̃n in view of Lemma 2.5(a).

Now consider any rn ∈ (r + pNZ) ∩ H̃n. By the inclusion in equation (6),

Un(�(rn)) ∩ ∂W ⊆ UN(�(rn)) ∩ ∂W

= UN(�(r)) ∩ ∂W ⊆ (∂W − β) ∩ (∂W − 2β −�(k)),

so that, by Lemma 2.5(a) again, rn + βn ∈ H̃n and rn + 2βn + k ∈ H̃n, which proves
equation (7).

Conversely, suppose that equation (7) holds. For each n ≥ N , there is some rn ∈ (r +
pNZ) ∩ H̃n, and we find a subsequence �(rni

) that converges to some h ∈ G. Hence, for
each m > 0, there is ni ≥ m such that hm ∈ rni

+ pmZ ⊆ H̃ni
+ pmZ ⊆ H̃m + pmZ =

H̃m, so that h ∈ ∂W in view of Lemma 2.5(b). As hN ∈ rni
+ pNZ = r + pNZ for

some ni , this shows that h ∈ UN(�(r)) ∩ ∂W .
Now consider any h ∈ UN(�(r)) ∩ ∂W . Then, for all n ≥ N , Un(h) ∩ ∂W 
=H,

so that hn ∈ (r + pNZ) ∩ H̃n, where we used Lemma 2.5(a) once more. The inclu-
sion in equation (7) then implies hn ∈ (H̃n − βn) ∩ (H̃n − 2βn − k) for all n ≥ N .
Now Lemma 2.5(b) shows that h+ β ∈ ∂W and h+ 2β +�(k) ∈ ∂W , which proves
equation (6).

Remark 2.10. Suppose that the condition (*) from [3] holds, that is, for any n ∈ N and
s ∈ Z,

[spn, (s + 1)pn) ∩Hn ⊆ Hn+1 or [spn, (s + 1)pn) ∩Hn+1 =H, (∗)
and recall that it implies triviality of the centralizer [3, Theorem 1]. Here we show that it
implies H̃n = Hn for all n, but mostly precludes property (Seh′): note first that

for all n ∈ N for all r ∈ Hn, there exists s ∈ Z : r + spn ∈ Hn+1. (8)

Indeed, otherwise there are n ∈ N and r ∈ Hn such that r + spn ∈ Hn \Hn+1 for all
s ∈ Z. However, then Hn+1 =H in view of condition (*), which is excluded because we
study only non-periodic Toeplitz sequences. A straightforward inductive application of
condition (8) shows that for all n ∈ N, r ∈ Hn and m > n, there are integers sn, . . . , sm−1

such that r + snpn + · · · + sm−1pm−1 ∈ (r + pnZ) ∩Hm. Hence, H̃n = Hn for all
n ∈ N. We claim

(r + pNZ) ∩ H̃n ⊆ H̃n − (r ′ − r) for any r , r ′ ∈ HN ∩ [0, pN). (9)

Indeed, let r , r ′ ∈ HN ∩ [0, pN) and s ∈ Z. Suppose that r + spN ∈ Hn for some n > N .
Since for any m ≥ N we have r + spN ∈ [s′mpm, (s′m + 1)pm), where s′m = [spN/pm],
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and Hn ⊆ Hn−1 ⊆ · · · ⊆ HN , by condition (*), we obtain [s′mpm, (s′m + 1)pm) ∩Hm ⊆
Hm+1 for any N ≤ m < n. In particular, since [spN , (s + 1)pN) ⊆ [s′mpm, (s′m + 1)pm),
we have [spN , (s + 1)pN) ∩Hm ⊆ Hm+1 for any N ≤ m < n. Hence,

[spN , (s + 1)pN) ∩HN = [spN , (s + 1)pN) ∩Hn−1 ⊆ Hn.

Of course, r ′ + spN ∈ [spN , (s + 1)pN) ∩HN . So r ′ + spN ∈ Hn = H̃n. The same
arguments as above, with roles of r and r ′ interchanged, show that

r + spN ∈ H̃n ⇔ r ′ + spN ∈ H̃n ⇔ r + spN ∈ H̃n − (r ′ − r).

So equation (9) follows. Hence, if [0, pN) contains at least two holes at level N, then
condition (Seh′) does not hold. If, however, Hn ∩ [0, pn) is a singleton for any n ≥ N ,
then the distance between consecutive holes at level n is pn, so even condition (Sh) holds.

Remark 2.11. Given k ∈ HN \ H̃N , let nk ≥ N be minimal such that (k + pNZ) ∩
Hnk
=H. Clearly, nk depends only on the residue of k modulo pN , so the nk are bounded,

say, by mN . Then, for k ∈ HN , k ∈ H̃N if and only if (k + pNZ) ∩HmN

=H. More

generally, for every n ≥ mN : k ∈ H̃N if and only if (k + pNZ) ∩Hn 
=H. Hence, for
every n ≥ mN , H̃N = Hn + pNZ. It follows that the minimal period τ̃N of H̃N divides
gcd(τn, pN) for n ≥ mN .

2.3. Consequences of the weak disjointness condition (D′). Consider any automorphism
F of (Xη, σ). Recall from the introduction that π ◦ F = f ◦ π , where π : (Xη, σ)→
(G, T ) is the MEF-map and f : G→ G, y �→ y + yF for some yF ∈ G, and that ∂W +
yF ⊆⋃

k∈Z ∂W +�(k). Denote

Vk = ∂W ∩ (∂W +�(k)− yF ) (k ∈ Z) (10)

and

K = {k ∈ Z : int∂W (Vk) 
=H}. (11)

PROPOSITION 2.12. Assume that the weak disjointness condition (D′) holds. Let the
automorphism F of (Xη, σ) be described by a block code {0, 1}[−m:m] → {0, 1}. Then,

∂W + yF ⊆
m⋃

k=−m

∂W +�(k). (12)

Proof. Recall from equation (3) that ∂W + yF ⊆⋃
k∈Z ∂W +�(k).

Let y ∈ G and recall that π : Xη → G denotes the factor map onto the MEF. At the end
of the proof, we show

|π−1{y}| = 2⇔ there exists j ∈ Z : y +�(j) ∈ R := ∂W \
⋃

k∈Z\{0}
∂W +�(k). (13)

As F : Xη → Xη is a bijection that maps π -fibres to π -fibres and as π ◦ F = f ◦ π , it
follows that when π−1{y} = {x1, x2}with x1 
= x2, then π−1{f (y)} = {x′1 = F(x1), x′2 =
F(x2)}, and there are exactly one index j ∈ Z such that y +�(j) ∈ ∂W and (x1)j 
=
(x2)j , and exactly one index k ∈ Z such that f (y)+�(k) ∈ ∂W and (x ′1)k 
= (x′2)k .
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As F is described by a block code {0, 1}[−m:m] → {0, 1}, it follows that |j − k| � m. (This
argument is taken from the proof of [2, Corollary 1].)

Consider any y ∈ R. Then the index j in equation (13) equals 0 and y + yF ∈ ∂W −
�(k) for some k with |k| � m. In other words: f (R) is contained in the closed set⋃m

k=−m T k(∂W). Because of condition (D′), the set R defined in equation (13) is residual
with respect to the subspace topology of ∂W . Hence,

∂W + yF = f (∂W) = f (R) ⊆ f (R) ⊆
m⋃

k=−m

T k(∂W) =
m⋃

k=−m

∂W +�(k).

It remains to prove equation (13). Recall first that |π−1{y}| = 1 if and only if y ∈ Cφ ,
so that |π−1{y}| > 1 if and only if y ∈⋃

k∈Z ∂W +�(k). So all we must show is that
(A) |π−1{y}| > 2 if and only if (B) y +�(j) ∈ ∂W ∩ (∂W +�(k)) for some j ∈ Z and
k ∈ Z \ {0}.

Suppose first that part (A) holds, i.e. that there are at least three different points in
π−1{y}. As points in the same π -fibre can differ only at positions k where y +�(k) ∈ ∂W ,
there must be at least two such positions, and that is part (B).

Conversely, if part (B) holds and if x = φ(y), then xj = xj−k = 1.
(i) As ∂W ∪ (∂W +�(k)) is nowhere dense in G, there are arbitrarily small per-

turbations y′ of y such that y′ +�(j) 
∈ ∂W ∪ (∂W +�(k)), resulting in points
x′ = φ(y′) with x′j = x′j−k = 0.

(ii) As ∂W ∩ (∂W +�(k)) is nowhere dense in ∂W with respect to the subspace
topology on ∂W (because of condition (D′)), there are arbitrarily small perturbations
y′ of y such that y′ +�(j) ∈ ∂W \ (∂W +�(k)), resulting in x′ = φ(y′) with
x′j = 1 and x′j−k = 0.

Hence, |π−1{y}| � 3, and that is part (A).

PROPOSITION 2.13. We have K 
=H, and there is a countable collection UNj
(�(rj )),

j ∈ N, of cylinder sets in G with the following properties: for each j ∈ N, there exists
some kj ∈ Z such that

H 
= (UNj
(�(rj )) ∩ ∂W)+ (yF −�(kj )) ⊆ ∂W , (14)

and ⋃
j∈N

UNj
(�(rj )) ∩ ∂W is dense in ∂W . (15)

Proof. We start from the observation of equation (3), namely ∂W + yF ⊆⋃
k∈Z ∂W +

�(k). This implies

∂W =
⋃
k∈Z

∂W ∩ (∂W +�(k)− yF ) =
⋃
k∈Z

Vk .

Hence, M :=⋃
k∈Z Vk \ int∂W (Vk) is a meagre subset of the compact space ∂W and

∂W = M ∪⋃
k∈K int∂W (Vk). Now Baire’s category theorem implies that K 
=H. As ∂W

is separable, there is a countable collection UNj
(�(rj )), j ∈ N, of cylinder sets in G, for

each of which there exists kj ∈ K such that H 
= ∂W ∩ UNj
(�(rj )) ⊆ int∂W (Vkj

) and
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such that

∂W = M ∪
⋃
j∈N

(∂W ∩ UNj
(�(rj ))).

As M is meagre in ∂W , these cylinder sets satisfy equation (15), and as

(UNj
(�(rj )) ∩ ∂W) ⊆ int∂W (Vkj

) ⊆ ∂W +�(kj )− yF ,

also equation (14) holds.

COROLLARY 2.14. Assume that the weak disjointness condition (D′) holds. Let the
automorphism F of (Xη, σ) be described by a block code {0, 1}[−m:m] → {0, 1}. Then the
set K is contained in [−m, m], int∂W (Vki

) ∩ int∂W (Vkj
) =H for any different ki , kj ∈ K ,

and ∂W =⋃
k∈K V ′k , where V ′k := int∂W (Vk).

Proof. Let K ′ := K ∩ [−m, m], m as in Proposition 2.12. Because of that proposition
and Proposition 2.13, ∂W =⋃

k∈K ′ int∂W (Vk). Suppose there are ki , kj ∈ K such that
int∂W (Vki

) ∩ int∂W (Vkj
) 
=H. Then there is some cylinder set UN(�(r)) ∩ ∂W contained

in this intersection. Let Ũ := (UN(�(r)) ∩ ∂W)+ yF −�(ki). Then, Ũ ⊆ ∂W and Ũ +
�(ki − kj ) ⊆ ∂W , so that Ũ ⊆ ∂W ∩ (∂W +�(kj − ki)). As Ũ is non-empty and open
in the relative topology on ∂W , the weak disjointness assumption implies ki = kj . This
also proves that K = K ′ ⊆ [−m, m].

For later use, we note a further consequence of Proposition 2.13.

COROLLARY 2.15. Assume that (int∂W (Vki
)+ (yF −�(ki)) ∩ int∂W (Vkj

) 
=H for some
ki , kj ∈ K . Then there exist N ∈ N (which can be chosen arbitrarily large) and r ∈ Z such
that

H 
= (UN(�(r)) ∩ ∂W)+ (yF −�(ki)) ⊆ ∂W and

H 
= (UN(�(r)) ∩ ∂W)+ (yF −�(ki))+ (yF −�(kj )) ⊆ ∂W . (16)

Proof. Fix some cylinder set UN ′(�(r ′)) such that

H 
= UN ′(�(r ′)) ∩ ∂W ⊆ int∂W (Vki
) ∩ (int∂W (Vkj

)− (yF −�(ki))).

In view of Proposition 2.13, there are N ′i , N ′j ∈ N and r ′i , r ′j ∈ Z such that

UN ′(�(r ′)) ∩ UN ′i (�(r ′i )) ∩ (UN ′j (�(r ′j ))− (yF −�(ki))) ∩ ∂W 
=H (17)

and

(UN ′i (�(r ′i )) ∩ ∂W)+ (yF −�(ki)) ⊆ ∂W ,

(UN ′j (�(r ′j )) ∩ ∂W)+ (yF −�(kj )) ⊆ ∂W . (18)

Because of equations (17) and (18), the set UN ′(�(r ′)) ∩ UN ′i (�(r ′i )) ∩ (UN ′j (�(r ′j ))−
(yF −�(ki))) contains a cylinder set UN(�(r)) for which UN(�(r)) ∩ ∂W 
=H and

(UN(�(r)) ∩ ∂W)+ (yF −�(ki)) ⊆ ∂W and

(UN(�(r)) ∩ ∂W)+ (yF −�(ki))+ (yF −�(kj )) ⊆ ∂W .
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Clearly, N can be chosen arbitrarily large.

