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Dietary guidelines in many countries include a recommendation to consume oily fish, mainly
on the basis of evidence from prospective cohort studies that fish consumption is cardioprotec-
tive. However, average intakes are very low in a large proportion of the UK population. Some
groups, such as vegans and vegetarians, purposely omit fish (along with meat) from their diet
resulting in zero or trace intakes of long chain (LC) n-3 PUFA. Although the efficacy of dietary
fish oil supplementation in the prevention of CVD has been questioned in recent years, the bal-
ance of evidence indicates that LC n-3 PUFA exert systemic pleiotropic effects through their
influence on gene expression, cell signalling, membrane fluidity and by conversion to specia-
lised proresolving mediators; autacoid lipid mediators that resolve inflammatory events. The
long-term impact of reduced tissue LC n-3 PUFA content on cardiovascular health is surpris-
ingly poorly understood, particularly with regard to how low proportions of LC n-3 PUFA in
cell membranes may affect cardiac electrophysiology and chronic inflammation. Randomised
controlled trials investigating effects of supplementation on prevention of CHD in populations
with low basal LC n-3 PUFA tissue status are lacking, and so the clinical benefits of supple-
menting non-fish-eating groups with vegetarian sources of LC n-3 PUFA remain to be deter-
mined. Refocusing dietary LC n-3 PUFA intervention studies towards those individuals with a
low LC n-3 PUFA tissue status may go some way towards reconciling results from randomised
controlled trials with the epidemiological evidence.

n-3 PUFA: CHD: Heart rate variability: Inflammation: Lipid mediators

Seafood has been a key component of human diets for thou-
sands of years, and is rich in long chain (LC) n-3 PUFA,
EPA (20: 5n-3) and DHA (22 : 6n-3). Endogenous synthe-
sis of EPA can occur in the human body to a limited extent
when there is a dietary supply of the shorter chain, plant-
derived n-3 PUFA, o-linolenic acid (ALA, 18: 3n-3), but
further conversion to DHA appears to occur only on a
very small scale!. Microscopic, single-celled marine
organisms carry out de novo synthesis of LC n-3 PUFA
resulting in concentrated amounts of EPA and DHA in
the seafood that is commonly consumed by human subjects
further up the marine food chain. In fact, the role of micro-
algae as primary producers of EPA and DHA may have

been a key driver that enabled the evolutionary adaptation
response of early Homo sapiens to environmental pressures.
A plausible theory posits that an increased reliance on mar-
ine resources by early human subjects began in Africa
about 140 000 years ago and allowed the modern human
brain to grow rapidly due to a ready supply of dietary
DHA®®. DHA comprises approximately 40 % of total
PUFA in the mammalian central nervous system® and
proponents of the marine/brain theory postulate that
rapid encephalisation and increasing neural plasticity
opened the way to behavioural innovations that enabled

population expansion along the African coast and
beyond®.

Abbreviations: ALA, o-linolenic acid; HR, heart rate; HRV, heart rate variability; LA, linoleic acid; LC, long chain;

SPM, specialised pro-resolving mediators.
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An adequate supply of LC n-3 PUFA is vital for develop-
ment and maintenance of the nervous system, a topic that
has been comprehensively reviewed elsewhere®™. A func-
tioning central and peripheral nervous system, particularly
the autonomic nervous system comprising sympathetic and
parasympathetic nerves, is also essential for cardiovascular
health, including homeostasis of blood pressure and heart
rate (HR) by innervation of blood vessels and the pace-
maker respectively. Marine LC n-3 fatty acids profoundly
influence cardiovascular function (HR, blood pressure),
by influencing neuronal function in the hypothalamus,
sympathetic and parasympathetic neurons and the intrinsic
cardiac nervous s]ystem by neurotrophic and neuroprotec-
tive mechanisms'?, including anti-inflammatory mechan-
isms"'"'?. Accumulated evidence to date suggests that
dietar?/ fish consumption is protective against cardiac mor-
tality"® and the potentially anti-arrhythmic effects of LC
n-3 PUFA at relatively low doses are likely to be a signifi-
cant contributor to these observed effects"" !

