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We consider entropy solutions to the eikonal equation |∇u| = 1 in two-space
dimensions. These solutions are motivated by a class of variational problems and fail
in general to have bounded variation. Nevertheless, they share several of their fine
properties with BV functions: we show in particular that the set of non-Lebesgue
points has at least one co-dimension.
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1. Introduction

We consider an open set Ω ⊂ R
2 and m : Ω → R

2 a solution of the eikonal equation

|m| = 1 a.e., and ∇ ·m = 0 in Ω. (1.1)

We are interested in particular in solutions that arise as limits as ε→ 0 of vector
fields mε with equi-bounded energy supε>0 Fε(mε,Ω) <∞, where

Fε(m; Ω) =
ε

2

ˆ
Ω

|∇m|2 +
1
2ε

ˆ
Ω

(1 − |m|2)2,

m : Ω → R
2, ∇ ·m = 0

(1.2)

are the functionals introduced by Aviles and Giga [5]. We refer to the introduction
of [11] for a description of several physical applications.

The notion of entropy, borrowed from the field of conservation laws, plays a
fundamental role in the study of the singular limit as ε→ 0 of these functionals.
We say that a compactly supported function Φ ∈ C∞(R2,R2) is an entropy for
(1.1) if for every open set U and every smooth m : U → R

2 solving ∇ ·m = 0 and
|m| = 1 it holds ∇ · Φ(m) = 0. It is shown in [3, 8] that functions with equi-bounded
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energy as ε→ 0 are pre-compact in L2(Ω) and any limit is an entropy solution of
(1.1): namely, for every entropy Φ ∈ C∞(R2,R2) the distribution ∇ · Φ(m) is a
finite Radon measure. Remarkably, the same class of entropy solutions to (1.1)
contains the asymptotic domain of other families of functionals: see [2, 17] for two
micromagnetics models.

It is shown in [9] that m is an entropy solution if and only if the following kinetic
equation (introduced in [10]) is satisfied:

eis · ∇x1m(x)·eis>0 = ∂sσ, σ ∈ Mloc(Ω × R/2πZ). (1.3)

We denote by ν ∈ Mloc(Ω) the entropy dissipation measure given by

ν(A) = |σ|(A× R/2πZ), A ⊂ Ω. (1.4)

It is known [7] that H1-a.e. point x ∈ Ω at which ν(Br(x))/r → 0 as r → 0+ is a
vanishing mean oscillation (VMO) point of m, that is,

 
Br(x)

∣∣∣∣∣m−
 

Br(x)

m

∣∣∣∣∣ −→ 0 as r → 0+.

It is conjectured in [7, conjecture 1(b′)] that H1-a.e. such point is in fact a Lebesgue
point. Our main result states that this conjecture is true under the additional
assumption that ν(Br(x))/r decays algebraically to 0.

Theorem 1.1. Let m : Ω → R
2 be an entropy solution (1.3) of the eikonal equation

(1.1). Then H1-a.e. x ∈ Ω such that limr→0+ ν(Br(x))/r1+a = 0 for some a > 0
is a Lebesgue point of m. In particular, the set of non-Lebesgue points of m has
Hausdorff dimension at most 1.

Remark 1.2. After this work was submitted, we became aware that the bound
on the Hausdorff dimension can also be obtained as a consequence of classical
capacity estimates [1, theorem 6.21] and of the regularity m ∈ B

1/3
3,∞ [9] (which

implies m ∈W s,3 for any s < 1/3). Note however that the information provided
by theorem 1.1 is stronger, in that it directly relates oscillations at a point x to
the local energy dissipation ν(Br(x)). Also note that, as will be clear from the
proof, the assumption of algebraic energy decay ν(Br)/r = O(ra) can be relaxed
to ν(Br)/r = O(| ln r|−14). Via a covering argument this implies that non-Lebesgue
points are finite for the Hausdorff measure defined by the function r �→ r| ln r|−14

(see e.g. [1, § 5.1]), a fact which does not follow directly from capacity estimates.

Analogues of theorem 1.1 have been obtained previously in [13] for Burgers’
equation, and in [16] for general scalar conservations laws. To prove theorem 1.1
we follow the scheme laid out in [16], where it is shown that oscillations of averagesffl

Br(x)
u of the solution u are controlled by the entropy dissipation. This, together

with the VMO property, implies the Lebesgue point property. However, a key fea-
ture for the argument of [16] is that the solution u takes values in the ordered set
R. Here, our solution m takes values in S

1, and adapting the argument of [16] is not
enough to conclude (see proposition 1.4). Our proof of theorem 1.1 relies instead
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on the following dichotomy: either the oscillations of
ffl

Br(x)
m are controlled by the

entropy dissipation ν, or m takes very different values in large subsets of BR(x) –
this second alternative is ruled out by the VMO property. That dichotomy is made
quantitative in the next statement.

