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Abstract. On the setting of the unit ball of the complex w-space, some characterizations
of jM-harmonic Bloch functions are obtained. As an application, Carleson measures are
characterized by means of Berezin type integrals of .M-harmonic Bloch functions. As one
may expect, these results carry over to .M-harmonic little Bloch functions and vanishing
Carleson measures.

1. Introduction. Let B be the unit ball of the complex M-space C" with boundary S. For
fe C'(fi), let us define

where /J is the Bergman metric on B and v / i s the complex gradient of/. Here, the notation
< z, if > denotes the usual Hermitian inner product for points z, w e C". It is known [4] that
Q is invariant under all automorphisms of B in the sense that Q(fo<p) = Qfocp for all
cp e A, the group of all automorphisms (i.e. biholomorphic self-maps) of B.

A function u e C2{B) is called .M-harmonic on B if it is annihilated on B by the invar-
iant Laplacian A. See Section 2 for relevant definitions. The M.-harmonic Bloch space MB is
the space of all .M-harmonic functions/on B for which

11/11 = sup e/[z)<oo

and the M-harmonic little Bloch space MBo is the subspace oi MB, consisting of functions/
for which the additional boundary vanishing condition

lim
|z|->l

holds. By the invariance of Q under A we see that || / o <p\\ = || / 1 | , for all <p e A.
If/ is holomorphic on B, it is known [10] that / is a Bloch function if and only if

(1 - M2)l V/OOI = 0(1) and/is a little Bloch function if and only if (1 - |z|2)| v/(z)| = o(l).
Many other conditions characterizing holomorphic (little) Bloch functions are well known.
See, for example, [2], [3], [5], [9], [10], [11] and references therein. In the A4-harmonic case,
Hahn and Youssfi [4] first studied and characterized .M-harmonic Bloch functions in terms of
the Berezin transform, invariant Laplacian and BMO type integrals. Recently, Jevitc and Pav-
lovic [6] have shown that many characterizations of holomorphic (little) Bloch functions also
characterize .M-harmonic ones by giving characterizations in terms of various derivatives.
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274 BOO RIM CHOE AND YOUNG JOO LEE

In the present paper, we add some other characterizations of MB and MBQ. Our results
imply that recent characterizations of Xiao and Zhong [12], [13] for holomorphic (little)
Bloch functions (on the disc) continue to hold for .M-harmonic ones. To state our result, let
V denote the normalized Lebesgue volume measure on B, <pa be the standard automorphism
of B such that <pa(0) = a, and write d(z, w) for the Bergman distance between two points
z, w e B. For details, see Section 2.

THEOREM A. Let 1 <p < oo. Then, for a function f M-harmonic on B, the following
statements are equivalent.

(a) fe MB.

y/ Z-TB d(z,w)

(c) sup [ \fo<pa-f(a)\<>dV< oo.
aeB JB

(d) sup / ( Q / ( z ) ) " ( 1 - I a |

aeB JB V | l - < z, a > I
(e) There is a constant t > 0 such that

sup / exp(/|/o cpa -f(a)\)dV < oo.

Note that the condition (d) of Theorem A can be rephrased as "the Berezin transform of
the measure (Qf)pdV is bounded". As is well known (see, for example, [14, Theorem A]),
the Berezin transform of a positive Borel measure /x on B is bounded if and only if /x is a
Carleson measure. To be more precise, let Er(a) = cpa(rB) denote the pseudohyperbolic ball
with center aeB and radius r e (0, 1). Then, fj, is called a Carleson measure if

for some r. As an application of Theorem A, we prove the following theorem which char-
acterizes Carleson measures by means of their action on Berezin type integrals of .M-har-
monic Bloch functions.

THEOREM B. Let 0 < p < oo. Then, a positive Borel measure /A, on B is a Carleson measure
if and only if there is a constant C such that

sup / \f{z) -Ka)\"(- ~ | Q |

aeB JB V I 1 - < Z, a >

for all fe MB.
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X-HARMONIC BLOCH FUNCTIONS 275

The equivalences of Theorem A carry over to .M-harmonic little Bloch functions.

THEOREM C. Let 1 < p < oo andO < r < 1. Then, for a function f that is M-harmonic on
B, the following statements are equivalent.

(a) feMB0.

(c) lim f \fo(pa-f(a)\"dV = 0.

