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On the initial down-slope propagation
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We consider the initial ‘slumping phase’ of a lock-release gravity current (GC) on a
down slope with focus on particle-driven (turbidity) flows, in the inertia–buoyancy (large
Reynolds number) and Boussinesq regime. We use a two-layer shallow-water (SW) model
for the depth-averaged variables, and compare the predictions with previously published
experimental data. In particular, we analyse the empirical conclusion of Gadal et al.
(J. Fluid Mech., vol. 974, 2023, A4) that the slumping displays a constant speed for a
significant range of slopes and particle-sedimentation speeds. We emphasize the physical
definition of the slumping phase (stage): the adjustment process during which (a) the fluid
in the lock is set into motion by the dam break, then (b) forms a tail from the backwall to the
nose. We focus on the question of if and when the propagation speed uN of the nose (front)
of the GC is constant during this process (there is consensus that a significant deceleration
of uN appears in the post-slumping stage.) The SW theory predicts correctly the adjustment
of the flow field during the slumping stage, but indicates that a constant uN appears only for
the classical case (γ = E = cD = β = 0) where γ, E, cD, β are the slope, entrainment and
drag coefficients, and the scaled particle settling speed for a particle-driven GC. However,
since γ, E, cD, β are typically small, the change of uN during the slumping phase is also
small in many cases of interest. The interaction between the various driving and hindering
mechanisms is elucidated. We show that, in a system with a horizontal (open) top (typical
laboratory experiments), the height of the ambient increases along the slope, and this
compensates for buoyancy loss due to particle sedimentation. We point out the need for
further experimental and simulation studies for a better understanding of the slumping
phase and transition to the next phases, and further assessment/improvement of the SW
predictions.
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1. Introduction

Gravity current (GC) is a generic name for the flow of a thin layer of fluid into
another fluid (the ambient) of a different density. The flow is over/under a horizontal or
down-slope/up-slope boundary. The density difference is due, typically, to (a) temperature
or composition (e.g. cold air in warm air, or saline in fresh water), and (b) the presence
of small suspended particles or drops, which form the particle-driven or turbidity GC.
The understanding of turbidity currents has application in geophysical and environmental
situations, like the transport of silt, avalanches, volcanic pyroclastic flows and clouds
and safety of submarine structures. A review of the state of knowledge (e.g. Ungarish
2020 referred below as U20) reveals that the initial (slumping phase) propagation of a
lock-release gravity GC over a down slope has received little attention, in particular when
the driving force is due to suspended particles (turbidity currents). The gaps of knowledge
have been emphasized by the recent experimental studies of GMRL and HHLWG for GCs
over slopes γ of up to approximately 10◦; the lock of length x0 and height h0 was filled
with a dilute suspension of dense particles which settle during the propagation (figure 1).
Hereafter, we use the following abbreviation for literature references: D13 = Dai (2013),
GMRL = Gadal et al. (2023), HHLWG = Han et al. (2023), M10 = Maxworthy (2010),
U20 = Ungarish (2020).

The work in GMRL concluded, empirically, that, for a sufficiently small settling
velocity of the dispersed particles, the inclined particle-driven GC behaves like the
classical counterpart, i.e. the simple case of a homogeneous fluid (saline) released from a
rectangular lock over a horizontal bottom (much longer than the lock) into a homogeneous
ambient fluid (fresh water) of constant height, at a large Reynolds number. This classical
GC displays a constant uN (speed of propagation) for a significant slumping time (and
length) interval, as recorded by experiments and predicted by a simplified theory (e.g.
Rottman & Simpson 1983; Ungarish 2020). The theoretical interpretation, and modelling,
of these observation of GMRL is deficient. Some experimental studies for GCs on a
slope (e.g. M10 and D13) attempted to match the data with the propagation formula of
the ‘thermal theory’ (Beghin, Hopfinger & Britter 1981). This approximation models
the dense fluid as a box of oval shape, and is rather a descriptive (not predictive)
tool, reliant on adjustable constants that must be determined empirically. Moreover, this
model suggests a t−1/3 decay of uN for most of the slumping interval, in clear-cut
contrast with the insights of GMRL (details will be presented latter). A reliable
interpretation of the main conclusions of GMRL requires a sharper theoretical tool. The
best candidate is the shallow-water (SW) theory, that performs well for a large class of
GCs in horizontal propagation; see U20. This motivated the present work whose main
objective is the use of an appropriate SW model for the analysis of the configurations
under consideration. This includes the formulation, solutions and comparisons with the
available data.

Some previous works in these directions, for composite GCs on a slope, have been
published before. The book U20 section 11.2 presented a SW one-layer formulation (no
return flow in the ambient above the GC) and Zemach et al. (2019) presented a two-layer
counterpart (but without entrainment and drag). These models must be significantly
modified for the present problem. The significant data are for full-depth (or close to it) lock
release, and hence the proper physical model is a two-layer formulation, with entrainment
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Initial down-slope propagation of particle-driven GCs
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Figure 1. Sketch of the systems (a) without ramp xslope = 0, and (b) with ramp xslope = x0. The GC is initially
(t = 0) in the lock (dashed line) of dimensions x0, h0. (In realistic laboratory systems the lock in configuration
(a) is slightly different, such as box or a horizontal top interface. We ignore this detail.)

and drag. Moreover, since we focus on particle-driven GCs, it is essential to incorporate
this effect into the SW formulation.

The SW classical GC has constant density (i.e. zero entrainment and no particle
settling), propagates in a horizontal channel of constant height and encounters no drag.
The driving effect is the constant reduced gravity, and the reaction of the fluid is inertial
acceleration. The extended SW GC, which is considered in this study, is affected by what
we call ‘source terms’ (‘source’ is a generic name for the non-homogeneous terms in the
governing balance differential equations, and physically this includes a ‘sink’ when the
contribution is negative). In the extended formulation the source (sink) of volume and mass
of the GC (and hence of density) is caused by particle settling and entrainment, and the
source (sink) of momentum is contributed by the slope and drag. However, in many cases
of interest the source terms are relatively small as compared with the main contributors
to the governing balances of volume, mass and momentum. Consequently, the insights
and results provided by the classical GC (zero source terms) are useful references and
guidelines for the extended analysis.

The structure of the paper is as follows. Section 2 gives the formulation of the SW
governing equations and boundary conditions, and a short discussion of the slumping
concept. Results of the SW theory and comparisons with experimental data are presented
in § 3. First, in § 3.1, we focus attention on configurations close to these of GMRL: we
discuss the effects of the settling speed dimensionless parameter β, aspect ratio (x0/h0),
slope γ and the depth of the ambient. Then, we consider the system of HHLWG in
§ 3.2 with fixed γ = 9◦, (x0/h0) = 2.1, and particles with two settling speeds. Finally,
in § 3.3 we consider some systems of compositional GCs; for these cases, data for long
propagation (after the slumping phase) are available for comparisons. Concluding remarks
are presented in § 4. Appendices A and B clarify the front-jump condition used in the SW
formulation, and the associated effect of the open top on the result. A list of abbreviations
is given next.

2. Formulation

2.1. The governing equations
We use dimensional variables unless stated otherwise. The variables of the ambient fluid
are denoted by the subscript a, while these of the current are without subscript (or with
subscript c when emphasis is needed). We use the Cartesian xz two-dimensional system
with x horizontal and z vertically upward, and corresponding u, w velocity components.
Gravity g acts in the -z direction. The geometry is as follows (figure 1). The top and bottom
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of the channel are at z = zT = const. and zB(x). The height and slope of the channel are

H = H(x) = zT − zB(x), γ = γ (x) = −dzB

dx
. (2.1a,b)

For simplicity, and in accord with the laboratory systems relevant to this paper, we
assume that γ = 0 for x < xslope (a ramp, if present) and a constant for larger x. The lock
is defined by the backwall x = 0, dam (gate) at x = x0 and is of height h0 above the bottom.
We shall assume a constant h0 (although this is slightly inconsistent with some practical
systems. When xslope = 0 the interface of the lock may be horizontal, or a rigid wall of a
box).

The ambient fluid is of constant density ρa. The current is a suspension of particles of
radius ap and density ρp > ρa that occupy a volume fraction α (initially α0); the density
of the interstitial fluid is ρa (same as that of the ambient). Therefore, the density of the GC
is

ρc = ρa + α(ρp − ρa). (2.2)
We shall assume that the suspension is dilute (i.e. α0 � 1) and the system is Boussinesq
(abbreviated as Bq), i.e. α0(ρp − ρa)/ρa � 1. The settling speed of the particles WS is
known, either by measurement, or by the Stokes formula

WS = (2/9)(ρp/ρa − 1)ga2
p/ν, (2.3)

where ν is the kinematic viscosity of the fluid.
We introduce the initial reduced gravity

g′ = α(0)
ρp − ρa

ρa
g. (2.4)

The balance SW equations consider a quite general system; see U20. Since the GC
is a thin layer, attention is focused on the longitudinal behaviour, for depth-averaged
u(x, t), ua(x, t) and α(x, t), where t is the time from the release (dam-break) occurrence.
We define the scaled volume fraction

φ = φ(x, t) = α(x, t)
α0

. (2.5)

Initially, φ = 1 in the lock, then φ decreases due to settling and entrainment. The effective
reduced gravity is φg′.