Organisations with the authority to set dietary guide-
lines across the world are in agreement that inclusion of
fish in the diet, particularly oily fish, or supplemental
fatty acids derived from fish, is likely to be protective
against CVD"®. The link between marine fatty acids
and CVD has been intensively investigated since the earli-
est reports appeared in the latter half of the last century of
associations between high LC n-3 PUFA intakes and low
rates of CVD in Canadian and Greenland Inuits!'” ',
Epidemiological studies support the theory that fish con-
sumption reduces the risk of CHD mortality**” and
meta-analyses of studies measuring blood or tissue levels
of EPA + DHA at baseline have shown inverse associa-
tions with risk of coronary events®". The lack of effect
in more recent primary and secondary prevention rando-
mised controlled trials of fish oil supplementation®?, in
contrast to earlier well-known trials">**?» has been
debated at length® 2®. Factors such as reduced bioavail-
ability of supplemental oils if consumed with low-fat
meals or no food at all, concomitant medications obscur-
ing therapeutic benefit (e.g. statins) and the amount of
EPA and DHA already present in the body tissues, may
have been critical determinants of clinical efficacy. A crit-
ical question is whether individuals with a risk profile
indicating increased cardiovascular risk due to a low
EPA and DHA tissue status, might benefit more from
dietary LC n-3 PUFA supplementation than those
whose tissue fatty acid profile is relatively enriched with
EPA and DHA. Only 23 % of UK adults aged 19-64
report consuming oily fish and if this is accurate, it pre-
sents the possibility that a large proportion of the UK
population may have sub-optimal concentrations of LC
n-3 PUFA in their tissues and may be at increased risk
of CHD mortality"®. Dietary intakes of fish and fish
oil fatty acids vary widely for a variety of reasons, includ-
ing lifestyle choices, for example vegetarianism, access to
food/food security, food preferences and religious dietary
restrictions. Furthermore, individual dietary requirements
for fish oil fatty acids are likely to vary due to genetic
variation (for example polymorphisms in the desaturase
and elongase genes® *") and possibly background
inflammatory burden, which may also be partly
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genetically determined®®. The aim of this review is to
examine what we know about the consequence of low
dietary EPA and DHA intakes and to consider what
the cardiovascular health impact might be in otherwise
healthy populations.

®-3 Index and cardiovascular health

A widely accepted method to assess an individual’s
medium-term dietary intakes of LC n-3 PUFA, is by
measuring the percentage of erythrocyte membrane
fatty acids (erythrocyte phospholipids) that are EPA
and DHA, which correlates closely with the EPA +
DHA content in cardiac tissue®”. Proportions of EPA
+ DHA in erythrocyte phospholipids have been iden-
tified as an independent predictor of CVD risk®*3%.
Erythrocyte EPA + DHA as a % of total erythrocyte
fatty acids is termed the ®-3 index, with >8 % considered
to be associated with the maximum protective effect®?.
Incorporation of supplemented EPA + DHA into erythro-
cyte membranes occurs in a dose-response fashion and
significant increases can be measured over a supplementa-
tion period of 2-12 months at relatively low doses akin
to intake of 1-4 portions of oily fish per week®®. The
effects of age and sex on the efficiency of incorporation
of supplemental EPA and DHA in blood cells and
plasma fractions seem to be relatively minor®”, but
there may be an increased efficiency of uptake in indivi-
duals with lower baseline intakes of LC n-3 PUFA®®
and potentially at times of greater need such as during
pregnancy®”. Reported average »-3 indices vary widely
in human populations that are identified as being omniv-
orous, most likely representing the fact that meat-
consumers who eat very little fish will have much lower
proportions of EPA and DHA in their membrane lipids
than meat-consumers who also regularly consume fish,
whereas reported ®-3 indices in vegans are distinctly
lower compared with meat and fish-eaters (Table 1).
Observational evidence suggests that low whole blood
or erythrocyte membrane levels of EPA and DHA are
associated with a greater risk of sudden cardiac death,
primary cardiac arrest, acute coronary syndrome!! 4041
and a meta-analysis of prospective cohort studies that
measured circulating fatty acids showed associations
between higher EPA and DHA and lower relative risks
of coronary outcomes®".