2.4. Consequences of the weak double disjointness condition (DD′). The crucial step is
now to show that int∂W (Vk)+ (yF −�(k))⊆Vk for all k∈K under suitable assumptions.

PROPOSITION 2.16. Assume that the weak double disjointness condition (DD′) holds. Let
the automorphism F of (Xη, σ) be described by a block code {0, 1}[−m:m] → {0, 1}. Then,
V ′k + (yF −�(k)) ⊆ V ′k for all k ∈ K , the set K is contained in [−m, m] and the sets V ′k
have pairwise disjoint interiors.

Proof. It suffices to prove that int∂W (Vk)+ (yF −�(k)) ⊆ V ′k for all k ∈ K . Suppose
for a contradiction that there is ki ∈ K such that int∂W (Vki

)+ (yF −�(ki)) 
⊆ V ′ki
.

By Proposition 2.13, there exists kj ∈ K \ {ki} such that (int∂W (Vki
)+ (yF −�(ki))) ∩

int∂W (Vkj
) 
=H. So we can apply Corollary 2.15. Hence, there are N ∈ N and r ∈ Z such

that, setting β = yF −�(ki),

(UN(�(r)) ∩ ∂W) ⊆ (∂W − β) ∩ (∂W − 2β −�(ki − kj )).

In view of condition (DD′), this implies ki = kj . The remaining assertions follow from
Corollary 2.14.

Remark 2.17. Suppose that the conclusions of Proposition 2.16 are satisfied (not necessar-
ily condition (DD′)).
(a) For k ∈ K , let H̃k

n := {j ∈ H̃n : Un(�(j)) ∩ V ′k 
=H}. Then, H̃n =⋃
k∈K H̃k

n by
Lemma 2.5 and Corollary 2.14. (However, observe that this need not be a disjoint
union, in general!)

(b) j ∈ H̃k

n if and only if j + pn ∈ H̃k

n, that is, all H̃k

n are pn-periodic.
(c) For each n > 0 and k ∈ K , we have H̃k

n + gcd((yF )n − k, pn)Z ⊆ H̃k

n.

Proof of (c). For each j ∈ H̃k

n, there exists h ∈ Un(�(j)) ∩ V ′k . By assumption,
h+ (yF −�(k))Z ⊆ V ′k , so that for all t ∈ Z,

Un(�(j + ((yF )n − k)t) ∩ V ′k = Un(�(j)+ (yF −�(k))t) ∩ V ′k 
=H,

that is, j + ((yF )n − k)Z ⊆ H̃k

n.

Remark 2.18. Remark 2.17(c) can be used to show that |K| = 1 and hence ∂W + (yF −
�(k)) ⊆ ∂W , whenever δ(H̃n) = o(1/

√
p

n
). This allows us to apply Theorem 2.8, which

imposes restrictions on yF in terms of the minimal periods τ̃n of the sets H̃n. (However,
that is quite far from what holds in the B-free setting.)

Indeed, let k, k′ ∈ K and denote β = yF −�(k) and β ′ = yF −�(k′). Suppose for a
contradiction that k 
= k′. Then,

|H̃k

n ∩ [0, pn)| ≥ |〈gcd(βn, pn)〉pn | and |H̃k′
n ∩ [0, pn)| ≥ |〈gcd(β ′n, pn)〉pn |,

where 〈s〉pn denotes the subgroup generated by s in Z/pnZ, so that

|H̃n ∩ [0, pn)|2 ≥ |H̃k

n ∩ [0, pn)| · |H̃k′
n ∩ [0, pn)|
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≥ |〈(gcd(βn, pn), gcd(β ′n, pn))〉pn×pn |,
where 〈(s, t)〉pn × pn denotes the subgroup generated by (s, t) in (Z/pnZ)2. Hence,

|H̃n ∩ [0, pn)|2 ≥ lcm
(

pn

gcd(βn, pn)
,

pn

gcd(β ′n, pn)

)
= pn

gcd(βn, β ′n, pn)

≥ pn

gcd(βn − β ′n, pn)
= pn

gcd(k − k′, pn)
.

However, the last denominator is at most 2m, so

1
2m · pn

≤
( |H̃n ∩ [0, pn)|

pn

)2

= δ(H̃n)
2,

which is in contradiction to the assumption.

Here is an example of a Toeplitz sequence for which Remark 2.18 applies and for which
τn and τ̃n, the smallest periods of Hn and H̃n, are different.

Example 2.19. Garcia and Hedlund [14] gave the first example of a 0–1 non-periodic
Toeplitz sequence. At each level n of their construction, there is exactly one hole in
each interval of length pn, so all holes are essential, and the centralizer is trivial
because condition (*) is satisfied, see Remark 2.10. Our example is a modification of
this construction: (to be precise, the example from [14] is not really a Toeplitz sequence,
because it is not periodic at position 0. However, its orbit closure is minimal and contains
many Toeplitz sequences. Our modification takes this into account.)

let rn :=∑n−1
j=0 22j = (22n − 1)/3. Define a Toeplitz sequence in such a way that

Hn = 22nZ− rn.

Observe that Hn = 22(n−1)(4Z− 1)− rn−1 ⊆ Hn−1, in particular,
⋂

n≥1 Hn =H.
Here, Hn−1 \Hn is the disjoint union of the residue classes 22(n−1)(4Z− k)− rn−1,
k ∈ {0, 2, 3}, and the positions in each of these residue classes should be filled
alternatingly with 0 and 1. Then all these positions have minimal period 22n+1, and
(pn)n≥1 = (22n+1)n≥1 is a period structure for the resulting Toeplitz sequence.

If 22Nt − rN ∈ HN and n > N , then

(22Nt − rN + pNZ) ∩Hn = ((22Nt + (rn − rN)+ pNZ) ∩ 22nZ)− rn

= 22N

((
t + 22(n−N) − 1

3
+ 2Z

)
∩ 22(n−N)Z

)
− rn

is non-empty if and only if t is odd. Hence, H̃N = 22N(2Z+ 1)− rN and τ̃N = 22N+1 =
pN = 2τN . Notice that each interval of length pn contains exactly two holes and the
distance between them is pn/2. However, pn+1 = 4pn, so condition (*) is not satisfied.
Nevertheless, the centralizer is trivial by Theorem 2.8 and Remark 2.18.

2.5. Additional arithmetic structure (motivated by the B-free case). Throughout this
subsection, F is again an automorphism of (Xη, σ) and π(F (x)) = π(x)+ yF for x ∈ Xη.
We start with a particularly simple situation based on the following (very strong) trivial
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intersection property: there are An ⊆ N, n ∈ N such that⋂
n∈N
〈An〉 = {0} and H̃n ⊆MAn , n ∈ N. (TI)

We will check this property for some non-trivial B-free examples, see Examples 3.20, 3.27
and 3.28, and also §3.4.

PROPOSITION 2.20. Suppose property (TI) is satisfied.
(a) Then the disjointness condition (D) holds, and there exists a unique k ∈ Z such that

∂W + yF ⊆ ∂W +�(k).
(b) τ̃n | (yF )n − k, where τ̃n is the minimal period of H̃n. In particular, if infinitely many

H̃n have minimal period pn then yF = �(k).

Proof. (a) If there is some y ∈ ∂W ∩ (∂W −�(k)), then UN(�(yN)) ∩ ∂W =
UN(y) ∩ ∂W 
=H and UN(�(k + yN)) ∩ ∂W = UN(�(k)+ y) ∩ ∂W 
=H, so that
k = (k + yN)− yN ∈ H̃N − H̃N ⊆MAN

−MAN
⊆ 〈MAN

〉 = 〈AN 〉 for all N > 0 by
Lemma 2.5a). Hence, k = 0 in view of property (TI). If there are y1, y2 ∈ ∂W and k1, k2 ∈
Z such that yi + yF ∈ ∂W −�(ki) (i = 1, 2), then UN(�(ki + (yi + yF )N)) ∩ ∂W 
=H
(i = 1, 2), so that k2 − k1 ∈ 〈AN 〉 for all N > 0 as before. Hence, k2 = k1 because of
property (TI).

(b) This follows from part (a) of the lemma and from Theorem 2.8a).

Together with Theorem 2.8, this proposition yields the following corollary.

COROLLARY 2.21. Suppose that property (TI) is satisfied. If M := lim infn→∞ pn/τ̃n<∞,
then

Autσ (Xη) = 〈σ 〉 ⊕ Tor,

where Tor denotes the torsion group of Autσ (Xη). It is a cyclic group (possibly trivial),
whose order divides M. In particular, if infinitely many H̃n have minimal period pn, then
the centralizer of (Xη, σ) is trivial.

If property (TI) is not satisfied, as is the case for more complex B-free examples, we
need additional tools to verify the assumption in equation (4) of Theorem 2.8. The weak
double disjointness condition (DD′) turns out to be instrumental along this way, and hence
its verification under mild arithmetic assumptions in Proposition 2.30 will be an important
step.

We continue with some arithmetic preparations. For the sake of brevity, we sometimes
write u ∨ v instead of lcm(u, v). The following notation will be used repeatedly for
positive integers a and k:

a÷k := a

gcd(a, k)
= a ∨ k

k
. (19)

For A ⊆ N and k ∈ N, denote

A÷k := {a÷k : a ∈ A}, (20)
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A⊥k := {a ∈ A : gcd(a, k) = 1} (21)

and

Aprim := {a ∈ A : a′ | a ⇒ a′ = a for all a′ ∈ A}. (22)

If A = Aprim, then A is called primitive.

Remark 2.22. Let r , 
, s, m ∈ Z and assume that gcd(m, 
) | s − r . Then,

(r + 
Z) ∩ (s +mZ) = x + (
 ∨m)Z = g · (r̃ + 
̃Z), (23)

where x∈{0, . . . , (
∨m)−1} is defined uniquely by the first identity, g= gcd(x, 
 ∨m),
r̃ = x/g, and 
̃ = 
 ∨m/g. Observe that gcd(r̃ , 
̃) = 1. This formula will be applied in
several settings, so that one should keep in mind that g, r̃ and 
̃ depend on r , 
, s and m.
For later use, observe also that

g = gcd(r , 
) ∨ gcd(s, m). (24)

Here is the proof of equation (24): as x − r ∈ 
Z and x − s ∈ mZ, we have gcd(x, 
) =
gcd(r , 
) and gcd(x, m) = gcd(s, m). Hence,

g = gcd(x, 
 ∨m) = gcd(x, 
) ∨ gcd(x, m) = gcd(r , 
) ∨ gcd(s, m).

We list some further consequences:

lcm(A÷g) = lcm(A)÷g , g ·MA÷g =MA ∩ gZ, and MA÷g ⊆MA÷
∨m , (25)

where we used gcd(a, g) | gcd(a, 
 ∨m) for the last inclusion. Each subset Z ⊆ Z holds

(r̃ + 
̃Z) ∩MA = (r̃ + 
̃Z) ∩M
A⊥
̃ , (26)

because gcd(r̃ , 
̃) = 1. (Indeed, if a ∈ A, z ∈ Z and x = r̃ + z
̃ ∈ aZ, then gcd(a, 
̃) | r̃ ,
so that gcd(a, 
̃) | gcd(r̃ , 
̃) = 1, i.e. a ∈ A⊥
̃.) Combining equations (23), (25) and (26)
yields

(r + 
Z) ∩ (s + aZ) ∩MA = g · ((r̃ + 
̃Z) ∩M
(A÷g)⊥
̃ ). (27)

Given a set A ⊆ Z, we denote by δ(A) := limN→∞(1/log N)
∑N

k=1(1/k)1A(k) the
logarithmic density of A (provided the limit exists).

LEMMA 2.23. Let r , 
, s, m ∈ Z and assume that gcd(m, 
) | s − r . Recall that

̃ = 
 ∨m/g. Then,
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δ((r + 
Z) ∩ (s +mZ) ∩MA) = 1

 ∨m

· δ(M
(A÷g)⊥
̃ ) �

1

 ∨m

· δ(MA÷
∨m), (28)

δ((r + 
Z) ∩ (s +mZ) \MA) = 1

 ∨m

· (1− δ(M
(A÷g)⊥
̃ )). (29)

Proof. As in [15, Lemma 1.17], we have

δ((r̃ + 
̃Z) ∩M
(A÷g)⊥
̃ ) = 1


̃
· δ(M

(A÷g)⊥
̃ ).

As g · 
̃ = 
 ∨m, this together with equation (23) proves the identity in equation (28). As
δ((r + 
Z) ∩ (s +mZ)) = 1/
 ∨m, equation (29) follows at once. For the inequality in
equation (28), observe that M

(A÷g)⊥
̃ ⊆MA÷g ⊆MA÷
∨m by equation (25).

LEMMA 2.24. Assume that (r + 
Z) ∩ (s +mZ) ∩ [N ,∞) ⊆MC for some r , 
, s,
m ∈ Z satisfying gcd(m, 
) | s − r , some N ∈ N and a finite set C ⊂ N. Then,
c | gcd(r , 
) ∨ gcd(s, m) for some c ∈ C.

