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THE TOPOLOGY OF GRAPH PRODUCTS OF GROUPS

by JOHN MEIER
{Received 11th June 1993)

Given a finite (connected) simplicial graph with groups assigned to the vertices, the graph product of the
vertex groups is the free product modulo the relation that adjacent groups commute. The graph product of
finitely presented infinite groups is both semistable at infinity and quasi-simply filtrated. Explicit bounds for
the isoperimetric inequality and isodiametric inequality for graph products is given, based on isoperimetric
and isodiametric inequalities for the vertex groups.

1991 Mathematics subject classification: Primary 20F06; Secondary 20F32.

0. Introduction

In a simplicial graph we say two vertices are adjacent if they are joined by a single
edge. Given a finite simplical graph 4 and groups associated to its vertices, the graph
product of the vertex groups, G9, is the free product of the vertex groups with added
relations implying that elements of adjacent vertex groups commute. It is clear that the
union of the generators of the vertex groups generates the graph product, and we will
call this union the standard generators.

Graph products have been actively studied by mathematicians and computer
scientists. (See [1], [5], [9] and the references cited there.) If all the vertex groups are
free of rank one they are referred to as “graph groups” and when they are simply free
monoids at each vertex, “free partially commuting monoids”.

By [8] it is clear that if A is any full subgraph of ¢, then the natural map GA ¢ G¥ is
a monomorphism. In fact, it is shown in [5] and could be derived from the normal
forms in [9] that this is an isometric embedding of GA into G¥%. That is, the word
length metric on GA using the standard generators for GA is the restriction of the word
length metric on GA using the standard generators for G¥%.

Chose a single vertex v, in ¢ and denote its associated group by 4,. Let Z be the full
subgraph generated by the n—1 other vertices of 4 and denote by A the full subgraph
generated by vertices adjacent to »,. By [8] we then get the following decomposition:

GG =(A,xGA)*;,GZ.
Using this decomposition one can prove that any property which is preserved by taking
direct sums and free products with amalgamation is preserved by taking graph products.

We use this basic idea to study topological properties associated to groups. One
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direction is to study the topoplogy at the “end(s) of a group”. In Section 2 we analyse
the notions of being semistable at infinity and quasi-simplified filtrated. Here there is the
intriguing twist that these properties can be “created” by taking direct sums, hence if ¥
contains no isolated vertex, the graph product.can “create” these properties.

In Section 3 we study the topological interpretation of the word problem in terms of
van Kampen diagrams. Specifically we show that the isoperimetric inequalities (as
defined in [7]) and isodiametric inequalities satisfied by the vertex groups give a simple
bound for isoperimetric and isodiametric inequalities for the graph product. In the
isoperimetric case this overlaps recent independent work of D. E. Cohen.

We thank M. Mihalik and D. E. Cohen for their helpful suggestions.

All groups in this paper are assumed to be finitely presented.

1. Semistability and quasi-simply filtrated

This section begins with a collection of various definitions and results about the
topology at infinity of groups, and does not attempt to motivate or prove any of this
material. The definitions are taken directly from the papers of M. Mihalik and others in
the references; consult these papers for the background, motivation and main results
about semistability and quasi-simple filtration. For technical reasons we assume that all
our CW-complexes have piecewise linear attaching maps.

Definitions. Given a CW-complex X, two proper rays r,s: [0, c0) — X converge to the
same end of X if for any compact set Cc X there is an integer N such that r([N, c0))
and s([N, c0)) are in the same component of X\C. The space X is semistable at infinity if
there is a proper homotopy between any two proper rays which converge to the same
end.

A finitely presented group G is semistable at infinity if the universal cover of any finite
CW-complex X with n, (X)=G is semistable at infinity. This property is independent of
the choice of X and hence independent of the choice of finite presentation for G.

The notion of a space being quasi-simply filtrated grew out of work of Casson’s
condition C, for fundamental groups of 3-manifolds.

Definitions. If X is a finite CW-complex, then X is quasi-simply filtrated (abbreviated
QSF) if given any connected finite subcomplex C< X there is a simply connected finite
complex D and a cellular map D 4% X such that the restriction of f to f~'(C) is a
homeomorphism. Intuitively, a finite complex X is QSF if finite subcomplexes in its
universal cover can be approximated by finite simply connected complexes.