Cardiovascular health of populations with low ®-3 index:
vegetarians and vegans

Evidence from prospective cohort studies with a high pro-
portion of vegetarians and vegans suggests that they are
less likely to develop CHD than meat- and fish-consumers.
For example, a 1999 meta-analysis of five prospective
studies (USA, UK, Germany) reported that vegetarians
had 24 % lower mortality from CHD (specific to those
who followed diet for >5 years)*?. Additional prospective
cohorts included in more recent meta-analyses agreed with
earlier findings**¥. Reduced risk of CHD appears to be


https://doi.org/10.1017/S0029665117000428

410 W. L. Hall

Table 1. Erythrocyte EPA and DHA (% or absolute concentrations) of
meat- and fish-consumers (omnivores), vegetarians and vegans

Reference Omnivore Vegetarian® Vegan

Wit%

Cottin et al.('?" 68 - -

Geppert et al.(118* - 47

Johnston et al.(1?® 35 - -

Pinto et al.® 5.4 - 2.7

Reidlinger et al.(129 7-1 - -

Sanders et al.(1%9 85 - -

Sanders et al.(1®" 75 - -

Sarter et al.(1"® - - 3.7

Mol%

Agren et al.(1%? 81 - 35

Fokkema et a/.('%® 4.5 - 23

Kornsteiner et al."'? (erythrocyte 22 1.6 1.0
sphingo- and phospholipids)

Rajaram et al.(13¥ 5.0 -

Absolute concentrations

Sanders et al.(1%® 66 20

(mg/g total methyl esters)

Wt%, weight percentage of the sum of fatty acids; mol%, mole percentage
of the sum of fatty acids.

* A vegetarian was defined as someone who ate no meat and not more than
one fish meal a month.

driven by lower blood LDL cholesterol, blood pressure
and possibly lower BMI in vegans/vegetarians™® 7).
Taking this evidence at face value it appears that a vege-
tarian/vegan diet may be a cardio-protective diet. It has
been suggested that there seems to be a minimum basal
rate of conversion of ALA to DHA, which is sufficient
to maintain cardiovascular health where dietary sources
of pre-formed LC n-3 PUFA are lacking®®*?. Further-
more, authors of an observational study, using statistical
estimates of ALA to longer chain n-3 PUFA conversion
rates, suggested that conversion might actually be incre-
ased in non-fish eaters compared with fish-eaters. This
would account for the relatively low margin of difference
in ®-3 indices of fish-eaters compared with non-fish
eaters®”, although conversion rates to DHA specifically
were not clear.

Closer inspection of the observational evidence for
coronary risk in vegetarians/vegans, raises the question
of whether it is valid to translate these findings to the
wider population. Vegetarian/vegan cohorts vary in
their motivations for dietary choice (religious, health,
animal welfare), which may converge with other distinct
lifestyle behaviours that may affect cardiovascular health
(physical exercise, practising mindfulness/meditation/
prayer, prevalence of alcohol and drug use). This concern
seems particularly pertinent to the Seventh Day
Adventist cohorts. Kwok et al. applied sub-group testing
in their meta-analysis of seven prospective cohort studies
that evaluated mortality and clinical cardiovascular out-
comes in vegetarian populations compared with non-
vegetarian controls and revealed that the overall pooled
difference in risk of cardiac events was mainly driven
by the Seventh Day Adventist cohorts*?, suggesting
that the results from this particular population might not
be generalisable to other populations. Furthermore, the
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definition of vegetarian in Seventh Day Adventist cohorts
tends to be inconsistent with the generally accepted defini-
tion of eating no meat or fish. Seventh Day Adventist
cohorts incorporated into the pooled analyses™**¥
included those who ate meat <1/week or less with no men-
tion of what their fish intakes were®®>?, or were otherwise
not clearly defined®®. It is therefore possible that the
Adventist cohorts were also fish-consumers and may
have had higher -3 indices than ‘true’ vegetarians/vegans
who do not eat any fish. The more recent Adventist Health
Study 2 clearly defined participants as vegans, lacto-ovo
vegetarians, pesco-vegetarians, semi-vegetarians and non-
vegetarians®?. The results of Adventist Health Study 2
showed that the reduced risk in CHD mortality was not
quite statistically significant (hazard ratio 0-81, 95% CI
0-64, 1-02) for all vegetarians combined. Further analysis
of dietary sub-groups revealed that the reduced risk was
significant in pesco-vegetarians when both sexes were com-
bined (hazard ratio 0-65, 95% CI1 0-43, 0-97) but not vegans
(hazard ratio 0-90, 95% CI 0-60, 1-33) or lacto-ovo vegetar-
ians (hazard ratio 0-90, 95% CI 0-76, 1-06).