(d) lim
1 - < z, a >

(e) There is a constant t > 0 it/c/i

lim / exp(t\fo(pa-f(a)\)dV=l.

Also, the equivalence of Theorem B carries over to vanishing Carleson measures //, on B
that satisfy

for some r.

THEOREM D. Let 0 < p < oo. Then, a positive Borel measure \x on B is a vanishing Car-
leson measure if and only if

C / i l l 2 \ " + '
lim sup/ \f(z)-f(a)\»(- ~W )

In Section 2, we collect some notations and basic facts needed in the proofs. In Section 3,
we prove Theorems A and C. In fact, Theorem A is restated and proved in the form of
"quantity equivalence" with weights (1 - |z|2)a. Also, the corresponding weighted version of
Theorem C is proved. In Section 4, we first note the Carleson measure characterization of
.M-harmonic (little) Bloch functions as a consequence of results obtained in the previous
section. Then, as an application of results obtained in Section 3, we prove the weighted ver-
sion of Theorem B in the form of "quantity equivalence". In the course of the proof, we
notice that actions of Carleson measures on holomorphic or .M-harmonic Bloch functions
make no difference in a certain sense (see Theorem 7). Also, we have the corresponding weighted
version of Theorem D.

2. Preliminaries. For z e f i , the standard automorphism <pz is given by
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276 BOO RIM CHOE AND YOUNG JOO LEE

where Pz denotes the orthogonal projection of C" onto the subspace generated by z and
Q. = I — Pz. Then <pz e A, <pz(0) — z and cpz o <p2 is the identity map on B. Furthermore, the
real Jacobian JRCPZ of <pz is given by

1- <w,z >

and the identity

1 - < <pz(a), <pz(b) >-

holds for every a,b £ B. See [7, Chapter 2] for details.
For a > — 1, define a measure dKa on fi by dVa{z) = Xa(l — \z\2)adV(z), where the con-

stant Xa is chosen so that Va(B) = 1. For a e B and a > —1, we put

for notational simplicity. By (2) and (3), we have a useful change-of-variable formula:

/ h (z)dVa(z) = f h{<pa{z))\ka
a{z)\2dVa(z) (zeB), (4)

JB JB

for all measurable h on B, whenever the integrals make sense.
For u € C2(B), the invariant Laplacian AM is denned by

(A«)(z) = A(«opr)(0) (zeB),

where A denotes the ordinary Laplacian. The operator A commutes with automorphisms in
the sense that A(M O(S) = (AM) O <p, for all ^ e A. Hence A't-harmonic functions are closed
under composition with automorphisms. Moreover, by the invariant mean value property [7,
Theorem 4.2.4] and a simple application of the integration in polar coordinates, we have the
following mean value property for .M-harmonic functions/:

( z e 2 * , 0 < r < l ) . (5)

Given z e B and f 6 C", the Bergman metric fi(z, f), modulo a constant factor, is given
by

(i -
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VW-HARMONIC BLOCH FUNCTIONS 277

and the corresponding distance d(z, w), called the Bergman distance, has the explicit formula

In particular, for any 0 < p < co and a > —1, the function dp(z, 0) is integrable with respect
to the measure d Va. We note that

/3(z,C)<T-^5 (*e*. f € C " ) (6)

and the Bergman distance is invariant under A. See Section 2 of [8] for details.

3. Characterizations of MB and MBQ. We begin with a simple lemma.

LEMMA \.LetfeCx{B). Then we have

|/(z)-/(0)| < I sup fi/(w)Uo,z),

for all zeB.

Proof. We first note that by (6) we have

l

|/(z) — /(0)| = I / {< v/('z), z > +< v/('z). z >}^//
7o

r Qf(tz)\z
~ Jo 1 - |/z|2

for all zeB. Since

f = rf(0, z),
h \-\tz\2 2 °\-\z\

for all z € B, we have the desired result. This completes the proof. •

We are ready to characterize .M-harmonic Bloch functions. The equivalence of the
quantities in (a) and (c) of the following theorem was proved in [4, Theorem 5.4] in the
unweighted case of a = 0.
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THEOREM 2. Let 1 < p < oo and a > — 1. Then the following quantities are equivalent as f
runs over all M-harmonic functions on B:

(a)

(C) ( ( )

Or
B

( (
aeB \JB

1 / p

(e)

In the rest of the paper, the same letter C will denote various positive constants which
may change from one occurrence to the next. While constants C may depend on variables
like n, p, r, a or some others, they will always be independent of functions, points or mea-
sures under consideration.