A finitely presented group G is quasi-simply filtrated if any finite CW-complex X with
7,(X)=G is QSF. This also is independent of choice of X and hence independent of
choice of finite presentation.

The central theorems we will use hold for both semistable at infinity and QSF groups
hence we combine their statements, even though their proofs are quite different.
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In the case of semistability, the following theorem is proved in [11] and the proof for
the QSF case is in [4].

Theorem 1.1. If 1 > H—>G— L1 is a short exact sequence of finitely presented
infinite groups, then G is 1-ended and semistable at infinity (QSF).

We will only make use of Theorem 1.1 in the case where G is the direct sum of two
finitely presented infinite groups.
The proofs of the following theorem are in [12] (semistability) and [3] (QSF).

Theorem 1.2. If G and H are finitely presented semistable at infinity groups (QSF
groups) and C is any finitely generated subgroup, then G*:H is semistable at infinity

(QSF).

Proposition 1.3 below follows immediately from the previous two theorems using the
decomposition of graph products into free products with amalgamation.

Proposition 1.3. The graph product of semistable at infinity (QSF) groups is semistable
at infinity (QSF). O

This result can be significantly strengthened using Theorem 1.1. Theorem 1.4 has
essentially the same proof in either the semistable at infinity case or the QSF case, hence
we give only the argument for the semistable case. The reader wanting to read the proof
for quasi-simply filtration should substitute the phrase “quasi-simply filtrated” every-
where “semistable at infinity” occurs.

Theorem 1.4. For a connected, non-trivial graph, the graph product of finitely pre-
sented infinite groups is semistable at infinity (QSF).

Proof. The proof is by induction on the number of vertices of the underlying graph
9. Because the graph is connected, we may begin with a graph composed of a single
edge, and the result follows from Theorem 1.1.

Assume the theorem is true for graph products of finitely presented infinite groups
based on connected graphs with n—1 vertices. Then using the notation from the
introduction, the graph product on n vertices can be expressed as

Gg=(Al X GA) *GA GZ
where the vertex v, may be chosen so that the subgraph Z is connected.
Since A, and GA are finitely presented infinite groups, A, x GA is semistable at

infinity by Theorem 1.1. By the induction hypothesis GZ is semistable at infinity so by
Theorem 1.2 G% is semistable at infinity. O

Corollary 1.5. If % is a finite simplicial graph with no isolated vertex, then the graph

https://doi.org/10.1017/5001309150001899X Published online by Cambridge University Press


https://doi.org/10.1017/S001309150001899X

542 JOHN MEIER

product of finitely presented infinite groups based on the graph % is semistable at infinity

(QSF).

Proof. Since there is no isolated vertex, each connected component of ¢ satisfies the
hypotheses of Theorem 1.4, hence the graph product based on each connected
component is semistable at infinity (QSF). Since the graph product based on 4 is the
free product of the graph products of each connected component of ¥, the corollary
follows from Theorem 1.2. O

2. Isoperimetric and isodiametric inequalities

Assume there is a fixed finite presentation for a given group. If a word in the
generators of a group represents the trivial element, then it can be expressed as the
product of conjugates of the relations. This can be interpreted as a l-connected planar
2-complex with labeled edges, such that the boundary path reads off the original word,
and the path about any cell gives a relation. Such a diagram is called a van Kampen
diagram. (See [10] for more details.) Isoperimetric and isodiametric inequalities provide
bounds on the complexity of the word problem in terms of van Kampen diagrams.

If w is a null-homotopic word, let A(w) be minimal number 2-cells in a van Kampen
diagram for w. A Dehn function (or an isoperimetric function) for a given presentation is
a map D(n) from the natural numbers to the natural numbers such that for any set of
null-homotopic words {w;}, whose lengths sum to less than or equal to n, ) A(w)<
D(n). Thus if @ is a null-homotopic word of length n it can be expressed as the product
of less than D(n) conjugates of the relators.

This definition of Dehn functions is slightly non-standard (although it is the one used
in [7]) in that we work with sets of words instead of a single null-homotopic word. We
do this to avoid using Brick’s notion of the “subnegative closure™; using the more
standard definition as in [2] would require the insertion of “subnegative closure” into
the statements of the results in this section.