The thin-layer hypothesis implies |w/u| � 1. Consequently, the z-momentum equation
is well approximated by the hydrostatic balance. We note that, for consistency with the
|w/u| � 1 assumption, we must also assume that the entrainment coefficient E (see below)
is small, and the slope angle γ is not large.

Let q = uh, ũ = u − ua. The global continuity in the channel yields

qa = ua(H − h) = −q, ua = −q/(H − h). (2.6)

The volume continuity equation of the current is
∂h
∂t

+ ∂q
∂x

= E|ũ|, (2.7)

where E is a dimensionless entrainment coefficient (to be specified later). The particle
(dispersed phase) balance is

∂αh
∂t

+ ∂αq
∂x

= −WSα. (2.8)

The momentum equations need some manipulations. The z-pressure balance is
hydrostatic, ∂pk/∂z = −(ρk − ρa)g, (k = a, c), where p is the reduced pressure (upon
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Initial down-slope propagation of particle-driven GCs

addition of ρagz). Consequently, pa = pa(x, t), a z-independent function. The pressure
is continuous, pc(x, t, z) = pa(x, t), at the interface z = zB(x) + h(x, t). The shear and
turbulent stresses are neglected (which implies free-slip top and bottom boundaries). The
depth-averaged x-momentum equations for the layers of ambient and suspension (current)
are expressed as

∂ρaqa

∂t
+ ∂

∂x
ρaq2

a

H − h
= −(H − h)

∂pa

∂x
+ D, (2.9)

∂ρcq
∂t

+ ∂

∂x
ρcq2

h
= −h

∂pa

∂x
− ρag′ ∂

∂x

(
1
2
φh2

)
+ ρag′ tan γφh − D, (2.10)

where D = ρacD|ũ|ũ is the interfacial drag and cD is a dimensionless coefficient.
We recall the Bq simplification ρa ≈ ρc, eliminate ∂pa/∂x between (2.9) and (2.10) and

substitute qa = −q. We obtain a partial differential equation (PDE) for q(x, t) as follows:

∂q
∂t

+
(

1 − h
H

)
∂

∂x

(
q2

h
+ 1

2
g′φh2

)
− h

H
∂

∂x

(
q2

H − h

)
=

(
1 − h

H

)
S, (2.11)

where

S = tan γ · g′φh −
(

H
H − h

)2

cDu2; (2.12)

(in the drag term we assume u ≥ 0).
We switch to dimensionless variables, defined as follows: x is scaled with x0, heights

with h0, velocity with U = (g′h0)
1/2, time with T = x0/U and volume with x0h0. Since the

vertical and horizontal lengths are scaled differently, the aspect ratio of the lock, λ = x0/h0
enters into the governing equation (actually, into the source terms). The dimensionless
settling speed is

β̌ = WS

U
. (2.13)

The literature (Bonnecaze, Huppert & Lister 1993; U20, GMRL) use the parameter

β = WS

U
x0

h0
= β̌

x0

h0
. (2.14)

Here, β (called Stokes number in GMRL) is the ratio of two typical time intervals: the
propagation of the GC over one lock length and the settling of a particle over the height of
the lock. Therefore, we are interested in systems with β � 1, otherwise the particles settle
out from the suspension before a significant GC develops.

It is also convenient to introduce the variable ϕ = φh, which expresses the buoyancy of
the GC at the position x at time t. Recall, u = q/h.

In dimensionless form, the governing equations for the variable h, ϕ, q read

∂h
∂t

+ ∂q
∂x

= E
x0

h0
|ũ|, (2.15)

∂ϕ

∂t
+ ∂ϕu

∂x
= −βϕ/h, (2.16)

∂q
∂t

+
(

1 − h
H

)
∂

∂x

(
q2

h
+ 1

2
ϕh

)
− h

H
∂

∂x

(
q2

H − h

)
=

(
1 − h

H

)
S

x0

h0
, (2.17)
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M. Ungarish

where

S = tan γ · ϕ −
(

1
1 − h/H

)2

cDu2. (2.18)

The terms associated with E, cD, γ and β are referred to as ‘source terms’ for obvious
reasons; we reiterate that, physically, a negative source is a sink. In practice, we have
control (or reliable knowledge) of the values of γ and β, while E and cD are provided
by some indirect (and less reliable) estimates of which we have no control. In any case,
there is good evidence that E and cD are small for typical Bq GCs (Johnson & Hogg 2013;
Negretti, Flor & Hopfinger 2017). Consequently, it is justified to assume that the source
terms in our analysis are small (intrinsically and by design), and hence the extended SW
solutions will bear qualitative similarities to the classical GCs (zero source terms).

To close the system we need a front-jump condition and correlations for cD and E. For
the front condition we use a straightforward extension of the classical GC case, namely

uN = dxN

dt
= Fr(a)ϕ1/2, (2.19)

where a = hN/H(xN) at the nose and Fr(a) is a standard nose-Froude formula. We shall
use the theoretical formula of Benjamin (1968) as

Fr(a) = [(2 − a)(1 − a)/(1 + a)]1/2. (2.20)

We recall that Fr increases from 0.71 to 1.4 as a decreases from 0.5 to 0. As shown by
Benjamin (1968) and confirmed by others (see U20 § 4.3) the front jump is dissipative
for a < 0.5 but needs energy supply for a > 0.5, and hence GCs with a > 0.5 are
non-physical. The derivation of (2.20) is rigorous for a horizontal channel. We argue,
see Appendix A, that (2.19)–(2.20) are a fair approximation for |γ | < 15◦ (estimated error
<10 %), and are expected to provide acceptable qualitative results up to γ ≈ 30◦. The
along-slope speed of propagation is simply uN/ cos γ , but since the difference is only
2 %–3 % for most cases discussed in this paper, we shall ignore the 1/ cos γ correction,
and refer to uN and xN as the along-slope values, unless stated otherwise.

The coefficients cD and E are attributed to interfacial instabilities associated with the
bulk Richardson number defined here as (using dimensionless variables)

Ri = Ri(x, t) = ϕ

ũ2 = ϕ

u2 (1 − h/H)2. (2.21)

For cD we use a constant value, 0.10, unless stated otherwise, for Ri ≤ 1 and 0 for Ri > 1;
this value is suggested by the experimental data of Negretti et al. (2017), and numerical
tests with some different values confirmed its robustness. For entrainment we employ the
correlation of Johnson & Hogg (2013) as

E = E0

1 + kRi
, (2.22)

with E0 = 0.075, k = 27. These are empirical correlations with adjustable constants. In
this sense, the SW formulation is not self-contained. However, E and cD are ‘off the shelf’
inputs, expected to be of broad validity, not some undetermined parameters that should
be calibrated again and again for any particular experiments. We shall keep the same E
and cD for all the comparisons made in this work. We emphasize that the SW model is
not restricted to these particular closures for E and cD, and other correlations can be used
when more information becomes available.
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Initial down-slope propagation of particle-driven GCs

The initial conditions are h = 1, u = 0, ϕ = 1 in the lock 0 ≤ x < 1, xN(t = 0) = 1,
and at the backwall x = 0 we impose q(0, t) = 0.

An inspection of the equations reveals that the analysis of the propagation of the GC
stage is in general a complex task. Even under the Bq simplification, the flow is governed
by a large number of dimensionless parameters: the slope γ , the changing height H(x),
the entrainment correlation E(Ri), the drag coefficient cD, the particle settling coefficient
β̌ and the lock aspect ratio λ = (x0/h0).

2.2. Boundary values
The behaviour of the GC at the endpoints x = 0 and x = xN is of interest, and also a needed
condition for numerical solutions. Some useful results are provided by (2.15) and (2.16).

For x = 0, we impose u = q = 0. We obtain

dh(0, t)
dt

= −∂q
∂x

(x = 0), (2.23)

dϕ(0, t)
dt

= −ϕ(0, t)
h(0, t)

[
∂q
∂x

(x = 0) + β

]
. (2.24)

For x = xN(t) (a moving point) we first transform the equations of motion from
dependency on x, t to dependency on ξ, t where ξ = x/xN(t) ∈ [0, 1] (see U20), then
analyse the behaviour at ξ = 1. We obtain

dhN

dt
= −hN

∂u
∂x

∣∣∣∣
N

+ E
x0

h0
uN, (2.25)

dϕN

dt
= −ϕN

[
∂u
∂x

∣∣∣∣
N

+ β
1

hN

]
. (2.26)

2.3. Reductions: compositional GC and one-layer model
The compositional (homogeneous) GC formulation is recovered as follows. We represent
the density excess ρc(t = 0) − ρa, and hence the appropriate g′, as produced by a
suspension of non-settling particles (WS = 0). The dimensionless equations of motion,
with β = 0, remain valid. In this case, the reduced volume fraction φ(x, t) represents the
dilution of ρc due to entrainment, ρc(x, t) = ρa + [ρc(t = 0) − ρa]φ(x, t).