Proof By Lemma 1,

for all z e B. Replacing/by/o <pn, and then z by <pw(z), we get, by the invariance of || || and d
under A,

\f(z) - / M l < ||/o ^H d(0, ft,(z)) = Il/H d(z, w),

for all z, w e B, and so we have | | / | | b <
Next, we show that | | / | | cp < C\\f\\ /,. By the invariance of d under A, we see that

\fo<pa(z)-f(a)\<\\f\\bd(z,0),

for all z,ae B. It follows that

/ l /o <Pa(z) -Aa)\pdVa < \\f\\p
b f d"{z, 0)dVa(z) < C\\f\\p

b,
JB JB

for all a € B and hence \\f\\CiP < C \\f\\ 4, as desired.
Next, we show | |/ | | dtP < C ||/||CiP. Assume that | | / | | CiP < 00. Then, by (5), with r

and the change-of-variable formula (4), one can see that

"+1+"r f ( 1 - l z l 2 \ " + 1 + "
= / f° <P:dVa = / /(w) L> dVa{w) (zeB).

JB JB \ | 1 - < Z , W > | V
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Differentiation under the integral sign yields

I < V/(0), f > | < C f \f\dVa
JB

and

I < v/(0) , l > \ < c f \f\dva,
JB

for all f e S. It follows from the definition of Q and Jensen's inequality that

6/(0) scj^ \f\dva < c (£ i/i "dv

Apply the above inequalities t o / o cpz -f(z) to obtain

o(pz-f(z)\PdVa^ ", (7)

for all 2 <= B. Note that ka
a has norm 1 in L\dVa), for all a e B, by (4). It follows from (7)

that

< c fsup / \fo<pz -f(z)\"dVa) f \ka
a\

2dVa
\zeB JB / JB

l(Qf)PK\2dVa < C f f \fo<p2 -f{z)\?\ka
a{z)\2dVadVa{z)

JB JBJB

< cf\
= Csup \\fo<pz-f{z)\*dVa,

zeB JB

for all a € B, and so we have | | / | | d,p < C ||/||CiP.
Next, we show | | / | | < C\\f\\d<p. Fix r e (0,1). By (5), we have, for each t e ( - 1 , 1) and

rB

Fixing f, w and denoting the v'-th component of <pt{(w) by <pj{i), one can see that

<Pj(O) = Kr <w,$> wj and ^ ( 0 ) = t,r < w, ? > wy,

for each _/. Thus,

— / o <9,f(»v)|,=o =< V/(w), f - < w, f > w > +< V/(w), C- < w, f > w >,
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for each w e B and £ e S. It follows that

1 C A

= 7r775T / ^ / °

), f- < w, f > w > +< V/(w), f < w, f >

Hence by (6), one obtains

QM±c f r^j%dK(w)-c\Qfdv-
JrB 1 - M JB

Now replace/by/o <pa. Then use Jensen's inequality and the change-of-variable formula (4)
to see that

P { J ^ ", (8)
for all a e B, so that we get ||/|| < C\\f\\dtP.

Consequently, ||/||, ||/||A, ||/||Ci/, and \\f\\dtP are all equivalent for each p with
1 <p < oo. Since ||/|| is independent of/? and equivalent to H/H^p, for each/7 in [l,oo), it is
equivalent, in particular, to ||/||c ]. Thus, in order to finish the proof, it is sufficient to prove
the inequalities ||/||c,, < ||/||e < C||/||.

By Lemma 1, we get as before

<pa{z) -f(a)\ < \\f\\d(z, 0) = ^ l o g - j ^ } , (9)

for all z,a e B. Assume 0 < ||/|| < oo. Then, by taking t = (a+ 1)/||/||, one can see from (9)
that

^ f / ^ o <pa -f(a)\)dVc
aeB \ 11/11

11/11 , , „ , I- •.-.» dva{z)

Since the last integral above is finite, we have ||/||e < C||/||.
Finally, the inequality ||/||c,i < ||/||e is an easy consequence of Jensen's inequality. The

proof is complete. •
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As a result corresponding to Theorem 2, we characterize the .M-harmonic little Bloch
space. In the following theorem, the equivalences of (a), (b) and (e) were proved for holo-
morphic functions on the disk in [13, Theorem 2.1] and the equivalence of (a) and (c) is given
in [4, Theorem 5.6] in the unweighted case of a = 0.