Proof. Let A := (C÷g)⊥
̃. In view of equation (27), our assumption implies (r̃ + 
̃Z) ∩
[N ,∞) ⊆MA =MAprim . As Aprim is taut, [12, Proposition 4.31] shows that there is
a ∈ Aprim such that a | gcd(r̃ , 
̃) = 1, that is, 1 ∈ A. Hence, there is c ∈ C such that
c | g = gcd(r , 
) ∨ gcd(s, m).

We will need a more detailed arithmetic characterization of the inclusion from
Lemma 2.24 when C is a singleton and s = 0.

LEMMA 2.25. Let r , 
, a, c ∈ Z satisfying gcd(a, 
) | r . Then the following conditions are
equivalent:
(a) (r + 
Z) ∩ aZ ⊆ cZ;
(b) c | gcd(r , 
) ∨ a;
(c) c | 
 ∨ a and gcd(c, 
) | r .

Proof. By Lemma 2.24, condition (a) implies condition (b). Conversely, condition (a)
follows from condition (b), because (r + 
Z) ∩ aZ ⊆ (gcd(r , 
) ∨ a)Z.

Suppose that conditions (a) and (b) hold. By condition (b), we have c | gcd(r , 
) ∨
a | 
 ∨ a. Since gcd(a, 
) | r , we have (r + 
Z) ∩ aZ 
=H. So by condition (a), we get
r ∈ cZ+ 
Z = gcd(c, 
)Z. Hence, condition (c) holds.

Finally suppose that condition (c) holds. Then,

gcd(c, gcd(r , 
) ∨ a) = gcd(c, r , 
) ∨ gcd(c, a)

= gcd(c, 
) ∨ gcd(c, a) = gcd(c, 
 ∨ a) = c,

and condition (b) follows at once.

We will need to know the smallest periods of the difference of the sets of multiples.
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LEMMA 2.26. Assume that A and C are finite subsets of N and that the set A is primitive.
(a) If A = {a} and a 
∈MC , then a · lcm((C÷a)prim) is the minimal period of aZ \MC .
(b) If the set C÷a = {c/gcd(a, c) : c ∈ C} ⊂ N \ {1} is primitive for every a ∈ A, then

lcm(A ∪ C) is the minimal period of MA \MC .

Proof. (a) Let a ∈ N \MC . Then, H 
= aZ \MC = a · (Z \MC÷a ), and the claim
follows from the observation that lcm((C÷a)prim) is the minimal period of MC÷a , see
[18, Lemma 5.1b)].

(b) Let T be the minimal period of MA \MC . Clearly, T | lcm(A ∪ C). Now let a ∈ A.
Since 1 
∈ C÷a , a ∈MA \MC , so a + TZ ⊂MA. By Lemma 2.24 and primitivity
of A, we get a|T , so that T + (aZ \MC) ⊂ aZ \MC for every a ∈ A and there-
fore a · lcm((C÷a)prim) | T in view of part (a). Hence, lcm({a} ∪ C) = a lcm(C÷a) =
a lcm((C÷a)prim) | T for every a ∈ A, so that lcm(A ∪ C)|T .

The following proposition is the ‘multi-tool’ of this section.

PROPOSITION 2.27. Let An and Sn be sets of positive integers. Let b ∈ Z, n � N � 0,
a ∈ An and r ∈ Z be such that

(r + pNZ) ∩ (aZ) \MSn 
=H (30)

and

((r + pNZ) ∩ (aZ) \MSn)+ b ⊆MAn . (31)

Assume that there is a subset En,a of An \ {a} for which∑
a′∈En,a

1
ϕ(a′÷a)

<
1

pN

, (32)

where ϕ is Euler’s totient function. Then there is a′ ∈ An \ En,a such that

b ∈ gcd(a′, gcd(r , pN) ∨ a)Z and H 
= ((r + pNZ) ∩ (aZ) \MSn) ∩ (−b + a′Z).
(33)

If b = βn for some β = �(k) with |k| < gcd(a′, a) for all a′ ∈ An \ En,a , then β = 0.

Proof. In view of the assumption in equation (31), we have

((r + pNZ) ∩ (aZ) \MSn) ⊆ (−b +MEn,a ) ∪ (−b +MDn,a ), (34)

where Dn,a = An \ En,a . We prove below that equation (32) implies

((r + pNZ) ∩ (aZ) \MSn)+ b 
⊆MEn,a . (35)

Hence and by equation (34), there is a′ ∈ Dn,a such that equation (33) holds. Hence,
b = 0 or |b| � gcd(a′, gcd(r , pN) ∨ a) � gcd(a′, a). It remains to show that equation (32)
implies the assumption in equation (35).
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Consider any a ∈ An for which ((r + pNZ) ∩ (aZ) \MSn) 
=H. Then gcd(a, pN) |
r , and Lemma 2.23 implies

0 < δ((r + pNZ) ∩ (aZ) \MSn) =
1

pN ∨ a
(1− δ(M

(S
÷gn
n )

⊥(p
÷gn
N

)
)), (36)

where

gn := gcd(r , pN) ∨ a and p
÷gn

N = pN ∨ gn

gn

= pN ∨ a

gn

| p÷a
N .

Suppose for a contradiction that there is inclusion in equation (35). Then,

(r + pNZ) ∩ (aZ) \MSn ⊆
⋃

a′∈En,a

(−b + a′Z),

so that

δ((r + pNZ) ∩ (aZ) \MSn)

�
∑

a′∈En,a

δ((r + pNZ) ∩ (−b + a′Z) ∩ (aZ) \MSn)

�
∑

a′∈En,a

δ((gnZ) ∩ (−b + a′Z) \MSn)

=
∑

a′∈En,a , gcd(gn,a′)|b
δ((gnZ) ∩ (−b + a′Z) \MSn)

=
∑

a′∈En,a , gcd(gn,a′)|b

1
gn ∨ a′

(1− δ(M
(S
÷(gn∨gcd(b,a′))
n )⊥gn∨a′/gn∨gcd(b,a′) )). (37)

The last equality follows from Lemma 2.23. Notice that gcd(gn, a′) | b implies

gn ∨ a′

gn ∨ gcd(b, a′)
= (gn ∨ a′) · gcd(gn, a′)

gn · gcd(b, a′)
= a′

gcd(b, a′)
= a′÷b. (38)

As

pN ∨ a

a′ ∨ gn

� pN ∨ a

a′ ∨ a
= p÷a

N

a′÷a
, (39)

equations (36), (37) and (38) together yield

1− δ(M
(S
÷gn
n )

⊥(p
÷gn
N

)
) �

∑
a′∈En,a

p÷a
N

a′÷a
(1− δ(M

(S
÷(gn∨gcd(b,a′))
n )⊥a′÷b )). (40)

Denote

Rn(a
′) :={b÷gn : b ∈ Sn, b÷gn ⊥ p

÷gn

N , b÷gn 
⊥ a′÷gn}.
Then Rn(a

′) ⊆ S
÷gn
n trivially and we claim that

(S
÷gn
n )⊥(p

÷gn
N ) \ Rn(a

′) ⊆M
(S
÷(gn∨gcd(b,a′))
n )⊥a′÷b .

Indeed, each b÷gn ∈ S
÷gn
n \ Rn(a

′), which is also coprime to p
÷gn

N , is coprime to a′÷gn

and, a fortiori, to a′÷b because gcd(gn, a′) | b. Moreover, b÷gn = b ∨ gn/gn is a multiple
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of b ∨ gn ∨ gcd(b, a′)/gn ∨ gcd(b, a′), so that the latter is also coprime to a′÷b. Therefore,

(S
÷gn
n )⊥(p

÷gn
N ) ⊆ Rn(a

′) ∪M
(S
÷(gn∨gcd(b,a′))
n )⊥a′÷b ,

so that Behrend’s inequality (see [15, Theorem 0.12] for a reference) yields

1− δ(M
(S
÷gn
n )

⊥(p
÷gn
N

)
) � 1− δ(MRn(a′)∪M

(S
÷(gn∨gcd(b,a′))
n )⊥a′÷b

)

= 1− δ(M
Rn(a′)∪(S

÷(gn∨gcd(b,a′))
n )⊥a′÷b )

� (1− δ(MRn(a′))) · (1− δ(M
(S
÷(gn∨gcd(b,a′))
n )⊥a′÷b )).

Therefore, equation (40) leads to

1− δ(M
(S
÷gn
n )

⊥(p
÷gn
N

)
) �

∑
a′∈En,a

pN
÷a

a′÷a
·

1− δ(M
(S
÷gn
n )

⊥(p
÷gn
N

)
)

1− δ(MRn(a′))
.

As 1− δ(M
(S
÷gn
n )

⊥(p
÷gn
N

)
) > 0, in view of equation (36), we can divide the last inequality

by this expression, so that

1 �
∑

a′∈En,a

p÷a
N

a′÷a
· 1

1− δ(MRn(a′))
�

∑
a′∈En,a

p÷a
N

a′÷a
· 1

1− δ(MSpec(a′÷a))

=
∑

a′∈En,a

pN
÷a

a′÷a
·

∏
p|a′÷a

1

1− 1
p

� pN ·
∑

a′∈En,a

1
ϕ(a′÷a)

,

(41)

where we used the fact that Rn(a
′) ⊆MSpec(a′÷gn ) ⊆MSpec(a′÷a). However, the last

estimate contradicts the assumption in equation (32).

From now on, we assume that the sets H̃n have some particular arithmetic structure:
there is a primitive set An of positive integers such that for each an ∈ An, there is a set
Sn = Sn(an) of positive integers satisfying

H̃n =
⋃

an∈An

anZ \MSn(an) and anZ \MSn(an) 
=H (an ∈ An). (AS)

Observe that min An →∞ as n→∞, because An ⊆ H̃n ⊆ Hn and min Hn →∞.
In the remaining part of this section, we prove the weak double disjointness condition

(DD′) under the arithmetic structure assumption in equation (AS), which allows us to
apply Proposition 2.16 in this situation. Later, in Theorem 3.17, we verify equation (AS)
in the B-free setting. Recall from equation (11) the definition of the set K = {k ∈ Z :
int∂W (Vk) 
=H}.
PROPOSITION 2.28. Assume the condition in equation (AS). If

lim
n→∞

∑
a′∈An

1
ϕ(a′)

= 0, (42)

then the weak disjointness condition (D′) is satisfied.
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Moreover, if the automorphism F of (Xη, σ) is described by a block code
{0, 1}[−m:m] → {0, 1}, then the set K is contained in [−m, m], int∂W (Vki

) ∩ int∂W (Vkj
) =

H for any different ki , kj ∈ K , and ∂W =⋃
k∈K V ′k , where V ′k := int∂W (Vk).

Proof. Suppose for a contradiction that condition (D′) does not hold, equivalently that
condition (Seh′) does not hold. Then there are k ∈ Z \ {0} and an arithmetic progression
r + pNZ such that for all n ≥ N ,

H 
= (r + pNZ) ∩ H̃n ⊆ H̃n − k.

Let n ≥ N . In view of property (AS), there is a ∈ An such that

H 
= (r + pNZ) ∩ aZ \MSn + k ⊆MAn . (43)

Let En,a = {a′ ∈ An : gcd(a′, a) � |k|}. Since

ϕ(a′÷a) = a′÷a
∏

p|a′÷a

(
1− 1

p

)
� 1
|k|a

′ ∏
p|a′

(
1− 1

p

)
= 1
|k|ϕ(a′)

for any a′ ∈ En,a , the assumption in equation (42) above implies the assumption in
equation (32) of Proposition 2.27. So this proposition applies to the inclusion in equation
(43), and there is a′ ∈ An \ En,a such that gcd(a′, a) | k. As |k| < gcd(a′, a) for all
a′ ∈ An \ En,a , this contradicts the assumption k ∈ Z \ {0}.

The remaining conclusions follow from Corollary 2.14.

Remark 2.29. Any B-free Toeplitz subshift satisfying equation (42) is regular, because
H̃n ⊆MA∞Sn

and d(MA∞Sn
) ≤∑

a∈A∞Sn
1/a ≤∑

a∈A∞Sn
1/ϕ(a).

PROPOSITION 2.30. Assume the condition in equation (AS). If

lim
n→∞

∑
a′∈An\{a}

1
ϕ(a′÷a)

= 0 for all choices of a ∈ An (where a′÷a = a′/gcd(a′, a)),

(44)

then the weak double disjointness condition (DD′)—and a fortiori condition (D′)—is
satisfied.

Moreover, the conclusions of Proposition 2.28 can be complemented by V ′k +
(yF −�(k))Z ⊆ V ′k for all k ∈ K .

Proof. Suppose for a contradiction that condition (DD′) does not hold, equivalently
that condition (DSeh′) does not hold. Then there are k ∈ Z \ {0}, β ∈ G, an arithmetic
progression r + pNZ, such that for all n ≥ N ,

H 
= (r + pNZ) ∩ H̃n ⊆ (H̃n − βn) ∩ (H̃n − 2βn − k).

Let n ≥ N . In view of the property in equation (AS), there is a ∈ An such that

H 
= (r + pNZ) ∩ aZ \MSn + βn ⊆MAn and

H 
= (r + pNZ) ∩ aZ \MSn + 2βn + k ⊆MAn . (45)

https://doi.org/10.1017/etds.2023.43 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2023.43


1080 A. Dymek et al

Let En,a = An \ {a}. In view of the assumption in equation (44), Proposition 2.27 applies
to both inclusions in equation (45), and as An \ En,a = {a}, we can conclude that a |
βn and a | 2βn + k, so that a | k. As a ∈ An and min An →∞, this contradicts the
assumption k ∈ Z \ {0}.