The UK vegetarian/vegan cohorts might be considered
more generalisable to the broader population since they
are not affiliated with a religious faith and may be
more diverse in terms of demographics and lifestyle beha-
viours. Furthermore, vegetarians and vegans were clearly
defined as not eating meat or fish“’->>°® and the vegetar-
ian and vegan men from the EPIC-Oxford cohort were
reported to have lower EPA and DHA proportions of
total plasma fatty acids compared with omnivores, pro-
viding an objective biomarker of low fish intake®”.
Although vegetarians/vegans had a lower incidence of
CHD in the UK EPIC-Oxford cohort®®, there was no
difference in CHD mortality compared with controls
who ate meat and fish (death rate ratio 0-83, 95% CI
0-59, 1-18)°®. The latter study may have been statistic-
ally underpowered, but a more recent combined analysis
of mortality rates (total 644 CHD deaths) reported that
there was no significant difference in CHD mortality in
UK vegans/vegetarians up to 90 year (nor 75 year) com-
pared with comparable regular meat-eaters (hazard ratio
0-99, 95% CI 0-79, 1-23)(55), who consumed meat >5
times/week as well as fish.

In translating these observations to the question of the
cardiovascular health impact of low EPA + DHA tissue
status, it is impossible to cleanly dissect the influence of
dietary LC »n-3 fatty acid intake from other dietary
influences. For example, vegetarian/vegan diets are lower
in SFA, higher in fibre, but can also be deficient in bio-
available iron, vitamin By, and vitamin D. Low serum
25-hydroxyvitamin D concentrations are also associated
with increased CVD mortality®®. Furthermore, the
nature of the comparator group is an important consider-
ation, particularly as health-conscious participants were
recruited to UK cohorts who tended to have lower intakes
of dietary animal protein compared with Adventist non-
vegetarian/non-vegans®®. However, equivalent CHD
mortality rates could alternatively signify that the vegetar-
ian/vegan diet is also associated with other raised CHD
risk factors (e.g. low ®-3 index) that might negate the
otherwise cardio-protective effects of a vegetarian/vegan
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Fig. 1. Theoretical schematic showing how low long chain n-3 PUFA intakes may oppose the cardioprotective effects of
vegetarian/vegan diets, resulting in an equivalent risk of CHD mortality (A). The majority of the UK population eats little or no fish
and may be at risk of low ®-3 status. Without the counterbalancing cardio-protective qualities of a vegetarian/vegan diet, this could

+(136)

lead to an increased risk of CHD mortality mediated by arrhythmia (B). Picture of artery attributed to ‘Blausen gallery 2014 .

diet. It is hypothesised here that long-term low tissue LC
n-3 PUFA levels may counterbalance the athero-protective
qualities of vegetarian/vegan diets in the sum effect on
overall CHD mortality risk. The implications of this for
the sizeable non-fish-eating, non-vegetarian/non-vegan
population are more serious. Low tissue EPA and DHA
levels in a less health-conscious meat-eating population
might have a more deleterious effect on cardiovascular
health, such as increasing risk of cardiac arrhythmia,
against the background of higher LDL-cholesterol, blood
pressure and BMI. Fig. 1 summarises the counterbalance
of dietary factors that may positively or negatively influence
risk of CHD mortality in non-fish eaters. The next sections
will address the cardiovascular risk factors that may
mediate increased risk of CHD mortality in populations
with very low LC n-3 PUFA intakes, including low HR
variability (HRV) and a reduced capacity to regulate
inflammatory responses.