THEOREM 3. Let 1 <p < oo,a > —1 and 0 < r < 1. Then the following statements are
equivalent for a function f that is M-harmonic on B.

(a) feMB0.

(b) l i ^ - ^ ) i

(c) lim [\foVa-f(a)\''dVa = 0.
lol-^i JB

(d) lim [(Qf)p\ka/dVa = O.

(e) There exists a constant t > 0 such that

lim / expW/o <pa -f{a)\)dVa = 1.
M 1

 J B

Before proceeding to the proof, we note that

1 — \w\2 RS 1 — \a\2 (w e Er{a)), (10)

for each fixed r e (0, 1). This follows from (3). Here and elsewhere, the notation A(w) % B(a)
means that two quantities have ratio bounded and bounded away from 0 by constants
independent of the points w, a under consideration.

Proof. We first prove the equivalence of (a) and (b). We shall assume (a) holds and prove
(b). By Lemma 1, we have

< supQ/Ov) rf(0,z),
\l»'l<r /

for \z\ < r. Replacing/by/o cpa and, using the invariance of Q under A, one obtains

<pa (2) -f(a)\ < sup e / fe>») U(0, z),
\\w\<r I

for \z\ < r. It follows from the invariance of d under A that
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s u \Az) -f(a)\ = s u \fo<Pa(z)-f(a)\
J L d(z,a) 0<|z|<r d((pa(z),a)

= s u p l/oya(z)-/(a)l
0<|z|<r ^(z, 0)

< SUp e/(^fl(»v))
|ii'|<r

= sup Qf(w),

for all a e B. Now, letting \a\ -*• 1, we obtain (b) by (10).
Assume (b) holds. Using (5), one can easily see as before that

2 / ( 0 ) < c f \f\dv.
JrB

Replace/ by/o <pa —/(a) and then use the change-of-variable formula (4) to see that

Qf(a)<C f \fo<pa-f(a)\dV
JrB

= c[ |/(z) -f(a)\ ( 1 ~ W ) " l + 2 dV(z)
JEM | 1 - <z,a> \ln+z

z, a) ) Jr

d(z, a)

for each a e B, where sup is taken over all z e Er(a) with z ̂  a. Letting |a| ->• 1, we have
proved (a).

We assume (a) holds and prove (c). Let a e B. Then, by (9) and the invariance of Sunder
A, one obtains

[ \fo<pa-f(a)\pdVa
B

= f l /o <pa ~f(a)\"dVa + f | / o <pa -f(a)\"dVa
JrB JB\rB

< ( sup l / 0 ^ Z ) " / ( a ) l V f d>{z, 0) dVa(z) + | | / f [ d'iz, 0)dVa(z)
\0<\z\<r d(Z, 0) I JrB J

^ ^ y + | | / i r f d>(z.0)dV.W.
£,(«.) rf(Z,fl) J ,/SVB
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Having seen that (a) and (b) are equivalent, one can see that the first term of the expression
above tends to 0 as \a\ ->• 1, for each r. Consequently, first taking the limit as \a\ -»• 1 and
then as r -*• 1, we obtain (c).

Assume (c) and show (d). Note t h a t / e MB by Theorem 2. By (10), we have

lim sup f \fo<pz-f(z)\PdVa = 0, (11)
W-*lzeE,(a) JB

for each t e (0, 1). Now, by the change-of-variable formula (4) and (7), we have

I(Qf)p\K\2dva = f (Qf)p(<pa)dva + f (QfV(<pa)dva
JB JiB J B\tB

< sup(Qf)p(z)+\\f\\"Va(B\tB)

< C[ sup / \fo<p, -f(z)\"dVa) + \\f\\"Va(B\tB).
\zeE,(a) JB J

Consequently, first taking the limit as |a| ->• 1 and then as t ->• 1, we obtain (d) by (11).
The implication (d) =• (a) is a consequence of (8).
Consequently, (a), (b), (c) and (d) are all equivalent. Since (a) is independent of/? and

equivalent to (c), for each p in [l,oo), it is equivalent to (c) when p — 1. Thus, in order to
finish the proof, it is sufficient to show, (a) =>• (e) =>• (c) when p = 1.