The final conclusion follows from Proposition 2.16.

THEOREM 2.31. Assume the condition in equation (AS) and let the automorphism F of
(Xη, σ) be described by a block code {0, 1}[−m:m] → {0, 1}. Under the assumption in
equation (44) of Proposition 2.30, the following hold.

(a) For each n > 0 and each k ∈ K , there exists a ∈ An such that

a | (yF )n − k.

(b) For each n > 0 and each a ∈ An, there exists some k ∈ K such that

a | (yF )n − k.

If a > 2m, then this k ∈ K is unique. Denote it by κn(a).
(c) Suppose n is so large that min An > 2m, and denote by Gn the graph with vertices An

and edges (a, a′) whenever gcd(a, a′) > 2m. Then, κn(a) = κn(a
′) for any two a, a′

in the same connected component of Gn. In particular, |K| = 1 if Gn is connected.
(d) If |K| = 1, say K = {k}, then, for each n, (yF )n − k is a multiple of the minimal

period τ̃n of H̃n.
(e) If |K| = 1 and τ̃n = pn for all n, then (Xη, σ) has a trivial centralizer.

Proof. (a) Let k ∈ K . Then V ′k + (yF −�(k))Z ⊆ V ′k ⊆ ∂W by Proposition 2.30, and
because of Lemma 2.5, hn + (yF −�(k))nZ ⊆ H̃n ⊆MAn for each h ∈ V ′k . It follows
that there exists a′ ∈ An such that a′ | gcd(hn, (yF −�(k))n).

(b) Let a ∈ An. Notice that a 
∈MSn(a). Otherwise, aZ ⊆MSn(a) which contradicts
equation (AS). So, a ∈ H̃n and, by Lemma 2.5, there exists some h ∈ Un(�(a)) ∩ ∂W . In
particular, hn = a ∈ H̃n. Because of Corollary 2.14, there exists k ∈ K such that h ∈ V ′k .
As in the proof of part (a), it follows that there exists a′ ∈ An such that a′ | gcd(hn, (yF −
�(k))n). As a′ and a = hn belong to the same primitive set An, this implies a = a′ |
(yF −�(k))n.

Suppose there is another k′ ∈ K such that a | (yF −�(k′))n. Then a | k − k′, so that
k = k′ or a � |k − k′| � 2m.

(c) It suffices to prove that κn(a) = κn(a
′) for every edge (a, a′) of Gn, i.e. whenever

gcd(a, a′) > 2m. However, as part (b) implies

gcd(a, a′) | ((yF )n − κn(a))− ((yF )n − κn(a
′)) = κn(a

′)− κn(a),

it follows that κn(a) = κn(a
′) or 2m < gcd(a, a′) � |κn(a)− κn(a

′)| � 2m.
(d) If K = {k}, then ∂W = V ′k , that is, ∂W + (yF −�(k)) ⊆ ∂W , and the claim

follows from Lemma 2.6(b).
(e) It follows from part (d) that yF = �(k) for some k ∈ Z.
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3. The B-free case
In this section, we will apply our results for general Toeplitz subshifts from §2 to minimal
B-free subshifts.

3.1. Preparations. Let us start with the following notation and observations.
(i) For a finite subset S ⊂ B, define as in [18]


S := lcm(S) and AS := {gcd(b, 
S) : b ∈ B}.
As B is primitive, S is a proper subset of AS .

(ii) The set B is taut, if δ(MB\{b}) < δ(MB) for each b ∈ B.
So a set is primitive if removing any single point from it changes its set of

multiples, and a set is taut if removing any single point from it changes the
logarithmic density of its set of multiples.

(iii) Let S ⊆ S′ ⊂ B. From [18, equation (17)], we recall that

S ⊆ S′ ⊆ AS′ ⊆MAS
so that MS ⊆MS′ ⊆MAS′ ⊆MAS

. (46)

(iv) A finite set S ⊂ B is saturated if AS ∩ B = S.
(v) For a finite set S ⊂ B, define Ssat = AS ∩ B.
Then S ⊆ Ssat, Ssat is finite, lcm(Ssat) | lcm(AS) = lcm(S), so that lcm(Ssat) = lcm(S),
and ASsat = AS , because gcd(b, lcm(Ssat)) = gcd(b, lcm(S)) for each b ∈ B. In particular,
ASsat ∩ B = AS ∩ B = Ssat, so that Ssat is saturated.

Any filtration S1 ⊆ S2 ⊆ · · · of B by finite sets yields a period structure pn = lcm(Sn)

for Xη. The definition of the group G depends on the period structure, but G is naturally
isomorphic with the inverse limit lim← Z/ lcm(S)Z of the inverse system of cyclic groups
Z/ lcm(S)Z indexed by the finite subsets S ⊂ B ordered by the inclusion. Moreover,
there is an injective group homomorphism lim← Z/ lcm(S)Z→∏

b∈B Z/bZ given by
(nS)S⊂B �→ (n{b} + bZ)b∈B. We can identify the group G with the image of this homomor-
phism, which consists of the elements h = (hb)b∈B ∈∏

b∈B Z/bZ satisfying hb = hb′
mod gcd(b, b′) for any b, b′ ∈ B. Under this identification, � : Z→∏

b∈B Z/bZ is
given by (�(n))b = n+ bZ for b ∈ B and �(Z) ∼= G. Given a sequence (nS)S⊂B of
integers belonging to the inverse limit (that is, satisfying nS ≡ nS′ mod lcm(S) when-
ever S ⊆ S′), we denote by lim �(nS) the element h ∈ �(Z) ⊆∏

b∈B Z/bZ such that
hb = nS mod b for b ∈ S ⊂ B.

Remark 3.1. The coding function φ : G→ {0, 1}Z defined in the introduction can be writ-
ten as φ(y) = 1Z\⋃b∈B(bZ−yb) for any y = (yb)b∈B ∈ �(Z) ∼= G. It is injective. Indeed,
for y ∈ G, denote Iy := {s ∈ Z : (φ(y))s = 1} = {s ∈ Z : y +�(s) ∈ W }. As int(W) =
W ⊆ �(Z) (see the introduction), we have W = int(W) ⊆ {y +�(s) : s ∈ Iy} ⊆ W for
each y ∈ G. Hence, if φ(y) = φ(y′), then Iy = Iy′ and

W = {y +�(s) : s ∈ Iy} = {y′ +�(s) : s ∈ Iy′ } + (y − y′) = W + (y − y′).

However, W is aperiodic [18, Proposition 5.1], so y = y′.
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LEMMA 3.2. [18, Lemma 2.5] Let U = US(�(n)) for some S ⊂ B and n ∈ Z.
(a) If n ∈MS , then U ∩W =H.
(b) If U ∩W =H, then n+ lcm(S) · Z ⊆MB∩AS

.
(c) If S is saturated, then n ∈MS if and only if U ∩W =H if and only if n+ lcm(S) ·

Z ⊆MS .

LEMMA 3.3. [18, Lemma 3.1]
(a) For all S ⊂ B and n ∈ Z we have: US(�(n)) ⊆ W ⇔ n ∈ FAS

.
(b) If (Sk)k is a filtration of B by finite sets and limk �(nSk

) = h, then h ∈ int(W) if and
only if nSk

∈ FASk
for some k.

LEMMA 3.4. [18, Lemma 5.2] Assume that S ⊆ S′ are finite subsets of B, then AS =
{gcd(a, lcm(S)) : a ∈ AS′ }.
PROPOSITION 3.5. [18, Theorem B] The following are equivalent.
(a) W is topologically regular, that is W = int(W).
(b) There are no d ∈ N and no infinite pairwise coprime set A ⊂ N \ {1} such that

dA ⊂ B.
(c) η = φ(0) is a Toeplitz sequence different from (. . . , 0, 0, 0, . . .).
(d) {n ∈ N : ∀S⊂B ∃S′⊂B : S ⊆ S′ and n ∈ AS′ \ S′} =H.

LEMMA 3.6. Each filtration S1 ⊂ S2 ⊂ · · · ↗ B has a sub-filtration of sets Snk
such that

Ssat
n1
⊂ Ssat

n2
⊂ · · · ↗ B is a filtration.

Proof. Let n1 = 1. If n1 < n2 < · · · < nk are chosen, let nk+1 = min{j ∈ N :
Ssat

nk
⊆ Sj }.

This lemma allows us in the following to assume that a filtration is saturated without
loosing generality.

3.2. Sets of holes. Now we describe the set of holes and the set of essential holes.

PROPOSITION 3.7. Let S ⊂ B be saturated and taut and s ∈ Z. Then:
(a) s ∈MS ⇔ s + 
SZ ⊆MS ⇔ s + 
SZ ⊆MB;
(b) s ∈ FAS

⇔ s + 
SZ ⊆ FAS
⇔ s + 
SZ ⊆ FB.

In particular, s ∈ Z is not 
S-periodic if and only if s ∈MAS
\MS . Hence, MASn

\
MSn is the set of all holes (with respect to the period structure given by pn = lcm(Sn))
in η on level n. (Observe also that if B is primitive and η is a Toeplitz sequence, then B is
taut, see [18, Lemma 3.7].)

Proof. (i) Let s ∈MS . Then b | s for some b ∈ S. Since b | 
S , s + 
SZ ⊆ bZ ⊆MS .
(ii) Let s + 
SZ ⊆MB. By [12, Proposition 4.31], the tautness of B implies b |

gcd(s, 
S) for some b ∈ B. Since S is saturated, b ∈ S. So s ∈MS .
(iii) Let s ∈ FAS

. Assume for a contradiction that gcd(b, 
S) | s + 
Sk for some
k ∈ Z and some b ∈ B. Since gcd(b, 
S) | 
S , gcd(b, 
S) | s, which contradicts s ∈ FAS

.
So s + 
SZ ⊆ FAS

.
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(iv) Let s + 
SZ ⊆ FB. Assume for a contradiction that gcd(b, 
S) | s for some b ∈ B.
Then there is x ∈ Z such that x ≡ 0 mod b and x ≡ s mod 
S , i.e. x ∈ bZ ∩ (s + 
SZ),
in contradiction to s + 
SZ ⊆ FB. Hence, s ∈ FAS

.
Now part (a) follows from items (i) and (ii), while part (b) follows from items (iii)

and (iv).

To describe the set of essential holes, we extract special elements of AS .

Definition 3.8. Let S ⊂ B.
(a) An element b ∈ B \ S is a source of an element a ∈ AS if a = gcd(b, lcm(S)).
(b) A∞S := {a ∈ AS : a has infinitely many sources} and A∞,p

S := (A∞S )prim.

We will use some basic properties of A∞S .

LEMMA 3.9.
(a) A∞,p

S ⊆ A∞S ⊆ AS \MS .
(b) Let S ⊂ S′ ⊂ B and a ∈ A∞S . There exists at least one a′ ∈ A∞S′ such that

a = gcd(a′, 
S).
(c) Let S ⊂ S′ ⊂ B and a′ ∈ A∞S′ . Then, gcd(
S , a′) ∈ A∞S .
(d) Let S ⊂ S′ ⊂ B and a ∈ A∞,p

S . There exists at least one a′ ∈ A∞,p
S′ such that

a = gcd(a′, 
S). In particular, |A∞,p
S′ | � |A∞,p

S |.
(e) Let S ⊂ S′ ⊂ B with |A∞,p

S′ | = |A∞,p
S | and a′ ∈ A∞,p

S′ . Then, gcd(a′, 
S) ∈ A∞,p
S .

(Without the extra assumption, this need not hold, see Example 3.29.)

Proof. (a) Let a ∈ A∞S . If a = gcd(b, 
S) ∈MS for some b ∈ B, then there is b′ ∈ S

such that b′ | a | b, and the primitivity of B implies b = a = b′ ∈ S. This contradicts to a
having infinitely many sources.

(b) Let a ∈ A∞S . There are infinitely many b ∈ B \ S′ such that a = gcd(b, 
S). Let
a′b := gcd(b, 
S′) for these b. Then, gcd(a′b, 
S) = gcd(b, 
S) = a for all these b, and as
AS′ is finite, there exists some a′ ∈ AS′ such that a′ = a′b for infinitely many of them.
Hence, a′ ∈ A∞S′ .

(c) Clear.
(d) In the situation of item (b), suppose that a ∈ A∞,p

S and that there is a′0 ∈ A∞,p
S′ such

that a′0 | a′. Then, a0 := gcd(a′0, 
S) ∈ A∞S and a0 | gcd(a′, 
S) = a. As a ∈ A∞,p
S , this

implies a0 = a, so that gcd(a′0, 
S) = a.
(e) This follows from item (d).