Heart rate variability and risk of arrhythmia

Low HRYV indicates a reduced capacity to regulate HR in
response to internal and external stressors and demands,
and is associated with mortality after a myocardial
infarction®®? and risk of cardiac events in the general
population®. Low HRYV is considered to be a predictor
of sudden cardiac death®®. Therefore, measurement of
parameters of short- and long-term variability in heart
beat intervals (RR intervals, or interbeat intervals)
using Holter monitors or less intrusive HR V/accelerome-
try integrated chest-worn monitors (e.g. Actiheart,
eMotion Faros), can be a useful non-invasive method
to assess the adaptability/resilience of the heart. HRV
is partly under the control of the autonomic nervous sys-
tem, which receives afferent impulses from, and exerts
efferent activity to, the intrinsic cardiac nervous system,
which interacts with the sino-atrial node. Consequently,
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variability in HR reflects the sum effect of sympathetic
and parasympathetic outflow. Low HRYV is associated
with a high degree of sympathetic activity (which raises
HR thus reducing the capacity to self-regulate in response
to demand) and suppressed parasympathetic activity
(vagal activity slows HR). Higher LC n-3 PUFA tissue
status or fish consumption has been positively associated
with HRV©>%9 Mixed results have been obtained in pre-
vious investigations into the effect of #n-3 PUFA on HRV
in healthy subjects®®%”, haemodialysis patients’”, sub-
jects with previous myocardial infarction”"’ and
patients with epilepsy’”. These studies were typically
only 12 weeks long, the durations of HR monitoring dif-
fered widely and relatively high doses of #-3 PUFA ranged
from 1 to 6-6 g. Furthermore, comparisons between stud-
ies are difficult due to different HRV parameters being
reported, varying study designs, and methodological
inconsistencies. Nevertheless, fish oil supplementation
has been shown to increase a parameter of beat-to-beat
(vagally regulated) HRV in a meta-analysis of randomised
controlled trials’®, supporting the role of adequate tissue
EPA + DHA status in preventing arrhythmic events. Thus
autonomic balance may be improved by increased EPA
and DHA membrane levels, although a direct effect on
pacemaker activity independently of the autonomic ner-
vous system may also occur. Increasing LC n-3 PUFA con-
tent in rabbit cardiomyocyte membranes decreases HR in
isolated hearts and reduces pacemaker activity and pace-
maker current in sinoatrial node cells””’®. In accord
with its effects on HRYV in clinical trials, fish oil supple-
mentation also reduces HR in human studies?.

In summary, fish consumption and to some extent fish
oil supplementation, is associated with reductions in HR
and increased HRV, which would be predicted to reduce
the risk of arrhythmia. However, the impact on HRV of
consuming a LC n-3 PUFA-free diet was unexplored
until recently, when we addressed this question in a cross-
sectional study in vegans and age- and BMI-matched
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omnivores, measuring the average duration of interbeat
intervals (the reciprocal of HR), HRYV, erythrocyte
phospholipid fatty acids, plasma fatty acids and oxyge-
nated PUFA metabolites®”. Vegans had lower day-time
beat-to-beat HRV and shorter day-time interbeat inter-
vals compared with omnivores, adjusted for age, sex,
BMI and physical activity levels by accelerometry.
Twenty-four hour HRV was higher in vegans due to
the greater night-day differences in vegans compared
with omnivores, which was mainly due to the relatively
lower HRV during the day rather than higher HRV at
night in vegans; no differences between groups during
nocturnal sleep were observed. This could indicate a
greater predominance of sympathetic regulation (asso-
ciated with reduced parasympathetic activity) during
waking hours due to an exaggerated response to stimuli,
or a direct effect of low LC n-3 PUFA membrane con-
centrations in cardiac cells on the pacemaker that mani-
fested in altered cardiac function under conditions of
stimulation. There were no differences in serum vitamin
D or By, status between the groups, factors which may
also have impacted on HRV. Although these observa-
tions only demonstrate an associative link, n-3 PUFA tis-
sue status is implicated as a strong candidate for being
the key factor in determining the disparate HRV patterns
during waking hours observed in vegans and omnivores.