We assume (a) holds and prove (e). By Lemma 1 with/o <pa in place of/, we have

| / o ^ ( z ) - / ( a ) | < ( sup Qf(W))d(0,z) (zeB). (12)
\ /

Since/e MBo by assumption, it follows from (10) that | /o (pa(z) -f(a)\ ->• 0 as \a\ ->• 1, for
each fixed z € B. Choose t > 0 such that t\\f\\ < 2 (a + 1). Then, by (12), one can see that

for all z,a 6 B. Since the right side of the above expression is integrable with respect to the
measure dVa, (e) is a consequence of the Lebesgue dominated convergence theorem.

Finally, the implication (e) => (c) with p = 1 easily follows from Jensen's inequality. The
proof is complete. •

4. Carleson measures. Fix a > - 1 , r e (0, 1) and let n be a positive Borel measure on B.
We say that \i is an a-weighted Carleson measure if

https://doi.org/10.1017/S0017089500032602 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500032602


284 BOO RIM CHOE AND YOUNG JOO LEE

If, in addition, /x satisfies the condition

we say that /x is an a-weighted vanishing Carleson measure. It turns out that the notion of
(vanishing) Carleson measures is independent of the choice of r. In fact, it is known (see for
example, [14, Theorems A and B]) that \x is an a-weighted Carleson measure if an only if its
a-weighted Berezin transform is bounded; that is

sup / \k"\ d/x < oo.
aefl JB

Similarly, \x is an a-weighted vanishing Carleson measure if and only if

lim / \ka
a\

2d)x = 0. (13)

l«l-*i JB

Hence the following corollary is an immediate consequence of Theorems 2 and 3.

COROLLARY 4. Let 1 < p < oo, a > — 1, and assume that f is M-harmonic on B.
(a) fe MB if and only if(Qf)pdVa is an a-weighted Carleson measure.
(b) fe MBQ if and only if(Qf)pdVa is an a-weighted vanishing Carleson measure.
It is also well known that, given 0 < p < oo, fj, is an a-weighted Carleson measure if and

only if
f\f\pdn<c[\f\"dVa,

JB JB

for all holomorphic functions/in Lp(dVa). In [12], Xiao observed that a-weighted Carleson
measures on the disc can be characterized by a similar integral condition, where //-integrals
are replaced by Berezin type integrals of holomorphic Bloch functions. Here, we prove in
Theorem 7 below that a-weighted Carleson measures are also characterized by the same
Berezin type integral condition for M -harmonic Bloch functions. We first need a submean
value type inequality for .M-harmonic functions.

PROPOSITION 5. Let 0 < p < oo,Q < t < s < \ and a > — 1. Then, there exists a constant
C such that

VlJ7aY)f lfl"dVa'

for all a e B and f an M-harmonic function on B.
Before proceeding to the proof, we first note that, for a given r, we have

Va(E,(a)) « (1 - |fl|2)"+1+a (aeB). (14)
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Proof. Fix a point a e B and an yVf-harmonic / . Let z e E,{a) and r = s - t. Note that
Er{z) c £i(a) and hence 1 — |tf|2 «s 1 — \a\2, for all w e Er(z), by (10). By Proposition 10.1 of
[8] and (14), we have

I /M l ' ^ , ,

c

which completes the proof. •

Before turning to Theorem 7, we need a simple lemma.

LEMMA 6. For every a, b and w in B, we have

1 - \<Pa(b)\2 , , x , N
— ——- = 1 - < <pb{w), cpb (a) > .

1 - < <pa{w), <pa (b) >
Proof A direct calculation by (3) completes the proof. •
In the following the notation B denotes the holomorphic Bloch space.

THEOREM 7. Let 0 < p < oo, 0 < r < 1 and a > — 1. Then the following quantities are
equivalent as /x runs over all positive Bore I measures on B.

(a) H/ill̂  = sup sup J \f-M\p\ka
a\

2dn.