The one-layer formulation assumes that there is no return flow in the ambient fluid.
Formally, the only change in the system of equations and boundary conditions is the setting
h/H = 0 in the momentum equation (2.20), source term (2.18) and Richardson number
(2.21). The one-layer formulation does not capture and reproduce the internal bores
(jumps) of the interface which are predicted by the two-layer formulation for H < 2 (see
U20 § 6.4), in accord with experiments (Rottman & Simpson 1983). The presence/absence
of such bores is an important issue in the slumping phase, as clarified below.

2.4. The slumping-phase concept
The dense fluid in the reservoir (lock) is a stationary bulk, bounded by a horizontal
interface and two vertical walls. After the removal of the gate, this fluid is activated into
motion, and this is reflected by the change of shape of the interface: it spreads out in front
of, and behind, the broken gate. After a while the interface displays a thick front bulk
followed by an elongating tail, and eventually the tail reaches the front (nose). The GC
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spreads out a few lock lengths during this stage. Roughly, this quite general rearrangement
can be called ‘slumping’. An interesting feature is that, during this adjustment, the nose
displays a special pattern of propagation, in some cases with a small (or zero) deceleration
(and this changes strongly after the tail reaches the front). The possibility of propagation
with a constant uN made the slumping stage the focus of practical and theoretical interest in
the study of GCs. For example, the widely cited paper of Huppert & Simpson (1980) used
the term ‘slumping’ in an attempt to document systematically and explain theoretically the
constant uN observed in homogeneous Bq-system experiments in rectangular cross-section
channels. Extensions of this effect, by experiment and theory to (a) non-Bq systems,
(b) stratified ambient and (c) non-rectangular cross-section were sought, and reported by
(a) Lowe, Rottman & Linden (2005) and Rotunno et al. (2011), (b) Maxworthy et al. (2002)
and Ungarish & Huppert (2002) and (c) Ungarish, Mériaux & Kurz-Besson (2014) and
Zemach & Ungarish (2013).

For a sharp discussion of the slumping phase (or slumping) we introduce several
restrictions: we consider release from a rectangular lock (of finite length), and follow the
behaviour for a propagation to approximately 5–15 lock lengths. The system is Bq, and not
stratified.

The slumping concept has been introduced to emphasize a simple, but not trivial,
behaviour: the propagation of the lock-release classical GC with a constant uN for a
significant distance. This pattern has been suggested by observations and subsequently
derived as a rigorous solution of the SW equations for the classical GC. This pattern
is robust: it appears for full- and part-depth locks. The classical GC is characterized
by a constant H, and γ = E = cD = β = 0. This implies that the source terms on the
right-hand side of the governing equations (2.15)–(2.17) are zero. Since the aspect ratio
(x0/h0) enters into the formulation as a coefficient in the source terms, we conclude
that the (scaled) SW solution of the classical GC is independent of (x0/h0). (We keep
in mind that this simplification is not valid when one of the parameters γ, E, cD, β is
non-zero.) Upon the lack of the source terms, (2.15) and (2.16) predict ϕ = h, i.e. φ = 1
(a straightforward physical consequence when there is no entrainment and no particle
sedimentation). Equation (2.16), and the associated boundary conditions (2.24) and (2.26),
become redundant. The reduced system (2.15), (2.17) and (2.19) can be expressed as
standard set of hyperbolic PDEs for the variables h(x, t) and u(x, t) with the simple initial
conditions h = 1, u = 0 in the lock, see U20 § 6.3. The motion that occurs by opening the
gate at x = 1, t = 0 is a classical dam-break problem which can be solved, analytically,
by the method of characteristics. (We extend the term ‘analytical’ to include also simple
numerical procedures like the iterative calculation of a root and integration of an ordinary
differential equation.)

The rigorous dam-break solution (see U20 §§ 3.3 and 6.3) shows a clear-cut stage of
propagation for 0 < t ≤ tslump with constant uN for a significant distance of propagation,
xN(tslump) = xslump. (Some discussions measure the slumping distance from the gate,
xslump − 1.) The values of the slumping uN and xslump are functions of H only: the
first increases (from approximately 0.5 to 0.8) the latter significantly decreases (from
approximately 13 to 4) while H increases (from 1 to 4 and beyond). (In the dam-break
solution of the SW equations, uN attains the slumping value instantaneously, while in a
realistic flow some initial pre-slumping stage of acceleration must exist; we assume that
this time interval is much smaller than tslump.)

During the slumping stage, the fluid behind the nose undergoes significant changes.
For a proper description, we must distinguish between two sub-classes of slumping, see
figure 2: (a,b) with a bore, for H < 2, and (c,d) smooth flow, for H > 2 (see U20 § 6.1).

1000 A97-8

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

95
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.951
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Figure 2. Sketch of height h(x, t) profile of the GC during the classical slumping stage. Panels (a) and (b) are
the first and second sub-stages when position L is a smooth expansion wave. Panels (c) and (d) are the first and
second sub-stages when position L is a jump (bore). The slumping ends when the tail attains the nose, i.e. point
L reaches point N.

In each of these sub-classes, we note two sub-stages: first, the activation of the stationary
fluid in the reservoir by a back-moving expansion wave (or bore), and next the formation
of a tail that elongates toward the nose, led by the reflected expansion wave (or bore). The
main point in the slumping stage is that the nose of the GC is not affected by the changes
that occur in the 0 < x < xN(t) = 1 + uN ·t domain.

In the dam-break solution, the height and speed of the nose are determined by the match
of information (h, u) from the reservoir (carried by a c+ characteristic) with the jump
condition (2.19). This yields hN and uN , instantaneously, at t = 0+. During the first
sub-stage, the information from the rear is constant (the conditions at point L are constant
due to the initial conditions) and hence uN is constant. In the second sub-stage, the
domain with initial conditions vanishes, and a thin tail spreads out toward the nose;
however, this new information propagates with a finite speed, and reaches the nose at
time tslump. Until tslump (the end of slumping) the current propagates with the initial uN . In
the smooth-interface cases, typically tslump = 4, xslump = 3. (In our analysis, the keywords
sedimentation, slope and slumping start with ‘S’ and therefore, to avoid confusion, we use
the full subscript ‘slump’ to denote this stage.) The bore in the H < 2 configuration slows
down the communication between the reservoir and the nose. Consequently, the values
of tslump and xslump increase dramatically when H approaches 1; the typical values are
tslump = 20 and xslump = 10.

A rigorous constant uN during slumping implies three conditions according to (2.19),
(2.25) and (2.26): a constant H, a constant hN and a constant ϕN and (∂u/∂x)N = 0.
In the classical GC (γ = E = cD = β = 0) these conditions are satisfied by the flow in
the front core of figure 2. We emphasize that these SW slumping results do not depend
on (x0/h0); however, we must keep in mind that the governing equations are based on
the thin-layer assumptions, and hence the mathematical invariance with (x0/h0) does not
guarantee physical validity and accuracy of the SW approximation for small (x0/h0).
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Data xslope x0/h0 γ Γ β x0 h0 g′ U T Rem
(◦) (10−3) (cm) (cm) (cm s−2) (cm s−1) (s)

GMRL 0. 0.5 7 0.06 0–54 10 20 45 29.7 0.337
HHLWG 1. 2.1 9 0.33 0–8.6 19 9 4.9 6.64 2.86
D13 0. 1.25 9 0.20 0. 10 8 17.1 11.7 0.855 Saline only
M10 0. 2.1 10.6 0.39 0. 20 9.7 11.6 10.6 1.89 Saline only

Table 1. Data used for comparisons. Here, Γ = tan γ ·(x0/h0). All experiments were with Bq systems, and
used tanks with an open-top surface. The locks were full depth or close to this setting.