LEMMA 3.10. Suppose that S1 ⊆ S2 ⊆ · · · ↗ B is a filtration by saturated sets. Then, for
each N ∈ N,

r ∈ Z , USN
(�(r)) ∩ ∂W 
=H⇒ r ∈MA∞SN

\MSN
(47)

and, for all r ∈ Z,

USN
(�(r)) ∩ ∂W 
=H⇔ for all n � N : (r + 
SN

Z) ∩ (MA∞Sn
\MSn) 
=H. (48)

More precisely, if h ∈ USN
(�(r)) ∩ ∂W , then hSn ∈ (r + 
SN

Z) ∩ (MA∞Sn
\MSn) for all

n � N .
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Proof. Suppose there exists some h ∈ USN
(�(r)) ∩ ∂W . Then, hSn ∈ (r + 
SN

Z) ∩
(MASn

\MSn) for all n � N , see Lemma 2.1 and Proposition 3.7. Hence, r 
∈MSN
, and

there are numbers kn ∈ Z and bn ∈ B \ Sn(n � N) such that gcd(bn, 
SN
) | gcd(bn, 
Sn) |

hSn = r + kn
SN
. In particular, gcd(bn, 
SN

) | r for all n � N , and as ASN
is a finite set,

there exist a ∈ ASN
and infinitely many bni

such that gcd(bni
, 
SN

) = a. It follows that
a ∈ A∞SN

and a | r . This proves equation (47).
Observe that, trivially, h ∈ USn(�(hSn)) ∩ ∂W for each n � N . Hence, we can apply

equation (47) to n and hSn instead of N and r, respectively. It follows that hSn ∈MA∞Sn
\

MSn . As hSn = r + kn
SN
, this proves the ‘⇒’-direction of equation (48) and also the

final claim.
The ‘⇐’-implication of equation (48) follows from Lemma 2.5 and Proposition 3.7,

because A∞Sn
⊆ ASn for all n ∈ N.

COROLLARY 3.11. Suppose that S1 ⊆ S2 ⊆ · · · ↗ B is a filtration by saturated sets.
Then, for each n ∈ N,

mG(∂W) ≤ d(MA∞,p
Sn

) ≤ 1−
∏

a∈A∞,p
Sn

(
1− 1

a

)
.

Proof. For n ∈ N, denote by Un the family of all sets USn(�(r)) that have non-empty
intersection with ∂W and by

⋃ Un the union of these sets. Then, equation (47) implies
mG(∂W) ≤ mG(

⋃ Un) = |Un|/
Sn ≤ d(MA∞Sn
\MSn) ≤ d(MA∞,p

Sn
) for all n, and the

second inequality is the Heilbronn–Rohrbach inequality [15, Theorem 0.9].

Remark 3.12. Fix the period structure given by pn = lcm(Sn). Then,

H̃n ⊆MA∞Sn
\MSn ⊆ Hn =MASn

\MSn

by Proposition 3.7, Lemma 2.5(a) and equation (47) of Lemma 3.10. Moreover, equation
(48) of Lemma 3.10 shows that r ∈ H̃N if and only if for all n � N : (r + 
SN

Z) ∩
(MA∞Sn

\MSn) 
=H. This characterization is also the starting point for verifying the

structural assumption in equation (AS) on H̃n from §2.5, see Proposition 3.16 and
Theorem 3.17 below.

Remark 3.13. In the general Toeplitz case, one can easily construct a Toeplitz sequence
for which not all holes are essential. We construct a B-free Toeplitz subshift with this
property in Example 3.27. Moreover, the property H̃n = Hn may depend on the choice of
the period structure, as we show in Example 3.28, and a B-free Toeplitz subshift for which
H̃n � MA∞Sn

\MSn is provided in Example 3.29.

In the rest of this subsection, we show that the structural assumption in equation (AS)
of Propositions 2.28 and 2.30 and of Theorem 2.31 is satisfied in the B-free setting.

Definition 3.14. Let (Sn)n be a filtration of B by finite sets. An integer sequence (an)n≥N

is called an (a, A)-sequence, if aN = a and if an ∈ ASn\Sn and gcd(an+1, 
Sn) = an for
all n ≥ N .
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Remark 3.15. If (an)n≥N is an (a, A)-sequence, then an ∈ A∞Sn
for all n ≥ N . Indeed,

suppose that am has only finitely many sources b1, . . . , bk for some m ≥ N . Consider
n ≥ m such that b1, . . . , bk ∈ Sn. Since an 
∈ Sn, there exists b ∈ B \ Sn such that an =
gcd(b, 
Sn). Then am = gcd(an, 
Sm) = gcd(b, 
Sm). So b is a source of am different
from b1, . . . , bk . This yields a contradiction. Note also that by Lemma 3.9(b), for every
a ∈ A∞SN

there exists an (a, A)-sequence.

PROPOSITION 3.16. Let (Sn)n be a filtration of B by finite sets. Then, for all N ∈ N,
the set H̃N is the union of sets aZ \MSN ((an)n≥N), where the union extends over all
(a, A)-sequences (an)n≥N and where

SN((an)n≥N) = {gcd(b, 
SN
) : b ∈ B and b | an ∨ 
SN

for some n ≥ N}. (49)

Proof. Notice that in view of Remark 3.12,

r ∈ H̃N ⇔ for all n � N : (r + 
SN
Z) ∩ 1(MA∞Sn

\MSn) 
=H.

Hence,

r 
∈ H̃N ⇔ there exists n ≥ N : (r + 
SN
Z) ∩ (MA∞Sn

\MSn) =H
⇔ there exists n ≥ N for all an ∈ A∞Sn

: (r + 
SN
Z) ∩ anZ ⊆MSn

⇔ (there exists n ≥ N for all an ∈ A∞Sn
: (r + 
SN

Z) ∩ anZ 
=H
⇒ there exists b ∈ Sn : (r + 
SN

Z) ∩ anZ ⊆ bZ)

⇔ (there exists n ≥ N for all an ∈ A∞Sn
: gcd(an, 
SN

) | r
⇒ there exists b ∈ Sn : b | an ∨ 
SN

and gcd(b, 
SN
) | r).

The third equivalence follows from Lemma 2.24 and the last one from Lemma 2.25. Now,
the first of the following two equivalences is immediate:

r ∈ H̃N

⇔ for all n ≥ N there exists an ∈ A∞Sn
: gcd(an, 
SN

) | r and

[for all b ∈ Sn : b | an ∨ 
SN
⇒ gcd(b, 
SN

) � r]

⇔ there exists a ∈ A∞SN
there exists an (a, A)-sequence (an)n≥N : a | r and (50)

for all b ∈ B for all n ≥ N : b | an ∨ 
SN
⇒ gcd(b, 
SN

) � r .

The ‘⇐’-direction of the second equivalence is obvious—just a matter of notation. For
the ‘⇒’-direction, we construct a suitable (a, A)-sequence (a′m)m≥N from the given
numbers an: there is a ∈ A∞SN

such that a = gcd(an, 
SN
) for infinitely many indices n.

Obviously a | r , and we choose a′N = a. Suppose inductively that suitable a′N , . . . , a′m
are constructed in such a way that a′m = gcd(an, 
Sm) for infinitely many different indices
n ≥ m. Then there is an increasing subsequence (ani

)i such that gcd(ani
, 
Sm+1) is the

same value for all ni ≥ m+ 1. This common value is denoted by a′m+1. It satisfies
gcd(a′m+1, 
Sm) = gcd(ani

, 
Sm+1 , 
Sm) = gcd(ani
, 
Sm) = a′m for all ni . Suppose now that

b ∈ B, n ≥ N and b | an ∨ 
SN
. Fix n′ ≥ n such that b ∈ Sn′ . Then b | an′ ∨ 
Sn , because

an | an′ , and we conclude that gcd(b, 
SN
) � r . The claim follows.
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THEOREM 3.17. Let (Sn)n be a filtration of B by finite sets and let N > 0. For each
a ∈ A∞SN

, there exists a finite primitive set SN(a) of positive integers such that

H̃N =
⋃

a∈A∞SN

aZ \MSN (a) (51)

and all sets aZ \MSN (a) are non-empty. (An explicit construction of the sets SN(a) is
given in the proof.) In particular, the assumption in equation (AS) of Theorem 2.31 is
satisfied.

Proof. Consider any fixed a ∈ A∞SN
. In view of Proposition 3.16, the set SN(a) must be

constructed in such a way that MSN (a) =⋂ MSN ((an)n≥N), where the intersection runs
over all (a, A)-sequences with aN = a. As all sets SN((an)n≥N) consist of divisors of 
SN

,
this set is only a finite intersection, say of r sets of multiples MR1 , . . . , MRr . Hence, we
may choose as SN(a) the primitivization of the set of all c1 ∨ · · · ∨ cr , where ci ∈ Ri for
i = 1, . . . , r .

Suppose for a contradiction that aZ ⊆MSN (a). Then, aZ ⊆MSN ((an)n≥N) for
each (a, A)-sequence (an)n≥N with aN = a. Hence, for each such sequence, there
is b ∈ B such that gcd(b, 
SN

) | a = gcd(an, 
SN
) and b | an ∨ 
SN

for some n ≥ N .

It follows that b÷
SN | (an ∨ 
SN
)÷
SN = a

÷
SN
n , so that b = b÷
SN · gcd(b, 
SN

) |
a
÷
SN
n · gcd(an, 
SN

) = an. However, this is impossible, because an ∈ A∞Sn
and B is

primitive.

Remark 3.18.
(a) Each set SN((an)n≥N) contains the set SN . Hence, each of the sets MSN (a) contains

MSN
.

(b) If supN |A∞SN
| <∞, then, for sufficiently large N, there is at most one

(a, A)-sequence (an)n≥N for each a ∈ A∞SN
. Hence, MSN (a) =MSN ((an)n≥N) for

each such a.

Under a special assumption (which is satisfied in all our examples except Example 3.29),
we have a simplified description of the sets H̃n.

LEMMA 3.19. Assume that (Sn) is a filtration of B by finite saturated sets. Let N ∈ N. The
following conditions are equivalent:
(a) 
SN

∨ a′ ∈ FB\SN
for every n > N and a′ ∈ A∞Sn

;
(b) SN((an)n≥N) = SN for every a ∈ A∞SN

and for all (a, A)-sequences (an)n≥N .

If this the case, H̃N =MA∞SN
\MSN

.

Proof. Assume condition (a) and let a ∈ A∞SN
. Let gcd(b, 
SN

) ∈ SN((an)n≥N) for some
b ∈ B and some (a, A)-sequence (an)n≥N . Then, b | an ∨ 
SN

for some n ≥ N and, as
an ∈ A∞Sn

by Remark 3.15, condition (a) applied to a′ = an yields b ∈ SN .
Conversely, assume that b | 
SN

∨a′ for some b ∈B \ SN and a′ ∈A∞Sn0
, where n0 > N .

There exists an (a′, A)-sequence (an)n≥n0 (see Remark 3.15). Set an = gcd(an0 , 
Sn)

for N ≤ n ≤ n0. Then, (an)n≥N is an (aN , A)-sequence such that an0 = a′. Moreover,
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gcd(
SN
, b) ∈ S((an)n≥N) and gcd(
SN

, b) /∈ SN as SN is saturated. It follows that
SN((an)n≥N) 
= SN .

The remaining assertion follows by Proposition 3.16 and Remark 3.15.

3.3. Trivial centralizer. We start with an example for which the simple Proposition 2.20
guarantees a trivial centralizer.

Example 3.20. Let B = {2ncn : n > 0}, where (cn)n is a pairwise coprime sequence of
odd integers. We will show that the corresponding B-free system has a trivial centralizer.
Let Sn = {2kck : 0 < k ≤ n}. The sets Sn form a filtration by finite sets. Then, 
Sn =
2n

∏n
i=1 ci and A∞,p

Sn
= ASn \ Sn = {2n}. Notice that the property in equation (TI) is

satisfied for An = A∞Sn
. Moreover, for each N > 0, there is only one (a, A)-sequence

with a ∈ A∞,p
SN

, namely the sequence (2n)n≥N , and SN((2n)n≥N) = SN according to
equation (49). Hence, H̃N = 2N \MSN

= HN . So τ̃n = 
Sn . By Proposition 2.20, the
centralizer is trivial, as shown previously in [10].

Next, we apply Theorem 2.31 to examples which violate properties (TI) and (Seh), and
hence also condition (D).

Example 3.21. Let B = {2ncn, 3ndn : n > 0}, where (cn)n and (dn)n are two sequences of
integers coprime to 2 and 3, and such that the sequence (cn ∨ dn)n>0 is pairwise coprime.
We will show that the corresponding B-free system has a trivial centralizer. Let Sn =
{2kck , 3kdk : 0 < k ≤ n}. The sets Sn form a filtration by finite sets. Notice that 
Sn =
6n

∏n
i=1(ci ∨ di) and A∞,p

Sn
= ASn \ Sn = {2n, 3n}. In particular, 〈A∞Sn

〉 = Z for all n, so
that property (TI) is violated. Below we show that also condition (D) is violated, while
Proposition 2.30 shows that conditions (D′) and (DD′) are satisfied.

We claim H̃n = Hn =MA∞,p
Sn
\MSn . Indeed, suppose that b | sn ∨ 
SN

for some

b ∈ B and some s ∈ {2, 3}. Since cj � sn ∨ 
SN
and dj � sn ∨ 
SN

for any j > N , we have
b ∈ SN . So condition (a) from Lemma 3.19 holds, and the claim follows observing also
Remark 3.12.

In view of Theorem 3.17, the condition in equation (AS) is satisfied, so that
Theorem 2.31 implies |K| = 1 or |K| = 2. Below we will rule out the second possibility.