(b) ||A*||4,, = supsup / \f-f(a)\i»\ka
a\

2dn.
aeB AS JB

11/11=1

(C)
'"' a/BVa(Er(a))

Proof. The inequality \\pi\\bp < ||/i||aj, is clear because B c MB.
Next, we show that ||/x||Cir < C||/x||fcp. Let t — (1 + r)/2. Corresponding to each a = \a\$

in B, f € S, let i = - / f and put

fa(z) = ! , a0 = %(6) (zeB).
1 - < Z, flo >

Note that «o ̂  0. Since/„ is holomorphic, we have from [10] that

\\fa || « SUP(1 - |z|2)|V/fl(z)|
zeB
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and therefore one can see from (3) that

11/, || « s u p - ^ i -^ = sup^—
zzB | 1 — < Z, «o > I zefl 1 —

Also, by (3), one can easily verify that

1 — |flol ^ 1 — lfll *** 11 — < z, a o >

Thus, it follows from (14) that

\\H\\b,p > J^JZ I \fa(z) -fa{
WJa Ir JEr(a)

(±-

7 •

(1 - l «o l )

ya{Er{a))JEM\\aQ\ 1— < z,

(15)

<//*(*).

On the other hand, using the explicit formula (1) of the standard automorphism and simple
manipulations, one can easily see that

and hence that

\<Pb{a)\

(pb(a) = -

< <pb(w), (pb(a) > I = I < <pb(w), t, > I =
t+ < w,

for all w € B. Note from (3) that
Lemma 6 that

= \(pw(z)\, for all z, w e B. Hence, it follows from

,nf 1 -
1 - < Z, M<r\cpa(b)\

1

= inf
M«

= inf

= inf
\w\<r
1 -r

1
1 -

- \<Pa(.b)\2

\<Pb{a)\
t+ <

- < <Pa(w), <Pa(b)

<pb(w), (pb(a) > |

1 + t < w, t, >

Combining the above with (15), we have

va{hr(a))

as desired.
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Finally, we show that \\(J.\\ap < C||/x||cr. Using the same method of Axler [1, Lemma
3.5], we can choose a sequence {tv,} of points in B and a positive integer M such that
USi E,{wi) — B and each z e B is in at most M of the sets E^+ry2(wi). Let a e B a n d / e MB
with Il/H = 1. Note that

1 - \<pa(z)\2 « 1 - |<pfl(vf)|2, 1 - |Z|2 % 1 - |M'|2,

for zeEi(w) and a e f l by (10). It follows from (3) that, for each fixed le (0,1),
l^«(z)l % l^a(tv)l> f° r z e £/0v) a n ^ a e B. Thus we obtain from Proposition 5, with t = r
and s = (1 + r ) /2 , that

i/-/(a)m*zi2<fa< E /" i/-/(«)n^:i2^

sup \Az)-f(a)\P)\ka
a(wi]

Thus, for 1 <p < oo, the desired inequality follows from Theorem 2. For 0 < p < 1, an
application of Jensen's inequality shows that the last integral of the expression above is less
than or equal to

supf f \fo<pa -f(a)\dVa)"*> 11/11" = 1,
aeB\JB /

by Theorem 2 again. The proof is complete. •
Also, a slight modification of the above proof gives a corresponding result for a-weigh-

ted vanishing Carleson measures as follows.

THEOREM 8. Let 0 < p < oo and a > — 1. Then the following statements are equivalent for
a positive Borel measure fj, on B.

(a) limsup f \f-f(a)\"\ka
a\

2diJ. = 0.

(b) limsup f \f-f(a)\P\ka
a\

2dlx = 0.
Ifl|->1 fee JB

P/I=l
(c) yii £y an a-weighted vanishing Carleson measure.
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Proof. A trivial modification of the proof of Theorem 7 yields the implications (a) =$• (b)
=• (c). Now, we assume (c) holds and prove (a). Let {iv,} be the sequence chosen in the proof
of Theorem 7. Note that |w,| -»• 1 as / -*• oo. Since ix{Er{a))/Va{Er{a)) tends to 0 as \a\ -*• 1,
by assumption, for any e > 0 there is a positive integer N such that

Let a e B a n d / e MB, \\f\\ = 1. By an argument similar to the proof of Theorem 7, one can
see by Holder's inequality that

J2f
, = 1 JEr(Wi)

1/2 / r x 1/2

< c( \\KUS'2( f
\JB ) \JB

>••))
1'2

and from (16), if we set 2s=\+r, then

00 p

/ \f-f(aW\ka
a\

2dn
,=AM-1

<CMe f \focpa-f(a)\"dVa
JB

<CMe.

Consequently,

- / ( « ) i ' i * : i 2 ^ < c( f\k:\

for each a e B. Now, since e > 0 is arbitrary, letting \a\ ->• 1, we get (a) by (13). The proof is
complete •
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