In the extended SW formulation, these conditions for a constant slumping uN cannot be
satisfied, in general. When E > 0 the value of hN increases, see (2.25), and the value of
Fr decreases. When β > 0 the value of ϕN decreases, see (2.26). When γ > 0 the value
of H(x), and hence of Fr, increases. The slope γ > 0 and the drag cD > 0 also affect the
internal acceleration in the x < xN body of the GC, see (2.17). This renders a non-zero
(∂u/∂x)N . Evidently, a rigorous constant uN is not possible. Strictly speaking, the SW
formulation indicates that the dam-break problem does not admit a constant uN solution
for the slumping phase, not even in the first sub-stage, when the source terms E, cD, γ, β

are not zero.
On the other hand, we recall that the source terms are small. Conceptually, if we perform

a perturbation expansion of the flow-field variables for small γ, β, E, cD, the leading terms
of a dam-break solution will be the classical slumping result. We therefore expect that the
influence of these source terms on the classical uN is a small perturbation, which develops
with t. This suggests that the SW theory may explain the ‘constant velocity regime’ (i.e.
a constant uN) reported by GMRL for realistic systems with slope and particle settling,
within some small band of variation of a few per cent, of the order of magnitude of the
scatter and uncertainty of the experimental data. In other words, we expect that an idealized
slumping behaviour, represented by an average-constant uN , may be a good approximation
of the more rigorous SW solution for the general flow field for the time period tslump
(or length xslump). Such an approximation is expected to be valid for a restricted range of
parameters, and will fail for some larger values of γ (because of violation of the hydrostatic
assumption) and β (because of rapid decrease of the buoyancy). Here, the values of tslump
and xslump are these of the corresponding classical system, i.e. functions of H only. This
is also an approximation, because the presence of the source term is bound to affect the
transition to the post-slumping strong deceleration phase. This hypothesis is tested and
clarified in the next section.

3. Results and comparisons

The SW theoretical predictions are compared with the available experimental data
specified in table 1. We consider only flows on a down slope. Data for particle-driven GCs
are scarce, and therefore we also include some experiments for compositional (saline) GCs.
The present SW formulation assumes that the upper boundary is a fixed free-slip surface,
and this is a good approximation for the realistic open top in a Bq system (see U20 § 27.2).

The extended two-layer PDE hyperbolic system (2.15)–(2.18) with the subsidiary
conditions (2.19)–(2.26) is too complicated for analytical investigation. The characteristics
can be formulated as in the classical case (see U20 § 6.3) but the source terms preclude
simple insightful solutions. We shall proceed with finite-difference solutions by a
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Figure 3. The behaviour of xN as a function of t for the system of GMRL, experiments (dash-dot line) and
SW theory (solid line) for the values of β shown on the curves.

Lax–Wendroff scheme (with a small artificial viscosity term for damping of spurious
oscillations, see Morton & Mayers 1994). The typical grid has 200 x-intervals along the
GC, and the time step is fixed in accordance with a CFL stability–convergence condition.

The experimental systems used a full-depth lock, H(0) = 1, or a close condition. The
SW flow for H close to 1 displays various critical-motion peculiarities which encumber the
finite-difference solutions. To avoid the complications and long computer runs created by
these difficulties, in the SW solutions we use a slightly different system, with H(0) = 1.1.
There is both experimental and theoretical evidence that, in a Bq system, the propagation
of the GC and the adjustment in the lock of the H = 1.1 and H = 1 cases are very close.
Qualitatively, a hydraulic jump propagates from the lock to the backwall, and is reflected,
as observed in laboratory by Rottman & Simpson (1983) and reproduced theoretically as
summarized in U20 § 6. Quantitatively, the speeds of propagation of the jumps and nose
change by less than 5 % due to the 10 % increase of H. These insights were derived for
homogeneous GCs over a horizontal bottom, but remain valid for the present systems
because the contribution of the source terms is negligible during the initial adjustment
in the lock. Again, the SW xN and u are along the horizontal line, while the data are
given along the bottom. The difference (1 − cos γ ) is small and ignored (less than 2 % for
γ ≤ 11◦).

3.1. The GMRL configuration
The system is suggested by the laboratory experiments of GMRL (see figure 3 in that
paper): full-depth lock release over a slope of 7◦ (starting at x = 0). We use (in cgs
units) x0 = 10, h0 = 20, g′ = 45, ν = 0.01. This yields the reference speed and time
U = 29.7, T = 0.337. Settling will be represented by WS = 0.32, 0.74, 1.1, 1.9, 3.2 with
the corresponding β = 0.05, 0.012, 0.019, 0. 032, 0.054. The GC suspensions were not
sharp monodispersions, and the typical uncertainty of WS was approximately 40 %. Note
that (x0/h0) = 0.5.

The work of GMRL focused attention on the propagation during the slumping
phase, and hence the available data for comparison cover a relatively short distance of
propagation.
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The experiments of GMRL with this system covered the effect of β, considered in
§ 3.1.1. To enhance our understanding, we shall also present some SW simulations for
changes of other parameters in the original system, like the slope angle, in §§ 3.1.2–3.1.4.
These variations of the basic GMRL configuration have not been tested in the laboratory,
and hence no comparisons with data are shown.

3.1.1. Effect of β

Figure 3 shows experimental (dashed line) and SW results for the propagation xN(t),
dimensionless, for various values of the settling parameter β (β = 0 corresponds to a
saline GC).

The experimental and SW lines display the same consistent dependency on β: the rate
of propagation decreases gradually as β increases from 0 (saline) to 19 × 10−3; for the
large β = 54 × 10−3 an irregular pattern appears (the GC stops, or disintegrates, after a
short propagation). For a better understanding of the slumping speed behaviour we also
present plots of uN as a function of t and of xN in figure 4.

For any one of the values of β, the experimental line xN vs t is below the SW line.
The velocities uN show a similar pattern. We attribute this discrepancy to the fact that the
experiments were performed in a lock with a small x0/h0 = 0.5 aspect ratio. As pointed
out by Bonometti, Ungarish & Balachandar (2011), the presence of the backwall in a short
lock (x0/h0 < 1) interferes with the development of the head of the GC, and reduces the
resulting slumping uN (as compared with the long and thin GC assumed by the SW theory).
We see significant oscillations of the measured uN . The reason for these oscillation is not
clear; we speculate that this is contributed by the open-top perturbations due to the opening
of the gate. Prior to release the suspension was vigorously stirred and hence not in ideal
hydrostatic equilibrium. In any case, the discussion of a ‘constant slumping uN’ in these
experiments cannot be conclusive. In our opinion, a close inspection of the data reveals the
following pattern: (a) there is an initial acceleration over approximately a half-lock length;
(b) the later behaviour is consistent with the SW prediction, i.e. a slow deceleration ∝ β

until xN ≈ 10, then a stronger deceleration. Thus, within some tolerance of a few per cent,
one can attribute a constant averaged ūN to the slumping propagation covered by the data
(for β ≤ 19 × 10−3).

The influence of the settling β > 0 on the slumping uN is clearly revealed by the
SW results shown in figure 4. The interpretation (and approximation) is provided by the
boundary condition (2.26). This equation indicates that β is a direct cause for the reduction
of the buoyancy at the nose, ϕN . Supposing (∂u/∂x)N = 0 and a constant hN , we can
estimate

ϕN(t) ≈ ϕN(t = 0) exp
[
−β

1
hN

t
]

. (3.1)

To proceed, we need an estimate for the slumping hN . The classical dam-break solution
for close to full-depth release suggests hN ≈ 0.5 as a convenient value in our subsequent
evaluations (see U20 § 6). Using (2.19), assuming a constant Fr, and using the estimate
hN ≈ 0.5, we obtain

uN(t) ≈ uN(t = 0) exp(−βt). (3.2)

Here, t = 0 means the flow after the removal of the gate (dam break). In the SW
framework, the flow is instantaneous. The change of uN/uN(0) due to particle settling
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Figure 4. The behaviour of uN as a function of t and xN(t) for the system of GMRL, experiments (dash-dot
lines) and SW theory, for the values of β shown on the curves.

during the slumping phase is therefore estimated as

Δ(β) = exp(−βtslump) − 1 ≈ −βtslump. (3.3)

For the case β = 19 × 10−3 and tslump = 20 we obtain Δ = −0.32. However, the estimate
(3.3) covers only a part of the process observed in the laboratory. We must keep in mind
that the experiments of GMRL were performed with a full-depth lock and propagation
on a slope in a container with an open top. This geometry contributes an increase of
Fr(a) during the propagation, because a = h/H decreases. The increase of Fr opposes the
reduction estimated by (3.3). The contribution of Fr to the change of uN/uN(t = 0) during
slumping is represented by C(Γ ) (recall, Γ = tan γ ·(x0/h0)) as discussed in Appendix B.
Combining the two effects, we estimate the average speed during slumping as

ūN = uN(0)(1 + 0.5[Δ(β) + C(Γ )]), (3.4)

where C > 0 is given in figure 17. The estimated Fr increase is able to compensate for
a significant part of (the negative) Δ(β). Indeed, the SW results of figure 4 demonstrate
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Figure 5. The behaviour of Fr and of the particle volume fraction φN at the nose as functions of t for the
system of GMRL, SW theory, β shown on the curves.

that uN decreases more slowly than estimated by (3.2). Figure 5(a) shows the behaviour
of Fr during the propagation of the GC. These are SW predictions, for which no data are
available for comparison.