(i) If K = {k}, then τ̃n | (yF )n − k for all n > 0, where τ̃n is the minimal period
of H̃n, in this case, the minimal period of MA∞Sn

\MSn . Since S÷2n

n = {ck , 3kdk : 0 <

k ≤ n} and S÷3n

n = {2kck , dk : 0 < k ≤ n} are primitive, Lemma 2.26(b) applies. So τ̃n =
lcm(A∞Sn

∪ Sn) = lcm(Sn), and the triviality of the centralizer follows from Theorem 2.31.
(ii) Suppose for a contradiction that |K| = 2, say K = {k2 = κn(2n), k3 = κn(3n)}. Then
by Theorem 2.31(b), 2n | (yF )n − k2 and 3n | (yF )n − k3 for all n > 0. For s ∈ {2, 3}, the
sets H̃ks

n (defined in Remark 2.17(a)) and snZ ∩ H̃ks

n are invariant under translation by
gcd((yF )n − ks , pn), see Remark 2.17(c), because sn | pn and sn | (yF )n − ks . Hence, the
same is true for the set H̃ks

n \ snZ.
We claim that H̃ks

n ⊆ snZ ∩ H̃n for s = 2, 3. Indeed, if this is not the case, then for at
least one s ∈ {2, 3} and s̄ = 5− s,

H 
= H̃ks

n \ snZ ⊆ H̃n \ snZ ⊆ (2nZ ∪ 3nZ) \ snZ ⊆ s̄nZ,
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so that gcd((yF )n − ks , pn) must be a multiple of s̄n. It follows that s̄n | (yF )n − ks . Since
we observed above that s̄n | (yF )n − ks̄ , we see that s̄n | ks − ks̄ = ±(k2 − k3) for all
n > 0, which implies k2 = k3 in contradiction to |K| = 2.

Moreover, as H̃n = H̃ks

n ∪ H̃ks̄

n ,

H̃n \ s̄nZ ⊆ H̃ks

n ⊆ snZ ∩ H̃n for s = 2, 3.

Since we proved above that H̃n =MA∞,p
Sn
\MSn =M{2n,3n} \MSn , this implies

snZ \MSn∪{s̄n} ⊆ H̃ks

n ⊆ snZ \MSn for s = 2, 3,

equivalently,

snZ ∩MSn ⊆ snZ \ H̃ks

n ⊆ snZ ∩MSn∪{s̄n} for s = 2, 3. (52)

Denote the minimal period of H̃ks

n by τ̃ (s). Our goal is to prove that gcd(τ̃ (2), τ̃ (3)) >

2m, because the fact that gcd(τ̃ (2), τ̃ (3)) divides gcd((yF )n − k2, (yF )n − k3) and hence
also k3 − k2 then shows that k2 = k3, which is the desired contradiction. (Recall from
Proposition 2.28 that K ⊆ [−m, m].)

Observe first that sn | τ̃ (s) and t + τ̃ (s)Z ⊆ snZ \ H̃ks

n ⊆ snZ ∩MSn∪{s̄n} for each
t ∈ snZ \ H̃ks

n . Hence, there is b ∈ Sn ∪ {s̄n} such that sn ∨ b | gcd(t , τ̃ (s)).

(1) If the first inclusion in equation (52) is strict, there exists t ∈ (snZ \ H̃ks

n ) \MSn .
Hence, sn ∨ s̄n | gcd(t , τ̃ (s)).

(2) The same arguments apply when the roles of s and s̄ are interchanged.

Therefore, if 2nZ ∩MSn � 2nZ \ H̃k2
n or 3nZ ∩MSn � 3nZ \ H̃k3

n , then 3n | gcd(τ̃ (2),
τ̃ (3)) or 2n | gcd(τ̃ (2), τ̃ (3)), respectively, and we are done.

It remains to treat the case where 2nZ ∩MSn = 2nZ \ H̃k2
n and 3nZ ∩MSn = 3nZ \

H̃k3
n . In this case, τ̃ (s) is the smallest period of snZ \MSn , so τ̃ (s) = sn · lcm((S÷sn

n )prim)

for s = 2, 3 by Lemma 2.26(a), where S÷2n

n = {ci , 3idi : 1 ≤ i ≤ n} and S÷3n

n =
{2ici , di : 1 ≤ i ≤ n}.
(a) If there are infinitely many i ∈ N such that ci � di , then there are infinitely many

n ∈ N such that 3n | lcm((S÷2n

n )prim), so that 3n | gcd(τ̃ (2), τ̃ (3)).
(b) Analogously, if there are infinitely many i ∈ N such that di � ci , then there are

infinitely many n ∈ N such that 2n | lcm((S÷3n

n )prim), so that 2n | gcd(τ̃ (2), τ̃ (3)).
(c) It remains to treat the case where ci = di except for finitely many i ∈ N, say for

i < N . Then, cN · · · · · cn | gcd(τ̃ (2), τ̃ (3)) for all n ≥ N .
We complete this example by showing (for suitable choices of cn = dn) that conditions

(Seh) and hence also (D) are violated. Suppose that
∏

n∈N(1− 1/cn) > 1
2 . Then, for any

n ≥ 1, the equation 3nT − 2nM = 1 has solutions T , M with

3nT , 2nM ∈MA∞Sn
\MSn = (2nZ ∪ 3nZ) \M{c1,...,cn},

so that there are holes with distance 1 (in the sense of [2]), see Proposition 3.7. Indeed,
there is a unique solution X0 ∈ {1, . . . , 6n − 1} of the equations X ≡ 1 mod 2n and
X ≡ 0 mod 3n. For k = 0, . . . , c1 · · · cn − 1, let Xk = X0 + k6n, Tk = Xk/3n and
Mk = Xk − 1/2n. As all Xk are further solutions of the same two equations, and as the ci
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are pairwise coprime and also coprime to 2 and to 3, exactly γn := c1 · · · cn

∏n
i=1(1−

1/ci) of these solutions are {c1, . . . , cn}-free, and also exactly γn of the c1 · · · cn

numbers Xk − 1 are {c1, . . . , cn}-free. Hence, exactly γn of the numbers Tk and γn

of the numbers Mk are {c1, . . . , cn}-free. Since 2γn > c1 · · · cn, there exists at least
one k ∈ {0, . . . , c1 · · · cn − 1} such that Tk and Mk are {c1, . . . , cn}-free. This proves
the claim.

3.4. Non-trivial centralizer. The purpose of this section is to treat simple examples of
the type

BN
1 = {2kck : k ∈ N} ∪ {2k−1c2

k : k ∈ N, k < N}, (53)

where N ∈ N ∪ {∞}, and the numbers cn are odd and pairwise coprime. Observe
that B1

1 and B2
1 are the sets B1 and B′1 from the introduction, respectively. Let Sn =

{2kck : k � n} ∪ {2k−1c2
k : k � min{n, N − 1}}. Then, lcm(Sn) = 2nc2

1 . . . c2
n for n < N ,

lcm(Sn) = 2nc2
1 . . . c2

N−1cN . . . cn for n ≥ N and ASn = Sn ∪ {2n}, so that ASn \ Sn =
A∞Sn
= A∞,p

Sn
= {2n}. As min(ASn \ Sn) obviously tends to infinity, these are examples of

Toeplitz type by Proposition 3.5(d). Along the same lines as in Example 3.21, one can
show that all periods are essential and H̃n = Hn = 2nZ \MSn .

Let τ̃n be the smallest period of H̃n = Hn. We will show that τ̃n = lcm(Sn)/c1 . . . cN−1.
Notice that 2nk ∈MSn if and only if 2nk ∈M{c1,...,cn}. So, H̃n = 2nZ \M{c1,...,cn}. Since
c1, . . . , cn are odd and pairwise coprime, Lemma 2.26(a) implies τ̃n = 2nc1 . . . cn =
lcm(Sn)/c1 . . . cN−1.

Notice that property (TI) holds for An = A∞,p
Sn

. By Proposition 2.20, there exists
a unique k ∈ Z such that ∂W + yF ⊆ ∂W +�(k), and lcm(Sn)/c1 . . . cN−1 = τ̃n |
(yF )Sn − k. It follows at once that yF = �(k) for B1

1 and that yF −�(k) has order at
most

∏N−1
i=1 ci in G in the case of BN

1 and finite N, while yF −�(k) may have any order
in the case of B∞1 .

In the remainder of this subsection, we show that such non-trivial centralizers as allowed
above really exist. To this end, fix N ∈ N ∪ {∞} and 1 ≤ 
 < N , and consider BN

1 as
before. Denote pm = lcm(Sm) for any m ∈ N. Let

q = p


c


= 2
c2
1 . . . c2


−1c
. (54)

We define F
 : Xη → {0, 1}Z by

(F
x)s =
{

xs if s 
∈ c
Z− πlcm(S
)(x),

xs+q if s ∈ c
Z− πlcm(S
)(x).

This map is continuous, because πlcm(S
), the 
th coordinate of the MEF map, is continu-
ous. Recall that the MEF map π : Xη → G is chosen such that π(η) = �(0). As �(0) ∈
Cφ [18, Lemma 3.5] for B-free Toeplitz subshifts, |π−1{π(F (η))}| = |π−1{π(η)}| = 1,
that is, π(F (η)) ∈ Cφ and, observing also Remark 3.1,

F(η) = φ(π(F (η))) = φ(yF ) = 1Z\⋃b∈B(bZ−(yF )b). (55)
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LEMMA 3.22. Define y ∈ G by

yb =
{

0 if b 
= 2
−1c2

 ,

q if b = 2
−1c2

 .

(56)

Then y coincides with the rotation yF

associated to F
.

Proof. As πlcm(S
)(η) = 0,

(F
η)s =
{

ηs if s /∈ c
Z,

ηs+q if s ∈ c
Z.

In view of equation (55) and of the injectivity of φ (see Remark 3.1), we must show that
(F
η)s = 0 if and only if s ∈⋃

b∈B(bZ− yb) for all s ∈ Z.
(1) Assume that s /∈ c
Z. Then,

(F
η)s = 0⇔ ηs = 0⇔ s ∈MB ⇔ s ∈ 2
−1c2

Z ∪

⋃
b∈B\{2
−1c2


 }
(bZ− yb).

As s 
∈ c
Z by assumption and s + q 
∈ c
Z because c
 | q, this is equivalent to
s ∈⋃

b∈B(bZ− yb).
(2) Now assume that s ∈ c
Z. Let T = {2c1, . . . , 2
c
, c2

1, . . . , 2
−2c2

−1}. Observe

that q = lcm(T ) and T is saturated. Observe also that (F
η)s = 0 if and only if
s + q ∈MB.

So let b ∈ B and assume that b | s + q.
(i) If b ∈ T , then b | q, and hence s ∈ bZ = bZ− yb.

(ii) If b = 2
−1c2

 , then s ∈ bZ− q = bZ− yb.

(iii) If b ∈ B \ (T ∪ {2
−1c2

}), then 2
 | b and, as c
 | s and 2
c
 | q, it follows that

s ∈ 2
c
Z = 2
c
Z− y2
c

.

We have proved that s ∈⋃
b∈B(bZ− yb).

It remains to prove that if s ∈ c
Z and s ∈⋃
b∈B(bZ− yb), then s + q ∈MB. Indeed,

s + q ∈
(

c
Z ∩
⋃
b∈B

(bZ− yb)

)
+ q

=
( ⋃

b∈T
(b ∨ c
)Z+ q

)
∪ 2
−1c2


Z ∪
( ⋃

b∈B\(T∪{2
−1c2

})

c
bZ+ q

)

⊆
⋃
b∈T

bZ ∪ 2
−1c2

Z ∪ 2
c
Z ⊆MB,

because lcm(T ∪ {c
}) = q and 2
 | b for each b ∈ B \ (T ∪ {2
−1c2

}).

PROPOSITION 3.23. For each 1 � 
 < N �∞, the map F
 belongs to the centralizer of
the BN

1 -free subshift. It satisfies F
c



 = idXη , but F i

 
= idXη for all 1 � i < c
.
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Proof. We show first that F
(η) ∈ Xη. Recall that πlcm(S
)(η) = 0. Fix n ∈ N and choose
t � 
 such that 2t > n. As gcd(p
, pt/c
) = q, there exists z ∈ Z such that

z ≡ 0 mod
pt

c


and z ≡ q mod p
. (57)

We claim that (F
η)[−n, n] = η[−n+ z, n+ z]. Let s ∈ [−n, n]. There are two cases:
(1) s /∈ c
Z. Then, 2
−1c2


 and 2
c
 do not divide neither s nor s + z by the second of
the congruences in equation (57).
(i) Assume that ηs = 0. Then, 2j−εc1+ε

j | s for some j 
= 
 and ε ∈ {0, 1}. Observe that

j � t , since |s| ≤ n < 2t . Then, 2j−εc1+ε
j | s + z by the first of the congruences in

equation (57), and hence ηs+z = 0.
(ii) Conversely, assume that ηs+z = 0. Then, 2j−εc1+ε

j | s + z for some j 
= 
 and ε ∈
{0, 1}, and if j ≤ t , then 2j−εc1+ε

j | s by the first of the congruences in equation
(57), and hence ηs = 0. However, j > t is impossible, because then 2t | s + z, so
that 2t | s by the first of the congruences in equation (57) again, in contradiction to
0 < |s| < 2t .

We have shown that ηs+z = ηs = (F
η)s .
(2) s ∈ c
Z. We use the fact that z ≡ q mod p
 in view of equation (57) repeatedly.