Dampening and resolving inflammation

Both -6 and n-3 PUFA in cell membranes can be metabo-
lised into an array of pro- and anti-inflammatory metabo-
lites that are likely to influence prevention of arrhythmia
by influencing myocyte cell-signalling and also autonomic
function. Chronic inflammation is the key underlying fac-
tor in the lifelong accrual of vascular lesions that eventu-
ally leads to atherosclerosis and CHD, and LC n-3
PUFA supplementation appears to improve plaque stabil-
ity®. Although the role of inflammation in initiating and
propagating atherosclerosis is at the crux of CHD, chronic
inflammation probably also increases coronary risk inde-
pendently of atherosclerosis by impairing neuronal func-
tion®? and myocyte membrane properties®”, thereby
having a direct influence on cardiac electrophysiology
and risk of arrhythmia®**>. LC n-3 PUFA levels in
plasma and erythrocytes are inversely associated with cir-
culating markers of inflammation (C-reactive protein,
IL-6, IL-1 receptor antagonist, TNF receptor 2, trans-
forming growth factor-p)®*®¥ LC n-3 PUFA may
lower inflammatory burden in a number of ways: by inhi-
biting the conversion of LA to more pro-inflammatory
eicosanoids by substrate competition, being converted
themselves to less potent pro-inflammatory eicosanoids,
modulation of transcription factor activation, inhibiting
the expression of vascular cell adhesion molecules and
cytokines, and through the inflammation-resolving prop-
erties of their oxygenated metabolites' V. The lack of sen-
sitivity of measurements of circulating inflammatory
biomarkers, and also the large variability due to hyper-
responsivity to short-term infections, has up to now hin-
dered efforts to build a body of evidence for a role of LC
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n-3 PUFA in modulating chronic, low-grade inflamma-
tion in the context of CVD®. The relatively recent detec-
tion of a diverse array of oxygenated PUFA metabolites
presents a whole new line of investigation with respect to
the anti-inflammatory effects of marine fatty acids. Some
of the lipid mediators derived from LC n-3 PUFA, termed
specialised pro-resolving mediators (SPM), act in an auta-
coid manner to resolve inflammation (Fig. 2). SPM play a
functional role in ending acute inflammatory events by
inhibition of neutrophil influx to the site of trauma,
counter-regulating pro-inflammatory cytokines and stimu-
lating resolving macrophages to clear the products of the
inflammatory response, thereby allowing the injured area
to heal®”. Protectin-D1 (originally termed neuroprotectin)
is thought to be important in inhibiting proinflammatory
gene expression and promoting nerve regeneration in
neural tissue, thereby protecting neurons from inflamma-
tion-related injury in a DHA-dependent manner!'**".
DHA-derived neuroprostanes, F, isoprostane-like com-
pounds formed non-enzymatically through free radical-
catalysed reactions, are also thought to be significant
markers of oxidative stress in neural tissue®?; further-
more, hepatic F4-neuroprostanes are negativel%/ associated
with the extent of atherosclerotic plaque"®, inhibit
inflammatory cell signalling in macrophages®? and may
have cardiac arrhythmic effects®”.