Dehn functions bound the area of van Kampen diagrams in terms of their perimeter.
Similarly one can bound the diameter of van Kampen diagrams in terms of their
perimeter.

If w is a null-homotopic word, let :(w) be the minimal maximum distance between
vertices in a van Kampen diagram for @, where the minimum is taken over all van
Kampen diagrams for w. An isodiametric function for a presentation is a function I(n)
from the natural numbers to the natural numbers, such that for the any set of words
{w;} whose lengths sum to less than or equal to n, Y i1(w;) < I(n).

We will want to give rough comparisons of the Dehn and isoperimetric functions,
hence we introduce a partial ordering on functions. We say that f(x)=< g(x) if there are
positive integers A, B and C such that f(n)< Ag(Bn)+ Cn for all n>0. Two functions are
equivalent, f~g if f<g and g<f. Any two polynomials of the same degree are
equivalent under this definition, as are any two exponential functions k* and /* as long
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as k,I>1. Any two finite presentations of a group yield equivalent Dehn and
isodiametric functions (see Proposition 2.4 of [7]).

We say a function f(n) is of degree d if f(n)<n’. Notice that because of the linear
term in our equivalence relation, the degree of a function is minimally 1.

The following bounds (Propositions 2.1, 2.2 and 2.3) for Dehn functions for products
of groups were given by Brick in [2]. Essentially the same arguments can be used to
establish the bounds for isodiametric functions which we give below.

Proposition 2.1. Let Dg(n) and Dy(n) be Dehn functions for finitely presented groups G
and H. Then there is Dehn a function D(n) for G x H with D(n)< max {Dg(n), Dy(n),n?}.
In particular, if G and H admit polynomial Dehn functions, then deg(D(n))
=max {deg(Dgs(n)), deg (Dy(n)),2}.

Proposition 2.2. Let Iy (n) and 1,(n) be isodiametric functions for finitely presented
groups G and H. Then there is an isodiametric function I(n) for G < H with I(n)< max
{I5(n), Iy(n)}. In particular, if G and H admit polynomial isodiametric functions, then

deg (I(m)) =max {deg(I(n)), deg I u(n))}.

The following proposition is not explicitly stated in [2], however it can be proven in
a manner analogous to the proof of Proposition 3.2 in [2]. The only significant
additional step is to realize that if w is a word in the generators of G or H which
evaluates to an element ¢ of C, then ¢ can be expressed as a word w’ in the generators
of C. Since C isometrically embeds in G and H, the length of w’' is no longer than the
length of w. The interested reader can combine this fact with the proof of Proposition
3.2 in [2] to establish the following result.

Proposition 2.3. Assume that C isometrically embeds in G and H, and Dg(n) and Dy(n)
are Dehn functions for G and H. Then there is a Dehn function D(n) for G *cH such that
D(n) <max (Dg(n), Dy(n)). Thus deg(D(n))=max (deg(Dgs(n), Dy(n)), assuming that Dg(n)
and Dy(n) are polynomial. The same statement is true for isodiametric functions for the
groups G and H.

Theorems 2.4 and 2.5 follow from 2.1 through 2.3, using the decomposition of a graph

product in terms of a free product with amalgamation.

Theorem 2.4. Let D;(n) be Dehn functions for finitely presented groups. A;. Then there
is a Dehn function D(n) for any graph product with vertex groups A;, where D(n)< max
{Di(x),n*}. In particular, deg(D(n))=max {deg(D(n)),2}, assuming the Dy(n) are
polynomial.

Theorem 2.4 has also been independently proven by D. E. Cohen [6], by working
“bare handed” with the noption of “pruning” defined in [9].

Theorem 2.5. Let I(n) be isodiametric functions for finitely presented groups A;. Then
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there is an isodiametric function I(n) for a graph product with vertex groups A;, where
I(n)<max {I(x)}. In particular, if the I{n) are polynomial, deg (I(n))=max {deg(/,(n))}.

a

Example. Since infinite cyclic groups admit linear Dehn and isodiametric functions,
any graph group admits a quadratic Dehn function and a linear isodiametric function.
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