(i) Assume that ηs+q = 0, so that 2j−εc1+ε
j | s + q for some j ∈ N and ε ∈ {0, 1}. If

j ≤ 
, then 2j−εc1+ε
j | s + z because z ≡ q mod p
. If j > 
, then 2
 | s + q, and

hence 2
 | s and 2
c
 | s. As z ≡ q mod p
, also 2
c
 | z, so that 2
c
 | s + z. In
both cases, ηs+z = 0.

(ii) Conversely, assume that ηs+z = 0. The same arguments as before, with roles of q
and z interchanged, show that ηs+q = 0.

We have shown that ηs+z = ηs+q = (F
η)s , and thus the claim follows.
As π(η) = �(0), we have π(σ kη) = �(k) for any k ∈ Z. So, πlcm(S
)(σ

kη) = k

mod p
 for any k ∈ Z. Hence, for any k ∈ Z,

(F
(σ
kη))s =

{
(σ kη)s if s 
∈ c
Z− k,

(σ kη)s+q if s ∈ c
Z− k,

=
{

ηs+k if s + k 
∈ c
Z,

ηs+q+k if s + k ∈ c
Z,
= (F
η)s+k = (σ k(F
η))s .

So, F
(σ
kη) ∈ Xη for each k ∈ Z. The denseness of the orbit of η and the continuity of F


imply that F
(Xη) ⊆ Xη and F
 commutes with σ .
Since F
 corresponds to yF


given by equation (56), and q has order c
 in the group
Z/2
−1c2


Z, it follows that F
 has order c
.
This proves in particular that F
 is a homeomorphism.

Remark 3.24. Consider the case N <∞. As the numbers c1, . . . , cN−1 are pairwise
coprime, the group generated by the automophisms F1, . . . , FN−1 is cyclic of order
c1 . . . cN−1. Let F be a generator of this group. Then, in view of Corollary 2.21,
Autσ (Xη) = 〈σ 〉 ⊕ 〈F 〉 in the case of BN

1 .
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COROLLARY 3.25. Consider B∞1 . Proposition 3.23 shows that the group Autσ (Xη)/〈σ 〉
contains the infinite direct sum of finite cyclic groups

Z/c1Z⊕ Z/c2Z⊕ . . .⊕ Z/c
Z⊕ . . . .

Remark 3.26. One can show that the element y ∈ G given by equation (56) satisfies the
sufficient conditions from [2, Theorem 1] for representing a (non-trivial) element of the
centralizer of the BN

1 -free subshift. However, the methods from [2] do not limit the order of
elements from this centralizer as in Theorem 2.8. It is shown in [2] that Toeplitz subshifts
with skeletons with equidistant holes have only elements of finite order in their centralizer.
However, this does not apply to minimal B-free subshifts, see Proposition 3.7.

3.5. Holes versus essential holes: examples. We start with an example for which there
is no period structure such that all holes are essential and the centralizer is trivial.

Example 3.27. Assume that c1, . . . , cn, . . . , q1, . . . , qn, . . . are pairwise coprime
natural numbers. Let

b1 = q1c1, b2 = q2c2, b3 = q1q3c3, b4 = q1q2q4c4, . . . , bm = q1 . . . qm−2qmcm, . . .

and set B = {bm : m ∈ N}. Let (pn) be any period structure for η = ηB. Observe that for
every m ∈ N, there exists n, n′ ∈ N such that

pm | q1 . . . qnc1 . . . cn and q1 . . . qmc1 . . . cm|pn′ .

Fix N such that q1|pN and let

m = max{i ∈ N : q1 . . . qi |pN }.
Then, qm+1 � pN and hence

k := gcd(bm+1, pN) = q1 . . . qm−1c
ε
m+1,

where ε ∈ {0, 1}. Note that

(k + pNZ) ∩ qmZ =H. (58)

We claim that k ∈ HN \ H̃N . Clearly, k ∈ FB, so ηk = 1. By the definition of k, it follows
that (k + pNZ) ∩ bm+1Z 
=H, thus η is not constant along k + pNZ and hence k ∈ HN .
Now take n > N such that

q1 . . . qm+1c1 . . . cm+1|pn. (59)

We claim that (k + pNZ) ∩Hn =H. Let l ∈ Z and assume first that k + lpN ∈ FB.
Suppose that k + lpN + l′pn ∈MB for some l′ ∈ Z. So b | k + lpN + l′pn for some
b ∈ B. By equations (58) and (59), qm � b, so b ∈ {b1, . . . , bm+1}. However then, by
equation (59), b | k + lpN , which is a contradiction. It follows that k + lpN /∈ Hn. Now
assume that k + lpN ∈MB. So, b | k + lpN for some b ∈ B. Then by equation (58),
b ∈ {b1, . . . , bm+1}, and hence b | pn and k + lpN + pnZ ⊆MB by equation (59). Again
we see that k + lpN /∈ Hn. The claim follows.

Let Sn = {b1, . . . , bn}. Then pn := lcm(Sn) = q1 . . . qnc1 . . . cn defines a period
structure, ASn \ Sn = {q1 . . . qn−1, q1 . . . qn} and A∞Sn

= {q1 . . . qn}. By Proposition 3.7,
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with respect to this period structure, Hn = q1 . . . qn−1Z \MSn . Since cm � 
SN
∨

q1 . . . qn for any m, n > N , 
SN
∨ q1 . . . qn ∈ FB\SN

. So item (a) from Lemma 3.19
holds. Hence, H̃n = q1 . . . qnZ \MSn . Since S

÷q1...qn
n = {c1, . . . , cn} and S

÷q1...qn−1
n =

{c1, . . . , cn−1, qncn} are both primitive, Lemma 2.26 shows that the minimal periods of
H̃n and Hn are both equal pn = q1 . . . qnc1 . . . cn, although H̃n 
= Hn. Proposition 2.20
shows that the centralizer of Xη is trivial.

We continue with an example for which the validity of the identities H̃n = Hn depends
on the choice of the period structure.

Example 3.28. Assume that we have a collection {qi , ci , di : i ≥ 1} of pairwise coprime
odd natural numbers greater than 1. Let

bi = 2iqici , b′i = 2iqidi , b′′i = 2i+1qi

for i ≥ 1 and

Sn = {bi , b′i , b′′i : 1 ≤ i ≤ n}, S′n = Sn ∪ {bn+1}
for n ≥ 1. Finally, we set

B =
⋃
n≥1

Sn =
⋃
n≥1

S′n.

Clearly, B contains no scaled copy of an infinite coprime set.
The sets Sn and S′n are saturated and

lcm(Sn) = 2n+1 · q1 · . . . · qn · c1 · . . . · cn · d1 · . . . · dn, lcm(S′n) = qn+1cn+1 lcm(Sn),
(60)

and hence

ASn \ Sn = A∞Sn
= {2n+1} (61)

and

AS′n \ S′n = {2n+1, 2n+1qn+1}, A∞S′n = {2
n+1}. (62)

It follows that H̃N = HN = 2N+1(Z \M{q1,...,qN }), where the sets of holes and essential
holes are calculated with respect to the period structure pn = lcm(Sn). Indeed,

HN = 2N+1Z \MSN
= 2N+1(Z \M

(S÷2N+1
N )prim) = 2N+1(Z \M{q1,...,qN })

by equation (61) and Proposition 3.7. Suppose that b | 
SN
∨ 2n+1 for some b ∈ B and

some n > N . Since qi � 
SN
∨ 2n+1 for any i > N , b ∈ SN . So item (a) from Lemma 3.19

holds and the assertion follows. By Lemma 2.26(a), we obtain τ̃N = τN = 2N+1q1 · · · qN .
Let H′n, H̃′n be the sets of holes and essential holes, respectively, calculated with respect

to the period structure p′n = lcm(S′n). We will show that

H′N = 2N+1(Z \M{q1,...,qN ,qN+1cN+1}) and H̃′N = 2N+1(Z \M{q1,...,qN ,qN+1}),

so that τ̃ ′N = τ ′N/cN+1 = 2N+1q1 · · · qN+1 by Lemma 2.26(a).
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Indeed,

H′N = 2N+1Z \MS′N = 2N+1(Z \M
(S′÷2N+1

N )prim) = 2N+1(Z \M{q1,...,qN ,qN+1cN+1})

by equation (62) and Proposition 3.7. Let n > N . (Notice that item (a) from Lemma 3.19
does not hold because 2N+2qN+1 | 2n+1 ∨ lcm(S′N) and 2N+2qN+1 
∈ S′N .) Suppose that
for some k ∈ Z \M{q1,...,qN ,qN+1cN+1},

(2N+1k + lcm(S′N)Z) ∩H′n =H.

Then, in particular,

(2N+1k + lcm(S′N)Z) ∩ 2n+1Z ⊆MS′n .

By Lemma 2.24, there exists b ∈ S′n such that

b | gcd(2N+1k, lcm(S′N)) ∨ 2n+1 = gcd(2N+1k ∨ 2n+1, lcm(S′N) ∨ 2n+1).

Since k ∈ Z \M{q1,...,qN ,qN+1cN+1} and b | 2N+1k ∨ 2n+1, we have b ∈ S′n \ S′N . However,
b | lcm(S′N) ∨ 2n+1 but qi � lcm(S′N) ∨ 2n+1 for any i > N + 1, dN+1 � lcm(S′N) ∨ 2n+1

and 2N+1qN+1cN+1 ∈ S′N . So, b = 2N+2qN+1 and qN+1 | k. Conversely,

(2N+1qN+1m+ lcm(S′N)Z) ∩ 2n+1 ⊆ 2n+1qN+1Z ⊆ 2N+2qN+1Z ⊆MS′n

for any m ∈ Z. Hence,

H̃′N = 2N+1Z \MS′N∪{2N+1qN+1} = 2N+1(Z \M
((S′N∪{2N+1qN+1})÷2N+1

)prim)

= 2N+1(Z \M{q1,...,qN ,qN+1}).

For both filtrations, property (TI) from §2.5 is obviously satisfied so that
Proposition 2.20 applies. However, pN/τ̃N = c1 · · · cN · d1 · · · dN and p′N/τ̃ ′N =
c1 · · · cN+1 · d1 · · · dN are both unbounded in N, so that only very weak conclusions
can be drawn from this proposition. In particular, no bound on the size of the centralizer
can be deduced from it.

Finally, we provide an example for which H̃n � MA∞Sn
\MSn for any saturated

filtration (Sn) of B, so that Sn � Sn(a) for some a ∈ A∞Sn
(and hence also for some

a ∈ A∞,p
Sn

), see Theorem 3.17 and Remark 3.18(a).

Example 3.29. Let si , s′i , qi , ri , di−1(i ∈ N) be pairwise different primes. Let

b1 = s1 · s′1 · q1 · d0 (63)

and, for m ∈ N ∪ {0} and i ≥ 2, let

bi,m = 1
s′i−1

s1 · s′1 · . . . · si · s′i · qi · rm
i · dm. (64)

We set

B = {b1} ∪ {bi,m : i ≥ 2, m ≥ 0}. (65)

Then, B is primitive. It is easy to show that B contains no scaled copy of an infinite coprime
set, so the B-free shift is Toeplitz by Proposition 3.5.
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Let (Sn) be any saturated filtration of B by finite sets. With no loss of generality, we can
assume that b1, b2,0 ∈ S1. Let k be the minimal number such that bk+1,0 /∈ S1. It follows
that b2,0, . . . , bk,0 ∈ S1. Let n be maximal such that bk+1,0 /∈ Sn. Then,

b1, b2,0, . . . , bk,0 ∈ Sn and bk+1,0 ∈ Sn+1 \ Sn (66)

and

s1 · s′1 · . . . · sk · s′k · q1 · . . . · qk · d0 | 
Sn . (67)

Observe that bk+1,m /∈ Sn for every m ∈ N. Otherwise, as d0|
Sn and Sn is saturated,
bk+1,0 ∈ Sn in contrast to our assumption. Thus, rk+1 � 
Sn . For m large enough, say for
m ≥ m0, the number gcd(bk+1,m, 
Sn+1) does not depend on m.

A case by case analysis of prime divisors of bk+1,0 and bk+1,m shows that

d0 gcd(bk+1,m, 
Sn) = gcd(bk+1,0, 
Sn) for m ≥ m0. (68)

Indeed, si |bk+1,0 (respectively s′i |bk+1,0) if and only if si |bk+1,m (respectively s′i |bk+1,m) for
every i ∈ N. Moreover, rk+1 � 
Sn , d0 � bk+1,m and qk+1 divides both bk+1,0 and bk+1,m.