SPM, namely E- and D- series resolvins (RvD1 and
RVEL1), the DHA-derived (neuro)protectin-D1 and maresin
(MaR1), are released in nano- and pico-molar concentra-
tions at sites of local inflammation, can be detected in ex
vivo cultured mononuclear cells following EPA + DHA sup-
plementation®® and sometimes resolvins can be detected in
human plasma although concentrations are not responsive
to supplementation®”°”. Large changes in other postpran-
dial and fasting oxygenated PUFA metabolites have been
reported in response to fish oil supplementation®-'°". But
the lipid mediator profiles of unsupplemented populations
remain undetermined, particularly those who have very
low or zero habitual dietary LC n-3 PUFA intakes. We
investigated whether the vegans in our cross-sectional
study also had lower circulating concentrations of oxyge-
nated EPA and DHA metabolites, since this might have
implications for their ability to resolve acute and chronic
inflammation. It was observed that vegans had significantly
lower plasma concentrations of EPA- and DHA-derived
lipid mediators compared with omnivores, including
18-HEPE, 17-HDHA and 14-HDHA, likely precursor mar-
kers for RvEl, RvDl and MaR1 availability, respect-
ively®?. Although circulating plasma concentrations of
lipid mediators are likely to be an insensitive marker of cap-
acity for autacoid release and activity of SPM in specific
inflamed sites in the nervous and cardiovascular systems,
higher concentrations of precursor markers of SPM bio-
availability (18-HEPE, 17-HDHA and 14-HDHA) may
indicate greater capacity for conversion to SPM at times of
need, with clear functional implications for populations
with low tissue EPA and DHA stores.

The accumulating evidence suggests that tissue LC n-3
PUFA are crucial in moderating inflammatory responses
in the cardiovascular system. Consequently individuals
with no dietary intake of marine #-3 PUFA may be at risk
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Fig. 2. Overview of the hypothesised role of membrane PUFA profiles in the production of pro-inflammatory and
inflammation-resolving oxygenated lipid mediators. In addition to inhibition of arachidonic acid (ARA)-derived
pro-inflammatory eicosanoid production, higher proportions of membrane phospholipid long chain (LC) n-3 PUFA
may increase availability of LC n-3 PUFA available for enzymic oxygenation to lipid mediators that contribute to the
resolution of an acute inflammatory response®. ALA, a-linolenic acid; COX, cyclooxygenase; CYP450, cytochrome
P450; HDHA, hydroxyl-DHA; HEPE, hydroxyeicosapentaenoic acid; LA, linoleic acid; LOX, lipoxygenase; PLA,,
phospholipase A2; SPM, specialised pro-resolving mediators.

of incurring inflammatory-related neuronal and cardiovas-
cular damage at a greater rate than fish-consumers. An
adverse LC n-3 PUFA-derived lipid mediator profile may
also be implicated in impaired haemostatic function in vege-
tarians'’?. However, presently these ideas remain strictly
hypothetical. Health-conscious non-fish-consuming popula-
tions may also have a greater bioavailability of ALA- and
linoleic acid (LA; 18:2n-6)-derived lipid mediators that
may have cytoprotective effects! !, although this may
not be applicable to the majority of the non—ﬁsh-eating popu-
lation. Few of these lipid mediators have been fully charac-
terised regarding their functional effects, but evidence
in animal and cell models to date suggests that plant
PUFA-derived oxygenated lipid mediators comprise a com-
plex array of diverse bioactive molecules that may also induce
a range of physiological effects in various tissues"' %> 177,

Alternative sources for non-fish consumers?

Soya and rapeseed oils are particularly rich in ALA, with
the main dietary sources of ALA being cereal-based
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products, cooking oils and spreading fats, and vegeta-
bles. The high concentrations in oilseed crops presents
a potentially easy, sustainable and cheap alternative
source of n-3 PUFA, but the evidence for a protective
effect against CVD is weaker in comparlson with marine
n-3 fatty acids"®®. Populations i 1n Europe and the USA
consume 3-9 % of energy as LAY%!%) Dietary intake
of ALA has proven difficult to assess due to methodo-
logical limitations associated with accurate fatty acid
composition data in food databases, but 1ntakes are esti-
mated to be much lower (0-3-0-8 % energy)'®'* than
LA intakes, which would limit the amount of endogen-
ous LC n-3 PUFA production from ALA®”. Reports
are conflicting as to whether Veganslvegetarlans consume
more ALA than omnivores/fish-eaters*?->*110), Dretary
LA intakes on the other hand tend to be h1gher in vege-
tarlanslvegans than omnivores“*?”, which may also
limit conversion of ALA to EPA through substrate com-
petition!'V. Furthermore, supplementation with add-
itional ALA in vegans appears to be ineffective in
increasing conversion to LC n-3 PUFA"'? and supple-
mentation with pre-formed EPA and DHA may be
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necessary for cardioprotective benefit in non-fish-eating
populations.

