
SPECTRA OF AGN ACCRETION DISKS — PRELIMINARY RESULTS 

H. A . Scott 

Lawrence Livermore National Laboratory, LI 7 
P. 0. Box 808 

Livermore, California 94550, USA 

S. L. O'Dell 

Space Science Laboratory, ES65 
NASA Marshall Space Flight Center 
Huntsville, Alabama 35812, USA 

After the suggestion (Shields 1978) that some A G N emission might arise in an opaque accretion 

disk around a supermassive compact object, several papers (e.g., Malkan and Sargent 1982; Malkan 

1983; Bechtold et al. 1987) have interpreted the flat ultraviolet continuum ("big blue bump") 

observed in many A G N spectra, in terms of such a model. The early calculations approximated 

the radiation locally emergent from the accretion disk as blackbody; the more recent calculations 

(e.0. , Czerny and Elvis 1987; Wandel and Petrosian 1988) have treated this emission as (electron-

scattering) modified (possibly comptonized) blackbody. 

To investigate potentially important accretion-disk phenomena — e.g., the strength of atomic 

edges and lines (cf. Kolykhalov and Sunyaev 1984; O'Dell 1986) , communication between various 

parts of the disk (cf. O'Dell, Scott, and Stein 1987; Pacharintanakul and Katz 1980) , and non-LTE 

effects (possibly enhanced by photo-ionization from above) — it is necessary to solve self-consistently 

for the hydrostatic structure and radiation field, much as one would for a stellar atmosphere. In 

several respects, the accretion-disk problem is more difficult: Energy generation, via viscous dis-

sipation, occurs throughout the atmosphere; the gravitational acceleration changes with altitude; 

and concavity of the photosurface couples different regions of the disk. Furthermore, for parameters 

characteristic of A G N accretion disks, much of the inner disk is radiation-pressure dominated. In 

this case, the standard alpha-viscosity (viscous stress } φ = aPtot) model (Pringle and Rees 1972; 

Shakura and Sunyaev 1973; Novikov and Thorne 1973) is unstable (Lightman and Eardley 1974; 

Shakura and Sunyaev 1976; Lin and Shields 1986) . 

W e are developing a numerical code to calculate self-consistently the structure and emergent 

spectra of thermal accretion disks, using a complete-linearization method (e.g., Mihalas 1978) , suit-

ably modified to handle accretion disks. Currently, the code computes the local (single-atmosphere) 

vertical structure and emergent spectrum of a geometrically thin (plane-parallel), bi-alpha-viscosity 

(viscous stress }φ = a g a s P g a s + aradPrad) accretion disk. At present, we assume entirely radiative 

vertical energy transport, local thermodynamic equilibrium ( L T E ) , and coherent scattering (hence, 

no comptonization). Comptonization is negigible for the models we consider; indeed, it is seldom 

significant in stable A G N accretion disks (cf. Wandel and Petrosian 1988) . 

Here we present results for a beta-viscosity disk — i.e., for arad = 0 and a g a s = ß, such that 

}φ = ßPgas- In contrast with the α disk, the β disk is stable and quite opaque (Lightman and Eardley 

1974) . The figures below show locally emergent spectra for a pure-hydrogen β disk (with β = 1), for 

effective temperatures (a) T e / / = 30 Κ and (b) Tejj — 4 0 a t a radius R = 10 Rg (gravitational 

radius Rg = GM/c2), from a central mass M. For the smaller Μ, the Lyman discontinuity is quite 

prominent in absorption, particularly at the lower Tejj. The weakening of this feature with increasing 

M , corresponds to a similar behavior in stellar atmospheres as log g approaches the minimum value 
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allowed (a local Eddington limit) for a given Tejj. The resemblance of the computed accretion-disk 

spectra with those of pure-hydrogen stellar atmospheres with similar (Rosseland-mean) photosurface 

gravities logg, follows because β disks are sufficiently opaque that most of the (viscous) energy 

generation occurs below the photosurface and the gravitational acceleration changes little over the 

relatively narrow transition region. 
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By fixing both the mass-scaled radius r = R/Rg and the effective temperature T e / / , the mass-

accretion rate M ~ M 2 , so that the Eddington-scaled mass-accretion rate μ = MC2/LE ~ M. 

Thus for a given T e / / , the Eddington-scaled luminosity L/LE of a low-central-mass β disk is less 

than that of a high-central-mass one. (For the values used here, [L/(l045erg/s)] « [ M / ( 1 0 9 M Q ) ] 2 . ) 

The calculated spectra then suggest that, for a β disk of characteristic temperature T e / / « 35kK, 

Lyman-continuum absorption would be quite prominent in the less luminous A G N s , but much less 

so in the more luminous A G N s (operating near the Eddington limit). Observed A G N spectra rarely 

show Lyman discontinuities at the emission redshift of the A G N . 
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