We prove that

for all a ∈ A∞Sn+1
: gcd(a, 
Sn)| gcd(bk+1,0, 
Sn)

⇔ a = gcd(bk+1,m, 
Sn+1) for m ≥ m0. (69)

In view of equation (68), it is enough to prove ‘⇒’. We can assume that a =
gcd(bi,m, 
Sn+1) for some i > 1 and m ∈ N, and gcd(bi,m, 
Sn) = gcd(a, 
Sn) | gcd(bk+1,0,

Sn). As s′k � bk+1,0 and s′k|
Sn , we have i ≤ k − 1 or i = k + 1. However, i ≤ k − 1
implies that qi | gcd(bi,m, 
Sn) | bk+1,0, which is a contradiction. Thus, i = k + 1 and
since a ∈ A∞Sn+1

, a = gcd(bk+1,m, 
Sn+1) for m ≥ m0.
Note that as bk+1,0 ∈ Sn+1,

for all m ∈ N : sk+1 · s′k+1 · qk+1 | gcd(bk+1,m, 
Sn+1). (70)

Let a ∈ A∞Sn+1
be such that (gcd(bk+1,0, 
Sn)+ 
SnZ) ∩ aZ 
=H. Then, gcd(a, 
Sn)|

gcd(bk+1,0, 
Sn) and by equation (69), a = gcd(bk+1,m, 
Sn+1) for m ≥ m0. By equations
(67) and (70),

bk+1,0 | a ∨ 
Sn . (71)

It follows from Lemma 2.25 that (gcd(bk+1,0, 
Sn)+ 
SnZ) ∩ aZ ⊆ bk+1,0Z. Hence,

(gcd(bk+1,0, 
Sn)+ 
SnZ) ∩ (MA∞Sn+1
\MSn+1) =H,

which, because of Remark 3.12, implies gcd(bk+1,0, 
Sn) /∈ H̃n. Moreover, by equation
(68) and the primitivity of B, gcd(bk+1,0, 
Sn) ∈MA∞Sn

\MSn . Thus, gcd(bk+1,0, 
Sn) ∈
MA∞Sn

\ (MSn ∪ H̃n).
We claim that η is a regular Toeplitz sequence. Indeed, let Sn = {b1} ∪ {bi,m : 2 ≤

i ≤ n, 0≤m≤ n}. Then, 
Sn = s1s
′
1 . . . sns

′
nq1 . . . qnr

n
1 . . . rn

nd0 . . . dn and for bi,m 
∈ Sn,
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gcd(bi,m, 
Sn) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
s′i−1

s1s
′
1 . . . sis

′
iqir

n
i if i ≤ n, m > n,

s1s
′
1 . . . sn−1s

′
n−1sndm if i = n+ 1, m ≤ n,

s1s
′
1 . . . sn−1s

′
n−1sn if i = n+ 1, m > n,

s1s
′
1 . . . sns

′
ndm if i > n+ 1, m ≤ n,

s1s
′
1 . . . sns

′
n if i > n+ 1, m > n.

Hence, A∞,p
Sn
= {1/s′i−1s1s

′
1 . . . sis

′
iqir

n
i : 2 ≤ i ≤ n} ∪ {s1s

′
1 . . . sn−1s

′
n−1sn}. Since

d(MA∞,p
Sn

) ≤ 1−∏
a∈A∞,p

Sn
(1− 1/a) ≤ 1 − (1 − 1/min2≤i≤n ri

n)n−1(1− 1/s1s
′
1 . . .

sn−1s
′
n−1sn)→ 0 as n→∞, by Corollary 3.11, mG(∂W) = 0. So the B-free Toeplitz

shift is regular, see e.g. [8, Theorem 13.1]. Similarly, one can show that the condition in
equation (42) of Proposition 2.28 and Theorem 2.31 is satisfied for An = A∞,p

Sn
. We do

not attempt to determine the sets H̃n (and their periods) according to the prescription in
Theorem 3.17 explicitly.

Note that an+1 = s1s
′
1 · · · sns′nsn+1 is an example of a number in A∞,p

Sn+1
for which

gcd(an+1, 
Sn) belongs to A∞Sn
but not to A∞,p

Sn
, compare Lemma 3.9 items (c) and (e).

We complete this example by showing (for suitable choices of di) that conditions (Seh)
and hence also (D) (the equivalence of conditions (Seh) and (D) was claimed without proof
in §2.2, see also Lemma 2.9) and property (TI), see Proposition 2.20, are violated. Let
an = s1s

′
1s2s

′
2 . . . sn−1s

′
n−1sn and a′n = s1s2s

′
2q2r

n
2 . Suppose that

∏
n≥0(1− 1/dn) > 1

2 .
Then the equation an/s1s2s

′
2T − a′n/s1s2s

′
2M = 1 has solutions T , M with

anT , a′nM ∈MA∞Sn
\MSn

so that, for all n, there are holes with distance s1s2s
′
2 (in the sense of [2]) in Hn,

see Proposition 3.7. Indeed, there is a unique solution X0 ∈ {1, . . . , lcm(an, a′n)/
s1s2s

′
2 − 1} of the equations X ≡ 1 mod an/s1s2s

′
2 and X ≡ 0 mod a′n/s1s2s

′
2. For

k = 0, . . . , d0d1 · · · dn − 1, let Xk = X0 + klcm(an, a′n)/s1s2s
′
2, Tk = Xks1s2s

′
2/an and

Mk = (Xk − 1)s1s2s
′
2/a
′
n. As all Xk are further solutions of the same two equations,

and as the di are pairwise different primes, exactly γn := d0d1 · · · dn

∏n
i=0(1− 1/di) of

these solutions are {d0, d1, . . . , dn}-free, and also exactly γn of the d0d1 · · · dn numbers
Xk − 1 are {d0, d1, . . . , dn}-free. Hence, exactly γn of the numbers Tk and γn of the
numbers Mk are {d0, d1, . . . , dn}-free. Since 2γn > d0d1 · · · dn, there exists at least one
k ∈ {0, . . . , d0d1 · · · dn − 1} such that Tk and Mk are {d0, d1, . . . , dn}-free, so then anTk

and a′nMk are Sn-free. This proves the claim.

3.6. Superpolynomial complexity. We consider the example B = B2 = {2ici , 3ici :
i ∈ N}, where ci are odd pairwise coprime numbers not divisible by 3. Recall from
Example 3.21 that our Theorem 2.31 applies to this B and ensures that the B-free subshift
has a trivial centralizer. Here we show that it has superpolynomial complexity.

We denote by ρ the complexity function of Xη for η = 1FB , that is,

ρ(n) = |{η[k + 1, k + n] : k ∈ Z}|
for n ∈ N.
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PROPOSITION 3.30. Assume that 2c1 < 22c2 < 23c3 < · · · are such that
∞∑
i=1

1
ci

<
1
2

, (72)

and there exists a real number α > 1 such that

cj ≤ αj (73)

for j  0. Then, for each ε ∈ (0, 1),

lim inf
n→+∞

ρ(n)

nε lg2α lg2α n
= +∞.

Remark 3.31. If ci is the square of the (i + 2)th odd prime number, for i ∈ N (that is,
c1 = 25 etc.), the assumptions of the proposition are satisfied (equation (73) holds for
α ≥ 25).

Remark 3.32. For any j ∈ N, under the assumption in equation (72),

c1 . . . cj ≥ (2j)j > jj .

This inequality is a consequence of the fact that the arithmetic mean of positive numbers
is greater than or equal to their geometric mean.

The following lemma is elementary.

LEMMA 3.33. For every n, b ∈ N and k, r ∈ Z:
n

b
− 1 < |(bZ+ r) ∩ [k + 1, k + n]| < n

b
+ 1.

Let

δ = 1
2
−
∞∑
i=1

1
ci

.

Given n ∈ N let mn = [lg2 n]. Note that δ > 0 by equation (72) and 2mn+1 > n.

LEMMA 3.34. Assume that j0 ∈ {1, . . . , mn} satisfies

2j0cj0 <
δn

2 lg2 n
.

If

[1, n] ∩ (2j0cj0Z+ r) ⊆
mn⋃
i=1

(2iciZ+ si) ∪
mn⋃
i=1

(3iciZ+ ti )

for some r , s1, . . . , smn , t1, . . . , tmn ∈ Z, then r ≡ sj0 mod 2j0cj0 .

Proof. Suppose otherwise, then (2j0cj0Z+ r) is disjoint to (2j0cj0Z+ sj0) and hence

[1, n] ∩ (2j0cj0Z+ r) ⊆
⋃

i∈{1,...,mn}\{j0}
(2iciZ+ si) ∪

mn⋃
i=1

(3iciZ+ ti ). (74)
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If follows that

|[1, n] ∩ (2j0cj0Z+ r)|
≤

∑
i∈{1,...,mn}\{j0}

|[1, n] ∩ (2iciZ+ si) ∩ (2j0cj0Z+ r)|

+
mn∑
i=1

|[1, n] ∩ (3iciZ+ ti ) ∩ (2j0cj0Z+ r)|. (75)

For i 
= j0, (2iciZ+ si) ∩ (2j0cj0Z+ r) is either empty or equal to lcm(2ici , 2j0cj0)

Z+ r ′ for some r ′ ∈ Z. Similarly, for i = 1, . . . , mn, (3iciZ+ ri) ∩ (2j0cj0Z+ r) is
either empty or equal to lcm(3ici , 2j0cj0)Z+ r ′′ for some r ′′ ∈ Z. Then, equation (75)
and Lemma 3.33 yield

n

2j0cj0

− 1 ≤
∑

i∈{1,...,mn}\{j0}

(
n

lcm(2ici , 2j0cj0)
+ 1

)
+

mn∑
i=1

(
n

3i2j0 lcm(ci , cj0)
+ 1

)
.

(76)

For i 
= j0, lcm(2ici , 2j0cj0) = 2max{i,j0}cicj0 ≥ 2j0cicj0 and lcm(ci , cj0) ≥ cj0 for
every i, thus

n

2j0cj0

− 1 ≤
∑

i∈{1,...,mn}\{j0}

(
n

2j0cicj0

+ 1
)
+

mn∑
i=1

(
n

3i2j0cj0

+ 1
)

, (77)

which, as
∑mn

i=1 1/3i < 1
2 , implies

n

2j0cj0

− 1 ≤ n

2j0cj0

(
1
2
+

mn∑
i=1

1
ci

)
+ 2mn − 1, (78)

and hence

δn

2j0cj0

≤ 2mn. (79)

It follows that

2j0cj0 ≥
δn

2mn

≥ δn

2 lg2 n
, (80)

which is in contrast to the assumption.

Let n ∈ N be big enough to satisfy 2c1 < δn/2 lg2 n, and let jn be the greatest natural
number such that

2jncjn <
δn

2 lg2 n
. (81)

It follows by equation (81) that jn ≤ mn. Moreover, (jn) is a non-decreasing (starting from
n big enough) sequence such that limn→+∞ jn = +∞.
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Let N be a natural number such that cj ≤ αj for every j ≥ jN and 2c1 < δN/2 lg2 N .
If n ≥ N , then

jn ≥ lg2α

(
δn

2 lg2 n

)
− 1. (82)

Indeed, otherwise

2jn+1cjn+1 ≤ (2α)jn+1 <
δn

2 lg2 n
, (83)

which is a contradiction with the choice of jn.

LEMMA 3.35. For any sequence r = (r1, . . . , rmn), there exists xr ∈ Z such that{
xr ≡ 2j rj mod 2j cj for j = 1, . . . , mn,

xr ≡ 0 mod 2mn+13mn+1.

Moreover, if r′ = (r ′1, . . . , r ′mn
) is another sequence of integers and

η[xr + 1, xr + n] = η[xr′ + 1, xr′ + n], (84)

where xr′ is defined analogously, then

rj ≡ r ′j mod cj

for j ≤ jn, provided n ≥ N .

Proof. The existence of xr follows by the Chinese Remainder Theorem. Assume equation
(84). Since 2mn+13mn+1 | xr, 2mn+13mn+1 | xr′ and 2mn+1 > n, the sets [xr + 1, xr + n]
and [xr′ + 1, xr′ + n] are disjoint to

⋃
i>mn

(2iciZ ∪ 3iciZ). Therefore, equation (84)
implies

[1, n] ∩
mn⋃
i=1

((2iciZ ∪ 3iciZ)− xr) = [1, n] ∩
mn⋃
i=1

((2iciZ ∪ 3iciZ)− xr′).

In particular,

[1, n] ∩ (2j cjZ− xr) ⊆
mn⋃
i=1

((2iciZ ∪ 3iciZ)− xr′)

for every j = 1, . . . , mn. If j ≤ jn, then 2j cj < δn/2 lg2 n and by Lemma 3.34, we
conclude that xr ≡ xr′ mod 2j cj . As xr ≡ 2j rj mod 2j cj and xr′ ≡ 2j r ′j mod 2j cj , it
follows that rj ≡ r ′j mod cj .

Proof of Proposition 3.30. Take n ≥ N big enough. By Lemma 3.35, to every sequence
r = (r1, . . . , rmn) of integers, we can associate a block of length n on η, and the
remainders of rj modulo cj for j ≤ jn are determined uniquely by the block. (The choice is
not unique. The conditions on xr given in Lemma 3.35 do not determine η[xr + 1, xr + n]
uniquely.) It follows that

ρ(n) ≥ c1 . . . cjn . (85)
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Remark 3.32 yields that

c1 . . . cjn ≥ j
jn
n . (86)

We observed in equation (82) that jn ≥ lg2α(δn/(2 lg2 n))− 1. Let 0 < ε < 1. The
right-hand side of this inequality is greater than lg2α(nε) for n 0. Thus, for n big enough,
we have

j
jn
n ≥ (ε lg2α n)(ε lg2α n) = ε(ε lg2α n)nε lg2α lg2α n. (87)

Putting this together with equations (85) and (86), we finish the proof of the proposition.

Remark 3.36. Analogous (even simpler) arguments can be applied to the example B1
1, with

the same conclusion about the complexity.
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