GM crops that can yield EPA and DHA are well-
advanced along the experimental process'''®, although
the first human trial using LC n-3 PUFA-rich Camelina
sativa oil has only just commenced at the time of writing.
The main impetus for this bioengineering research was to
find a way of producing EPA- and DHA-rich oil to
replace fish oils to feed farmed fish!'®, but the develop-
ment of transgenic oilseed crops, using genes from
microalgae to synthesise EPA and DHA from shorter
chain PUFA, could provide an alternative to fish oil
for human supplementation and food fortification. The
other, already commercially available, option is DHA-
only and DHA + EPA-rich microalgal oil!'®. These
LC n-3 PUFA rich algal oils have been demonstrated
to increase the DHA content of phospholipids efficiently
and to have TAG- and blood pressure-lowering
properties! 1129 Microalgal oils are also already
being used to supplement infant formula and a limited
range of adult foods but the limited scale of production
and high costs presently precludes any efforts to apply
to large populations''?". Furthermore, little is known
about what dosage and which EPA : DHA ratio is likely
to be cardio-protective in disease-free populations with
low ®-3 indices'?®. High-DHA purified fish oils are
slightly more effective than high-EPA equivalents in low-
ering blood pressure!'*?. DHA-only algal oil consumed
in combination with a fatty meal appears to avoid the
less desirable effects of increasing postprandial concen-
trations of plasma F, isoprostanes (markers of oxidative
stress produced from arachidonic acid following non-
enzymatic reaction with reactive oxygen species) com-
pared with EPA + DHA containing fish oil'*?. However,
although retroconversion of DHA to EPA is estimated at
between 8 and 14 %"?”, the functional consequences of
the lack of dietary EPA against the background of plentiful
dietary DHA are not known and may be significant if
EPA-derived lipid mediators have any tissue specific
roles in cytoprotection. It is equally possible that EPA
supplementation is less effective and that DHA-only
oils are sufficient to reduce risk of lethal arrhythmia.
On the whole, fish oil supplementation studies to date
have not considered baseline ®-3 status, which in hind-
sight has hindered progress towards a robust body of evi-
dence that can be used to formulate dietary guidelines®
and consequently necessitates a fresh approach to gather-
ing new evidence on whether non-fish-consuming popula-
tions would be at reduced risk of CHD if they had access
to alternative dietary sources of EPA and DHA.

Conclusion

Observational evidence suggests that non-fish-consumers
may be at greater risk of CHD mortality and low EPA +
DHA tissue status is associated with increased risk of
cardiac events, with arrhythmia being implicated as the
most likely common risk factor. Preliminary evidence
presented here suggests that vegans, who have an ®-3
index of approximately 2-3 %, may have an impaired
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capacity to regulate HR in response to physiological
demands during the day-time, and they have a distinct
lipidomic profile compared with omnivores, with mark-
edly lower circulating concentrations of LC n-3
PUFA-derived lipid mediators. However, there is a
large gap in the literature regarding the effects of EPA
and DHA supplementation in populations characterised
by having a low ®-3 index and the relative roles of EPA
and DHA remain to be determined before supplementa-
tion can be recommended. The question of determining
the safest and most effective EPA : DHA ratio for opti-
mum cardio-protection when delivering these fatty
acids outside the matrix of the whole seafood seems to
be imperative in the context of the small proportion of
the population who are actually meeting the fish intake
guidelines. Moreover, this question is even more import-
ant when considering the increasingly pressing challenges
of sustainability of wild fish stocks, and the huge esti-
mated shortfall in total EPA + DHA presently available
for human consumption if global human dietary require-
ments are to be met'?®.
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