We conclude that, overall, the SW theory gives the correct interpretation of the ‘almost
constant’ uN during the slumping phase, as reported by GMRL. The estimated change of
uN is not sharp because Δ(β) and C(Γ ) were derived using bold simplifications (such as
a constant hN = 0.5).

Figure 5(b) also shows the decrease of the particle volume fraction at the nose, φN
with t. These are SW predictions, for which no data are available for comparison. The
effect of β is quite strong. For β = 19 × 10−3, φN decreases to 0.4 during the slumping
t = 20 time. The effect on uN is much less pronounced because this variable depends on
ϕN = (hNφN)1/2. The value of hN increases slightly due to entrainment, but the stronger
effect is due to the square root.

Overall, the SW theory points out the complexity of the effects that determine the
behaviour of the initial uN in a realistic particle-driven down-slope system.

3.1.2. The effect of (x0/h0)

The SW formulation indicates that the aspect ratio of the lock, λ = (x0/h0), may be a
significant factor in the slumping behaviour of a given suspension. To investigate this
effect, we considered the physical system of GMRL, with a change of the lock length from
the original 10 to 20, 30 and 40 (cm). All other parameters (g′, γ, E, cD, h0) are unchanged
(see § 3.1). We consider a fixed suspension with particle settling speed WS = 1.1 cm s−1.
The reference speed is unchanged, U = 29.7 cm s−1.

In the first series of tests, the value of β̌ = WS/U = 37 × 10−3 is fixed, but the effective
β = β̌(x0/h0) increases with x0 from 19 × 10−3 to 74 × 10−3; see figure 6. The prediction
is that, for a given system, the increase of (x0/h0) will reduce the average speed of
propagation. This could be expected, because β increases, and hence the major effect is as
discussed in the previous subsection.

Another series of test considers the change of (x0/h0) for a fixed value of β. This
means that the settling speed WS decreases as (x0/h0) increases. The corresponding SW
results are shown in figure 7. We start with the system of GMRL with (x0/h0) = 1/2 and
WS = 1.1 and increase x0 by factors 2, 3 and 4, while WS is decreased accordingly; this
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Figure 6. Effect of aspect ratio (x0/h0) for a given suspension. System of GMRL with fixed WS = 1.1 cm s−1,
SW results. The values of λ = (x0/h0) = 0.5, 1, 1.5, 2 are given on the lines. Here, β = 37 × 10−3·(x0/h0)

varies.

keeps β = 19 × 10−3 in all cases. We see that the scaled propagation xN vs t is (almost)
unaffected by the variation of the aspect ratio. There is not perfect agreement between
the systems with the same β because the change of the aspect ratio (x0/h0) affects other
effects: entrainment, drag and slope acceleration.

The difference between the behaviour of figure 7 and that of figure 6 reveals an
interesting (and not expected) point: the change of (x0/h0) is important mostly for the
settling effect. Formally, (x0/h0) is a coefficient in the entrainment source term Eu and
in the momentum source term (tan γ ·ϕ − cDu2), see (2.15), (2.17) and (2.18). It turns out
that these terms have a smaller effect on the slumping behaviour for the tested system. The
apparent reason is that the entrainment and momentum source terms do not affect directly
the boundary condition for uN , while the settling effect does affect directly the value of
the buoyancy at the nose, ϕN (see (2.26)).

3.1.3. Effect of the bottom slope
The typical lock-release system is that of GMRL with settling particles with WS = 1.1
(β = 19 × 10−3). We compare the SW predictions for the slopes γ = 0, 7◦ and 15◦, see
figures 8 and 9.
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Figure 7. Effect of aspect ratio λ = (x0/h0) for a fixed β = 19 × 10−3. System of GMRL with
WS = 1.1 cm s−1 for (x0/h0) = 0.5, then increasing x0 while decreasing WS, SW results.

The work of GMRL pointed out that there is some empirical evidence that the speed
of the slumping propagation increases with the slope γ . This trend is expected from
the presence of the tan γ source term in the momentum equation; see (2.17) and (2.18).
The details are quite complex because the nose of the GC is a hydraulic jump subject
to dynamic control-volume balances and dam-break conditions. The SW model provides
insights into the flow-field behaviour. We recall that the height of the ambient fluid
increases, H(x) = 1 + tan γ ·(x0/h0)x in the simple full-depth lock-release case. Recall
that the nose Fr(a) increases when a = hN/H(xN) decreases. Supposing that the height
of the current is constant, hN ≈ 0.5, we realize that the nose Fr(a) may increase by a
significant amount from xN = 1 to xN = 10 due to the presence of the slope. A quantitative
estimate of this effect is presented in Appendix B and typical results are illustrated in
figure 17. This increase of Fr is expected to contribute to the increase of the average speed
of propagation of the current, see (2.19). The increase of slope also enhances the slope
buoyancy term in (2.18). Therefore, overall, the effect of the increase of the slope on uN is
proportional to (x0/h0) tan γ in the typical experimental system. However, the dependency
is not linear.

Experiments and SW predictions show that the change of the slumping uN is less
dramatic than expected from the change of (x0/h0) tan γ between systems. This is because
the increase of velocity enhances the opposing mechanisms of entrainment and drag. The
source term in the momentum equation (2.17) behaves like (x0/h0)[tan γ ϕ − cDu2]. Since
u2 ∼ ϕ, the drag suppresses the slope acceleration.

Further insight into the effect of the slope is provided by figure 10, which shows SW
profiles of h, u, φ for cases γ = 0 and γ = 10◦, all other parameters fixed (in particular,
β = 19 × 10−3, x0/h0 = 0.5).

3.1.4. Effect of H(0) (part-depth lock)
We consider the system of GMRL with a fixed β = 19 × 10−3, asking, what is the
effect when the lock is submerged in deeper ambients, i.e. larger values of H(0)? This
configuration is called the part-depth lock (in contrast with the full-depth lock H(0) ≈ 1).

Figure 11 displays SW results for H(0) = 1.1, 2, 3. We observe that the overall
propagation xN(t) is not much affected by this parameter. However, the slumping behaviour
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Figure 8. Effect of change of slope γ = 0, 7◦, 15◦, SW results vs t. Here, β = 19 × 10−3.

expressed by uN is strongly affected by the change from 1.1 to 2. First, the initial uN(t = 0)

is larger for the large H(0); this is straightforward result of the larger initial Fr. Next, the
slumping distance xslump (of small changes of uN) decreases from approximately 10 to
6. This is because in the deeper ambient the disturbances are propagated by waves, not
jumps, as explained in § 2.4. For H(0) > 2 the SW system attains an asymptotic behaviour
of independence of H(0) because the dynamic effects of the return flow, of the order of
(ua/u)2, are small.
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Figure 9. Effect of change of slope γ = 0, 7◦, 15◦, SW results, uN vs. xN . Here, β = 19 × 10−3.

For H(0) = 3 we also show predictions of the one-layer SW formulation. The agreement
with the two-layer model is very good. Other tests, not shown here, revealed further
improvement of the agreement for H(0) > 3.

Again, we note that the behaviour of the variable xN(t) is not a reliable criterion for the
assessment of the slumping behaviour. This is because xN is a time integral of uN . The
GCs with a shorter tslump usually have a larger slumping uN . These differences cancel out
in the integral xN . Practically, when xN(t) is of concern, the one-layer model is a good
approximation for all values of H(0).

3.2. The HHLWG system
The study of HHLWG was actually focused on the effect of vegetation-like obstacles on
the down-slope propagation of particle-driven GCs. The experimental data for the tests
without vegetation (runs 1, 5 and 9) are relevant to the present investigation and amenable
to comparisons with our SW predictions.

The set-up of HHLWG released the full-depth GC from a ramp, followed by a slope of
9◦, see figure 1(b). The lock was of dimensions x0 = 19, h0 = 9 and in all tests g′ = 4.9,
hence U = 6.64, T = 2.86 (cgs units). The suspensions were not sharp monodispersions,
and we use β calculated by (2.3) for the median particle size. There are some significant
parameter differences with the system of GMRL. Here, the aspect ratio is (x0/h0) = 2.1
(instead of 0.5). The slope angle is only slightly larger, γ = 9◦ (instead of 7◦), but
we keep in mind that tan γ is multiplied by (x0/h0) in the equations of motion. The
maximum β = 8.6 × 10−3 (instead of 54 × 10−3). We recall that there was no ramp in
the system of GMRL. Finally, we note that the maximum xN was approximately 9 (instead
of approximately 15 in the system of GMRL). The comparisons between data and SW
predictions for xN and uN are presented in figures 12 and 13. There is good qualitative
agreement and fair quantitative agreement between data and theory. The experiment
reveals a quite long initial acceleration, which cannot be captured by the SW theory.
Surprisingly, after this acceleration the experimental uN exceeds the theoretical prediction
for β = 0 and 0.4 × 10−3. We have no explanation to this discrepancy (which is the
opposite from the trend of the GMRL data).