Proposition 1.3. Assume B1 ⊂ Ω. Let r ∈ (0, 1/2) and

h = h(r) = max
x1,x2∈B2r

∣∣∣∣∣
 

Br(x1)

m−
 

Br(x2)

m

∣∣∣∣∣ . (1.5)

There exist absolute constants c, δ > 0 such that, if

R =
32r
δh2

� 1,

then either

ν(BR) � c h11r, (1.6)

or there exist s0 ∈ R such that

∣∣∣∣BR ∩
{
m · eis � −1

2

}∣∣∣∣ � cR2 for dist(s, {s0, s0 + π}) � π/4. (1.7)

Here and in the rest of the article, we denote by |A| the Lebesgue measure of a
measurable set A ⊂ R

d. Theorem 1.1 is a rather direct consequence of proposition
1.3, as we explain now.

Proof of theorem 1.1. Let x ∈ Ω be a VMO point of m such that ν(Br(x))/r1+a →
0 for some a > 0. Translating and rescaling we assume without loss of generality
that x = 0 and B1 ⊂ Ω. We claim that h(r) = O(rb) for b = a/(13 + 2a) > 0. This,
together with the fact that 0 is a VMO point of m, implies that 0 is a Lebesgue
point (see [16, lemma 4.6]). (Note, in connection with remark 1.2, that h(r) =
O(| ln r|−1−ε) for some ε > 0 would imply the same conclusion.) To prove that
h(r) = O(rb) we argue by contradiction and assume that h(r)/rb → ∞ along a
sequence r → 0+. Then, along the same sequence,

R =
32r
δh2

=
32
δ
r1−2b

(
rb

h

)2

→ 0 because b <
1
2
,

and
R1+a

h11r
=

321+a

δ1+a

(
rb

h

)13+2a

→ 0.

Therefore, applying proposition 1.3 along the sequence R→ 0, condition (1.6) can-
not be satisfied because ν(BR)/R1+a → 0, so we have (1.7). This contradicts the
VMO property: for all small enough R, the projection zR ∈ S

1 of
ffl

BR
m onto S

1
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satisfies

|BR ∩ {|m− zR| � π/12}| � c

2
R2. (1.8)

But one can choose s ∈ R such that dist(s, {s0, s0 + π}) � π/4 and

z · eis � −1
2

=⇒ |z − zR| � π/12,

for any z ∈ S
1 (if zR = eisR , any s ∈ [sR + 3π/4, sR + 5π/4] has that property).

According to (1.7) this implies |BR ∩ {|m− zR| � π/12}| � cR2, in contradiction
with (1.8). Hence, we have proved that x is a Lebesgue point. The estimate on the
Hausdorff dimension of non-Lebesgue points follows via a covering argument (see
e.g. [4, theorem 2.56]). �

The proof of proposition 1.3 has two main ingredients. The first ingredient con-
sists in adapting the arguments of [16] to prove a dichotomy similar to proposition
1.3, but where the second option (1.7) is replaced by a statement which is not strong
enough to conclude.

Proposition 1.4. Let r ∈ (0, 1/2) and h be as in proposition 1.3. There exist
absolute constants c, δ > 0 such that, if R = 32r/(δh2) � 1, then we have either
ν(BR) � ch11r, or

∣∣∣∣BR/2 ∩
{
m ·m0 � 1

2

}∣∣∣∣ � chr2 and
∣∣∣∣BR/2 ∩

{
m ·m0 � −1

2

}∣∣∣∣ � chr2, (1.9)

for some m0 ∈ S
1.

The main idea behind the argument in [16] is that a large value of h implies the
existence of a configuration which would be impossible in the absence of entropy
dissipation. In the presence of dissipation, such configuration provides a lower bound
on the dissipation, and there is no dichotomy. Here instead, not all configurations
created by large values of h can be ruled out in the absence of dissipation: in
particular the vortex solution m(x) = x⊥/|x| has zero dissipation but the values of
h(r) around the origin are not vanishing. This is reflected in the second alternative
(1.9) of the dichotomy.

The second ingredient in our proof of proposition 1.3 consists in using the
methods developed in [6, 12, 14, 15] in order to pass from (1.9) to (1.7).

Proposition 1.5. Let m0 = eis0 ∈ S
1, and R > 0 such that BR ⊂ Ω. Then we have

either

ν(BR) � c

R
min(|X+|, |X−|), X±=BR/2 ∩ {±m ·m0 � 1/2}, (1.10)

or ν(BR) � cR, or (1.7), for some absolute constant c > 0.