The SW results indicate that xslump ≈ 8.5, then a sharp deceleration of uN occurs
(figure 13). The data are not sharp about this issue, because of the restricted length of
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Figure 10. System of GMRL, β = 19 × 10−3. γ = 0 (a,c,e) and γ = 10 (b,d, f ). Profiles of h, u, φ vs x for
various t (SW results).

the experimental slope. The corresponding results for the GMRL system (figure 4) indicate
xslump ≈ 10.5. We attribute this discrepancy to the larger Γ = tan γ (x0/h0) in the HHLWG
system. The value of H(xN) increases faster in the HHLWG system (see Appendix B), and
hence, after a while, most of the GC is submerged in a fairly deep ambient. A deeper
ambient reduces xslump.
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Figure 11. Effect of change of ambient depth H(0) = 1.1, 2, 3, SW results. Here, β = 19 × 10−3.
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Figure 13. The behaviour of uN as a function of t and xN(t) for system of HHLWG, experiments (dashed
lines) and SW theory. The values of β are given on the lines.

Figure 13 shows the behaviour of uN as a function of t and xN . Again, the speed of the
particle-driven GC (runs 5 with β = 0.4 × 10−3 and 9 with β = 8.6 × 10−3) is smaller
than that of the compositional GC (run 1 with β = 0), and the discrepancy increases with
β. There is fair agreement with the SW predictions (after an initial acceleration interval
that is not considered by the theory.) In accord with the suggestion of GMRL, it makes
sense to define the behaviour for xN < xslump ≈ 9 as ‘slumping’. The SW theory predicts
a strong deceleration for xN > 9, but there are no experimental data for this domain. We
note the differences between this figure and the similar figure 4 for GMRL. The latter
data show much larger oscillations. The reason for these discrepancies is not clear. We
speculate that the GC in the short lock (x0/h0) = 0.5 of GMRL is more perturbed by the
removal of the gate than the counterpart in the long lock (x0/h0) = 2.1.

3.3. Some tests for compositional β = 0 GCs
Here, we compare the predictions of the extended SW two-layer model with some data for
compositional GCs on a slope, as follows:

(i) M10 released saline GCs along slopes of γ = 5.9◦ and 10.6◦. The locks varied 5.5 ≤
x0 ≤ 20, 2.5 ≤ h0 ≤ 10 (cm) and g′ also varied. However, most of the data have
been reported in implicit form and we could not extract accurate values for a reliable
comparison. We consider only experiment 6/3/06-3 for which explicit xN vs t points
were reported (figure 4 in that paper), with γ = 10.6◦, h0 = 9.7, x0 = 20, g′ = 11.6
and hence U = 10.6, T = 1.89, λ = (x0/h0) = 2.1 (cgs units).

(ii) D13 released saline GCs along slopes of various γ ≤ 9◦. The lock was x0 = 10,
h0 = 8 and g′ = 17.1, and hence U = 11.7, T = 0.85 (cgs units). We compare with
experiment 10/03/12-1 for γ = 9◦.

(iii) HHLWG, as discussed in the previous section, but with saline.

The slope of the three systems is almost the same, but there are some differences
concerning the lock. The set-up of HHLWG has a ramp, while M10 and D13 have a box
with a gate, parallel to the slope, and submerged in the ambient (the upper end of the box
was 5 and 10 cm below the open surface in M10 and D13, respectively). The set-up of
D13 has (x0/h0) = 1.25 (smaller than 2.1 of the other systems) and has a long distance of
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Figure 14. Value of xN vs t for saline GCs on a slopes of 9◦–10.6◦ for experiments (dash–dot line) and SW
theory (solid line). Red for M10, blue for HHLWG, green for D13. Panel (b) is a log–log plot for t ≥ 5; the
lines for slope 1 and 2/3 indicate the theoretical slumping and similarity stages.

propagation, approximately 20 (lock lengths), while those of M10 and HHLWG have only
approximately 8 and 10, respectively. Therefore, only the data of D13 cover significantly
the post-slumping phase.

Figure 14 compares propagation results for three systems (M10, D13 and HHLWG) of
saline GCs on approximately the same slope (9–10.6◦). Overall, the experimental curves
of xN vs t almost coincide. The system of M10 with the larger slope shows a slightly
faster propagation. The reason why the propagation of D13 is slightly faster than that of
HHLWG is not clear cut. Both have the same slope γ = 9◦, but HHLWG has a larger
(x0/h0) that is expected to enhance the effect of the slope. On the other hand, while
HHLWG has a ramp lock, D13 had a submerged box lock. It turns out that the height
of the ambient encountered by the GC (which is larger for D13 system) is the stronger
effect, and hence the D13 GC is faster. The SW predictions are in good agreement with
the data, and in particular reproduce correctly which system has the faster propagation.
The slumping-phase comparison between the different experiments is encumbered by the
different lock settings, and the elucidation of this issue must be left for future work.

The behaviour of uN vs t of these experiments, not shown here, displays the same pattern
as the particle-driven systems: there is an initial acceleration, followed by oscillations
about a mean smooth line.

We use the present section for the clarification of the serious contradiction between the
conclusions of GMRL concerning the slumping phase with constant uN propagation, and
the claim of M10 that the propagation xN ∝ t2/3 is a ‘remarkably robust pattern’ relevant
from a quite early stage. The present analysis indicates that the claim of M10 is misleading.
We present the following arguments.

The first argument is based on the log–log plot of the propagation xN vs t, shown in
figure 14(b). Is evident that the three tested experiments indicate a larger slope than 2/3.
The SW results also show larger slopes, in agreement with the data.

The second argument follows from a revisit of the analysis of M10. The procedure of
M10 was as follows. The data xN − x0 vs t of figure 4, in dimensional form, were fitted
to the formula (xN + A)3/2 = K(t + B) in figure 6 (we refer to figures in the M10 paper;
A and B are constants denoted x0 and t0 in that paper, we changed the notation to avoid
confusion). Figure 6 of M10 shows a very good collapse of data to that fit for t between
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Figure 15. Data of M10 experiment 6/3/06-3, xN − x0 vs t for saline GCs on a slope of 10.6◦ (symbols), the
original fit (green) and the present linear fit (red). (a) In dimensional form and (b) dimensionless form, also
showing the SW prediction (black line).

10 and 28 s (end of propagation). This good collapse suggested that xN ∝ t2/3 is the
robust physical behaviour of the GC. However, for a reliable conclusion, this suggestion
should be subjected to further tests. We note that the 10–28 s time interval corresponds,
in scaled form, to 5–15, which is clearly included in the (extended) slumping phase. The
analysis of GMRL suggests a constant uN for this interval, and actually indicates that the
entire experiment of figure 4 of M10 is in the slumping phase, and hence the proper fit
should be xN = x0 + ct. Our figure 15 reconsiders the xN(t) data of M10 (symbols). We
observe an initial short adjustment (acceleration) followed by a constant-speed (slumping)
stage, then a deceleration. This figure confirms that the linear fit is the correct one for the
initial (slumping) propagation. The experimental data of figure 14(b) reveal a slope slightly
smaller than the theoretical 1; this could be expected, because the theoretical predictions
are an idealized approximation.

Figure 15(a) here is a variant of figure 4 of M10, presenting xN(t) − x0 (distance from
the gate) as a function of t, in dimensional form. The symbols are measured points.
The green line is the fit of M10 xN − x0 = −100 + [197.2(t + 0.5)]2/3 and the red line
is the linear fit xN − x0 = 8.75t (suggested here). We observe that the linear fit is a
better approximation to the data. In any case, it is evident that the attribution of a t2/3

propagation to this experiment is unreliable. The attempt of fitting a wrong formula
succeeded because the power 2/3 is close to 1, and thus over a restricted range the
difference can be accommodated by the fitted constants A, B, K. Figure 15(b) is the
dimensionless counterpart of frame 15(a), with the addition of the SW prediction line.
(In dimensionless form the linear fit reads xN = 1 + 0.83t.)

The third argument is physical. The (xN + A)3/2 = K(t + B) formula is based on the
box-model, or momentum-integral, analysis (called ‘thermal theory’) of Beghin et al.
(1981). This model describes the GC as a box of self-similar predetermined oval shape
subject to some global balances, ignores the front-jump conditions and the possible
bores and introduces adjustable constants that for practical use must be calibrated,
or extrapolated, from experimental data. There is no physical justification to these
assumption, and it is not possible to determine theoretically the range of validity (in
any case, there is consensus that similarity is a long-time pattern). The nose jump is
considered an essential component in the modelling of the GC since the seminal work

1000 A97-23

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

95
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.951


M. Ungarish

of Benjamin (1968). A GC on a small slope (as considered in this study) cannot be
physically different from the horizontal counterpart with the same rectangular lock in the
early (slumping) phase, and hence the agreement between the motion of the thermal box
(an oval with no front jump and no backwall reflection condition) and the GC of same
initial volume and g′ during the slumping phase is no more than a coincidence (see also
Appendix C). Consequently, the use of the thermal theory propagation formula for the
slumping motion should be considered no more than a curve fit to experimental xN vs t
data, not a physical predictive model. The ‘good’ agreement of the fit with the data is
enforced, and proves the versatility of the algebraic relationship, not the physical validity
of the t2/3 propagation. This leaves the ground open to various misleading conclusions.
For example, the investigation of M10 missed the possible slumping-phase behaviour
detected by GMRL, and attributed t2/3-like propagation to significantly more rapid GCs.
The extended SW formulation, based on fluid-mechanics equations and realistic boundary
conditions, is evidently a superior framework, and the SW solution shown in figure 14(a)
does not support the t2/3 propagation of that box-model simplification.

A closer inspection of uN in M10 experiment reveals that some initial acceleration
and oscillations appeared, and hence the linear slumping behaviour, with uN = 0.83, is a
smoothed approximation, like in the other cases considered in this study. The SW slumping
uN = 0.70 (dimensionless) is smaller than the measured 0.83. We think that the reason
is the difference between the practical lock (a solid box with an open end) and the SW
simplification (figure 1).

4. Concluding remarks

We investigated the initial propagation of a lock-release GC over a down slope, with
and without suspended particles, using SW (novel) predictions and experimental data
(previously published M10, D13, GMRL and HHLWG). The systems were in the Bq
inertia–buoyancy (large Reynolds number) regime. We focused attention on full-depth
(or close to it) locks in tanks with open-to-the atmosphere top ambient fluid, because
these are the type of available data that motivated this study. We emphasize that our
conclusions are restricted to such systems. We also restrict our conclusions to moderate
slopes (<15◦ say) because our analysis ignores vertical accelerations that may invalidate
the hydrostatic-pressure approximation incorporated in the SW formulation.

We found that, in general, the propagation on the slope displays a phase that can
be called ‘slumping’ because it shares patterns with the classical slumping phase
with constant uN observed experimentally and derived theoretically for a horizontal
compositional GC. This is in accord with the empirical conclusions of GMRL. However,
we argue that, when a slope or particles are present in the system, the slumping uN
is not truly constant, but rather varies by a few per cent over the ‘slumping interval’
(time and distance) relevant to the classical case. Next, a significant deceleration of uN
appears.

The theoretical support is provided by a two-layer SW formulation, extended to
incorporate slope, entrainment, drag and particle settling (referred to as source terms).
This demonstrates that the extended slumping phase is dominated by the same mechanisms
as the classical case: the front jump, and back and forth propagation of an internal jump
(bore). (In a deep ambient, the bore is replaced by a faster expansion wave, and this reduces
significantly the slumping interval.) The source terms preclude a constant uN dam-break
solution, but the analysis reveals that the additional effects are typically small, and may act
in opposite directions, therefore the variation of uN during the slumping is small in many
cases of interest. For example, we showed that the sedimentation of particles is bound to
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reduce uN , while propagation into a deepening ambient (the result of the horizontal open
top) is bound to increase uN ; the combination of the two effects is a small change of uN
during the slumping interval, in accord with the observations of GMRL.

We showed that the contributions of the various source terms are nonlinear and coupled
(e.g. a larger velocity increases both the drag and the entrainment; the entrainment
increases the thickness, and this reduces the settling), and hence it is not possible to make
sharp estimates concerning the influence of the input parameters (slope, sedimentation
speed, lock type and aspect ratio, height of ambient) on the slumping behaviour. We
can say with confidence that the extended system displays a slightly modified version
of the classical slumping (and in particular, the slumping lengths are approximately the
same), but we have no reliable quantitative estimate of the differences. This reveals the
advantage of the present SW model. This formulation takes into account realistic input
parameters and boundary conditions, and provides convenient finite-difference solutions
for the depth-averaged flow and, in particular, for the propagation distance xN(t) and
speed uN(t). The slumping phase is a straightforward result, not an imposed pattern. The
SW predictions are in good qualitative agreement with the available data, and provide
insights into the process. There are some quantitative discrepancies between the theoretical
predictions and the measured variables. The exact reason for these discrepancies is at the
present evasive. One factor is the intrinsic error of the approximation: the assumptions
of a thin layer of dense fluid, sharp interface, free-slip boundaries, hydrostatic pressure,
form of drag and entrainment correlation, are not fully satisfied in a realistic system.
Another factor is the imperfection and inconsistencies of the experimental set-ups:
different locks and gate-opening methods, non-monodisperse particles and various stirring
methods before release. We hope that future experiments will throw more light on these
issues.

Some of the assumptions of the present study can be relaxed. The SW model can
accommodate more complex geometries of the bottom and top boundaries, such as a
curved bottom γ (x), and more complex correlations for the settling speed, entrainment and
drag. A Fr formula different from Benjamin’s (2.20) may also be of interest. This requires
a separate investigation that will be relevant when sufficient relevant data (obtained
from experiments or Navier–Stokes simulations) are available for comparisons. A major
assumption of the present SW model is that the dam-break effect is instantaneous, i.e.
the slumping uN appears at t = 0. The experiments reveal that there is a pre-slumping
adjustment time interval. It is presently unclear if and how this adjustment phase can be
incorporated in the model.

We pointed out that most experimental data concerning the effect of the slope γ were
obtained for systems with a full-depth (or close to it) lock. The theory indicates that,
in such cases, there is an unavoidable increase of the nose Benjamin-type Fr, because
the height of the ambient increases with the propagation. This compensates for various
effects in the body of the GC that may decrease the driving buoyancy, such as entrainment
and particle sedimentation. The increase of the depth of the ambient also reduces the
effect of the return flow. Overall, the change of the height of the ambient along the slope
cannot be ignored (unless the GC is deep from the beginning). The conclusion is that
the generalization of data from a (almost) full-depth release condition to other GCs is
unreliable and may be misleading. This insight is in particular relevant for the slumping
data, because the most interesting (long slumping interval) cases are for non-deep locks.

The slumping properties uN and xslump (scaled) of the classical SW Bq GC depends only
on the height ratio H. When particles, entrainment and drag are present, the aspect ratio
of the lock (x0/h0) is also relevant (most important concerning the sedimentation).
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In the extended SW flow, the aspect ratio (x0/h0) is of evident importance: it explicitly
affects the properly scaled contributions of the slope, entrainment, drag and particle
sedimentation. Unlike the classical case, for the inclined GC the generalization of
empirical information based on the available data is unreliable. For example, M10, D13
and GMRL use (x0/h0) = 2.1, 1.25 and 0.5, respectively. Thus, for the same physical
slope γ , the scaled behaviour of a saline GC is expected to differ between these parties. If
we adjust the data to the desired tan γ ·(x0/h0), there still will be a difference in E(x0/h0)
and cD(x0/h0). The situation is exacerbated for particle-driven GCs because, in a system
of fixed slope and suspension, the change of the lock will affect both the effects of
the inclination and sedimentation. In other words, data with different (x0/h0) cannot be
combined, at the present state of knowledge.

We showed that there is a significant scatter of the experimental data for GCs over an
inclined bottom. The major reason is the lack of consistency of the release conditions
used by the different parties, such as a different (x0/h0) of the lock, different settings
of the lock (with or without a ramp before the slope, with or without a solid box)
and different stirring methods of the suspension. The measured velocities display some
spurious oscillations which encumber the comparisons. Data for particle-driven flow are
scarce. In such circumstances, it is difficult to assess the quantitative accuracy of the SW
predictions.

On the other hand, our study demonstrates the qualitative predictive power of the SW
models. The theory provides a clear-cut set of governing equations, insightful scaling of
the variable and delineates the physical input parameters that govern the flow.

The entrainment and drag coefficients are of empirical origin. However, these are not
‘adjustable constants’ for fitting the theory to a specific set of experiments. We attempt
the use of some generally accepted off-the-shelf results, that can be applied for a wide
range of parameters. We use the same E and cD for experiments performed in different
laboratories at different times. The SW formulation admits other correlations, that could
perhaps improve the quantitative agreement with data. Such optimization must be left for
future work, because it requires a big effort and needs a large set of accurate data for
comparisons over a wide range of parameters and long distances of propagation.