Proposition 1.3 follows readily from propositions 1.4 and 1.5. Thanks to proposi-
tion 1.4, we know indeed that either ν(BR) � ch11r, in which case we are done, or
estimate (1.9) is valid. But according to proposition 1.5, if (1.9) is satisfied, then
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we have either ν(BR) � chr2/R � ch11r, or ν(BR) � cR � ch11r, or (1.7). In all
cases, proposition 1.3 is verified.

The proofs of propositions 1.4 and 1.5 are presented in § 2 and § 3.

Notations.
We denote by |A| the Lebesgue measure of a set A ⊂ R

d. We use the symbol �
to signify inequality up to an absolute multiplicative constant.

2. Proof of proposition 1.4

Let x1, x2 attain the maximum in definition (1.5) of h, and define, for j = 1, 2,
ρj(s) as the proportion of points x ∈ Br(xj) at which m(x) lies in the semi-circle
of direction eis, that is, for every s ∈ R/2πZ, we set

ρj(s) =
1

|Br|
∣∣Br(xj) ∩ {

m · eis > 0
}∣∣ =

1
|Br|

ˆ
Br(xj)

1Em
(x, s) dx,

where

Em =
{

(x, s) ∈ Ω × R/2πZ : m(x) · eis > 0
}
. (2.1)

Note that |ρj | � 1 and, since for every x ∈ Ω it holds |Ds1Em
(x, ·)|(R/2πZ) = 2,

then ρj ∈ BV (R/2πZ) with |Dρj |(R/2πZ) � 2. Moreover, by Fubini theorem, these
functions satisfy the identities

ˆ
R/2πZ

eisρj(s) ds =
ˆ

R/2πZ

 
Br(xj)

1Em
(x, s)eis dxds = 2

 
Br(xj)

m(x) dx.

For s ∈ R and ρ > 0 we denote by Iρ(s) the segment

Iρ(s) = [s− ρ, s+ ρ].

For a small enough absolute constant δ ∈ (0, 1), the subset S ⊂ R/2πZ given by

S =
{
s ∈ R/2πZ : (|Dρ1| + |Dρ2|)(Iδh2(s)) � h

4π

}
,

satisfies |S| � h/2 (as follows e.g. from a Besicovitch covering argument). Thus, we
have

h =
1
2

∣∣∣∣∣
ˆ

R/2πZ

eisρ1(s) ds−
ˆ

R/2πZ

eisρ2(s) ds

∣∣∣∣∣ � 1
2

ˆ
R/2πZ

|ρ1(s) − ρ2(s)|ds

� 1
2

ˆ
(R/2πZ)\S

|ρ1(s) − ρ2(s)|ds+
h

2
.

We may therefore find s ∈ R/2πZ such that s /∈ S and |ρ1(s) − ρ2(s)| � h/2π. We
assume without loss of generality that ρ1(s) − ρ2(s) � h/2π, and by definition of S
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we deduce

inf
Iδh2 (s)

ρ1 − sup
Iδh2 (s)

ρ2 � h

4π
.

In particular, setting s0 = s− π/2 − 3δh2/4, we have

inf
Iδh2/4(s0+π/2)

ρ1 − sup
Iδh2/4(s0+π/2+δh2)

ρ2 � h

4π
,

inf
Iδh2/4(s0+π/2+δh2)

ρ1 − sup
Iδh2/4(s0+π/2)

ρ2 � h

4π
.

As ρj(s+ π) = 1 − ρj(s) for a.e. s ∈ R/2πZ, this implies

essinf
Iδh2/4(s0+π/2)

ρ1 + essinf
Iδh2/4(s0−π/2+δh2)

ρ2 � 1 +
h

4π
, (2.2)

essinf
Iδh2/4(s0+π/2+δh2)

ρ1 + essinf
Iδh2/4(s0−π/2)

ρ2 � 1 +
h

4π
. (2.3)

The relevance of (2.2)–(2.3) comes from the following geometric observation. Given
two directions s1 ∈ Iδh2/4(s0 + π/2) and s2 ∈ Iδh2/4(s0 − π/2 + δh2) and two points
y1 ∈ Br(x1) ∩ {m · eis1 > 0}, y2 ∈ Br(x2) ∩ {m · eis2 > 0}, we have |s1 − s2| � δh2,
and the two lines yj + Reisj intersect at a point z ∈ B8r/(δh2). In the absence of
dissipation, one would have m(z) · eisj > 0 for j = 1, 2, and therefore m(z) · eis0 �
cos(2δh2) � 1/2. The last lower bound is valid provided δ � π/24, since |h| � 2. The
same argument with s1 ∈ Iδh2/4(s0 + π/2 + δh2) and s2 ∈ Iδh2/4(s0 − π/2) implies
instead m(z) · eis0 � −1/2.