Another topic of interest for further work is the GC in an inclined channel (i.e. the top
and bottom are parallel plates). The numerical simulations of Birman et al. (2007) indicate
some non-trivial differences from the open-top case considered in our study. In particular,
Birman et al. (2007) observed an acceleration of uN along the slope which is not a result of
the increase of HN in the open-top systems. A clear-cut conclusion is not possible, because
in addition to the top condition, there are other significant differences between the systems
of our paper (table 1) and that paper. Birman et al. (2007) solved only for the homogeneous
GC β = 0, used λ = 10 and the propagation is shown for a short distance, xN < 2. Most
details are given for a large angle, γ = 30◦. The γ = 10◦ solution has Γ = λ tan γ = 1.8,
while Γ in our table 1 is 0.06–0.39. These difference preclude reliable comparisons with
the systems discussed in our paper. Due to the small xN and lack of details, even the
corresponding γ = 10◦ simulation cannot be shown with confidence in our figure 14. In
our opinion, the time is ripe for a revisit of the investigation of Birman et al. (2007),
using simulations for longer times of propagation, part-depth locks and particle driving.
We emphasize that comparisons with the γ = 30◦ case may be misleading, because the
standard hydrostatic-pressure approximation, which is an essential component of the SW
theory, becomes invalid for a large inclination, γ > γmax. There is little knowledge on the
limit of validity γmax and what happens beyond, and future work on these topics will be
beneficial.
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Figure 16. Sketch of the control volume attached to the front jump.
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Appendix A. The front-jump condition

The SW formulation yields a system of hyperbolic PDEs for the variables h, u, φ as
functions of x and t. The velocity of the characteristics of the system are c+, c− and u, with
c+, c− given by the same expressions as for the classical two-layer formulation, see § 6.3
in U20. Consequently, the same types of internal and front jumps appear in the present
problem as in the classical problem. However, the source terms contributed by the slope
and particle settling complicate the balances along the characteristics and across the jump.
Since the jumps are x-thin structures, their reaction is fast, and hence we expect that, upon
using the local instantaneous values of density and height, the classical jump conditions
provide a good approximation also when γ, E, cD and β are non-zero but small. We shall
illustrate the justification of this assumption for the front jump.

We argue that the jump is vertical because the pressures on the up- and down-stream
sides are hydrostatic. We consider the system of a GC of height h in an inclined channel of
height H with free-slip boundaries, sketched in figure 16. We use dimensional variables.
The x, z coordinates are attached to the jump, and O is the stagnation point of the GC;
BCDE is a control volume attached to the nose.
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Let a = h/H. The velocity of the dense layer is 0. In the ambient, the velocity (parallel
to the boundary) is U and U/(1 − a) on the upstream and downstream boundaries CD and
AE, respectively.

To simplify the analysis, we discard the dissipation (headloss).
The reduced pressure (by +ρagz) is denoted p, and we set pD = 0. By Bernoulli’s

equation, on the streamline DE we obtain pE = (1/2)ρaU2[1 − (1 − a)−2]. Next,
calculation of p along EABO yields

pO = ρ[h + (xB − xO) tan γ ]g + 1
2ρaU2[1 − (1 − a)−2], (A1)

where ρ = ρc − ρa. Using the path DCO and Bernoulli’s equation, we obtain

pO = 1
2ρaU2. (A2)

Pressure continuity at O yields

U
(g′

ah)1/2 =
√

2(1 − a)

[
1 + xB − xO

h
tan γ

]1/2

, (A3)

where g′
a = (ρ/ρa)g.

For a jump, (xB − xO)/h is assumed small (→ 0). By neglecting this term, (A3) reduces
to Fr(a) = √

2(1 − a) (called the circulation-based formula), which is in very good
agreement with Benjamin’s Fr(a) result (2.20) (obtained by a more complex analysis using
a similar control volume). Drag and entrainment are internal effects in the control volume
and are not expected to affect the global balance. The parameter U in (A3) corresponds to
uN/ cos γ in our SW formulation, but this is a small deviation for the typical values of γ

considered in our paper (e.g. cos 15◦ = 0.97).
In the realistic GC along the slope, the vertical velocity component is u(sin γ ) which

contributes ∼ (1/2)U2(sin γ )2 to the pressure balances. This suggests that the effect of
the inclination on the value of Fr is of the order of (sin γ )2, and hence for |γ | < 15◦ the
error made by using the classical horizontal Fr formula is <10 %.

We admit that this discussion is not a rigorous proof of the validity of the nose-jump
condition (2.19)–(2.20) used in our paper, just a supporting argument that indicates that
the jump is governed by the local condition around the control volume, and that the
contribution of the slope is unimportant for γ < 15◦, approximately.

Appendix B. Change of Fr due to increasing depth

In a container with open top the height of the ambient encountered by the nose of the GC
increases as (dimensionless)

HN = H(xN) = H(1) + Γ (xN − 1), Γ = tan γ · (x0/h0). (B1)

Consequently, Fr(a) increases because a = hN/HN decreases, see (2.20). Physically, the
return flow −uNhN/HN in the ambient fluid above the nose decreases and hence the motion
of the GC is less hindered; H(1) depends on H(0) and xslope (presence/absence of the
ramp).

We estimate the contribution of this effect during slumping, for a given lock (i.e. given
H(0) and xslope). We assume that hN = 0.5. and calculate

C = C(Γ ) = Fr(a2)/Fr(a1) − 1, (B2)

where points 1 and 2 correspond to the values of HN at xN = 1 and xN = xslump.
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Figure 17. Change (relative) of Fr due to slope for xslump = 10, xslope = 0, various H(0).

Consider the typical cases xslump = 10. For simplicity, we assume that there is no
ramp (xslope = 0). Some results are shown in figure 17. We see that this effect may be
a significant contribution for a non-deep GC (H(0) < 2) even for small values of Γ . Since
uN = Frϕ1/2, the increase of Fr due to the geometry is expected to compensate for the
decay of the driving buoyancy due to internal effects.

In the typical system of GMRL, Γ = 0.06, H(0) = 1, xslope = 0, we obtain C = 0.27.
In the system of HHLWG, Γ = 0.3, H(0) = 1, xslope = 1. We obtain C = 0.7. We keep in
mind that this C is just an estimate, not a rigorous result.

Appendix C. The asymptote xN ∼ t2/3

The SW equations for a compositional GC indicate a power-law propagation for a long
time after release (U20). In some cases this is a part of a rigorous similarity solution of
the equations, in other cases this is just an approximate asymptote. Experiments confirm
this asymptotic trend. We therefore investigate this possibility for the present formulation
by applying a scaling analysis.

Suppose xN ∼ tω, h ∼ tP, u ∼ tQ, ϕ ∼ tR. The objective is to find the values of
the exponents. We use the governing equations (2.15)–(2.19) and boundary conditions
(2.23)–(2.26). We substitute the supposed behaviour of the variables, and use ∂[ ]/∂x ∼
[ ]t−ω. We assume that β = 0, Fr, E, cD are constants, and h/H → 0 (deep current).

Since u ∼ uN = dxN/dt, we obtain Q = ω − 1. Equation (2.15) then yields P = ω, and
(2.19) gives R = 2Q = 2(ω − 1). An inspection of the other equations shows that this is
the correct solution for the entire system. In other words, the differential equations do not
determine the value of ω.

The additional physical condition is the conservation of buoyancy, or mass of the dense
fluid, expressed as

xN · ϕ = const. ∼ tωtR = t3ω−2. (C1)

This yields ω = 2/3. We summarize: xN ∼ t2/3, h ∼ t2/3, u ∼ t−1/3, ϕ ∼ t−2/3.
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The asymptote xN ∼ t2/3 is in agreement with the result of Beghin et al. (1981), but
this does not mean that there is much physical compatibility between the SW and thermal
theories.

In any case, the asymptotic behaviour is not a useful prediction tool, because it is not
clear when it becomes relevant, and what the coefficients of the time variation functions
are. The importance of these coefficients is emphasized by the thickening of the GC
h ∼ t2/3, which apparently contradicts the deep-current thin-layer flow. However, the
coefficient is expected to be of the order of E ∼ 10−2 (see (2.25)) and hence it may take
a long time (100 dimensionless units) to inflate hN by one unit. During this long time, the
SW model is expected to become invalid due to viscous effects.

The formula (xN + A)3/2 = K(t + B) with constant A, B, K recovers that asymptotic
propagation for t → ∞, and hence matching at some finite t with experimental or
numerical data is expected to provide the constants. Our derivation of the asymptote
from the SW equations indicates that A, B and K (in dimensionless form) are expected to
depend on the input parameters of the SW formulation (γ, x0/h0, H(0)), presence/absence
of the ramp and, indirectly, on the correlations of E and cD. This is the reason for the
many calibrations that were needed in the attempts to fit data to that formula (M10, D13,
HHLWG).

The scaling analysis indicates that the SW equations admit a similarity solution of the
form

xN = Kt2/3, h = H(ξ)t2/3, u = U(ξ)t−1/3, φ = P(ξ)t−4/3, (C2a–d)

where ξ = x/xN(t), ξ ∈ [0, 1]. The analysis reveals that physically acceptable profiles
H(ξ), U(ξ), P(ξ) exist, but their realization may take a very long time ∝ γ 1/4/E (see
Ungarish 2024). The understanding of the transition from the slumping stage to this
predicted flow requires a dedicated investigation, and experiments that cover much longer
propagation than presently available.
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