Thanks to the techniques in [16], in the presence of dissipation this can be made
quantitative. The main idea is that (1.3) provides an estimate on the difference
between the ‘epigraph’ Em defined in (2.1) and its free transport FT(Em, t), where
the free transport operator FT(·, t) is defined for t ∈ R by

FT(E, t) =
{

(x, s) ∈ Ω × R/2πZ : (x− teis, s) ∈ E
}
.

Lemma 2.1. Let t ∈ R and ρ > 0 such that Bρ+|t| ⊂ Ω. For all φ ∈ C1
c (Bρ × R/2πZ)

we have
ˆ

Ω×R/2πZ

φ(x, s)
(
1FT(Em,t) − 1Em

)
dxds �

(|t| ‖∂sφ‖∞ + t2‖∇xφ‖∞
)
ν(Bρ+|t|).

Proof of lemma 2.1. Define χ, χFT : [−|t|, |t|] × Ω × R/2πZ → R by

χ(τ, x, s) = 1(x,s)∈Em
, χFT(τ, x, s) = 1(x,s)∈FT(Em,τ) = χ(x− τeis, s),

so we have, in the sense of distributions,

∂τχ+ eis · ∇xχ = ∂sσ(x, s), ∂τχ
FT + eis · ∇xχ

FT = 0.
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Setting χ̂ = χFT − χ, and ψ(τ, x, s) = φ(x+ eis(t− τ), s) which satisfies ∂τψ + eis ·
∇xψ = 0, we deduce

∂τ [ψχ̂] + eis · ∇x [ψχ̂] = −ψ∂sσ.

Integrating with respect to (x, s) (this is formal but makes sense distributionally)
we deduce

d
dτ

ˆ
Ω×R/2πZ

ψχ̂dxds =
ˆ

Ω×R/2πZ

∂sψ dσ(x, s).

Integrating this from 0 to t and recalling ν(A) = |σ|(A× R/2πZ) for A ⊂ Ω, we
obtain

ˆ
Ω×R/2πZ

φ(x, s)
(
1FT(Em,t) − 1Em

)
dxds =

ˆ t

0

ˆ
Ω×R/2πZ

∂sψ dσ dτ

� |t| ‖∂sψ‖∞|ν|(Bρ+|t| × R/2πZ).

Noting that ‖∂sψ‖∞ � ‖∂sφ‖∞ + |t| ‖∇xφ‖∞ completes the proof. �

Equipped with lemma 2.1 we continue the proof of proposition 1.4. First, we
make use of (2.2). We define ẑ ∈ R

2 as the intersection of the lines x1 + R ei(s0+π/2)

and x2 + R ei(s0−π/2+δh2), that is,

x1 + t1 ei(s0+π/2) = x2 + t2 ei(s0−π/2+δh2) = ẑ,

for some t1, t2 ∈ R. Since |x1 − x2| � 4r, we have

|t1|, |t2| � 4r
sin(δh2)

� 8r
δh2

, (2.4)

and therefore Br(ẑ) ⊂ BR/2. We will use lemma 2.1 to compare Em with FT(Em, t1)
and FT(Em, t2) on Br(ẑ). We define

C1 = Br(ẑ) × Ic(s0 + π/2), C2 = Br(ẑ) × Ic(s0 − π/2 + δh2),

A1 = Em ∩ C1, A2 = Em ∩ C2

with c = δh3/128π � δh2/4, and their free transport counterparts

AFT
1 = FT(Em, t1) ∩ C1, AFT

2 = FT(Em, t2) ∩ C2.

We estimate

|AFT
1 | = |Em ∩ FT(·, t1)−1(C1)|

� |Em ∩ (Br(x1) × Ic(s0 + π/2))|
− |FT(·, t1)−1(C1)\(Br(x1) × Ic(s0 + π/2))|

=
ˆ s0+π/2+c

s0+π/2−c

ρ1(s) ds− |FT(·, t1)−1(C1)\(Br(x1) × Ic(s0 + π/2))|.
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Moreover,

|FT(·, t1)−1(C1)\(Br(x1) × Ic(s0 + π/2))| =
ˆ s0+π/2+c

s0+π/2−c

|Br(ẑ − t1eis)\Br(x1)|ds

� 2r
ˆ s0+π/2+c

s0+π/2−c

|ẑ − t1eis − x1|ds

� 2r
ˆ s0+π/2+c

s0+π/2−c

|t1||ei(s0+π/2) − eis|ds

� 32
c2r2

δh2
,

where in the last inequality we used (2.4). Therefore, we have

|AFT
1 | �

ˆ s0+π/2+c

s0+π/2−c

ρ1(s) ds− 32
c2r2

δh2
, (2.5)

and similarly

|AFT
2 | �

ˆ s0−π/2+δh2+c

s0−π/2+δh2−c

ρ2(s) ds− 32
c2r2

δh2
. (2.6)

From (2.2) we know that

ρ1

(
s0 +

π

2
+ s

)
+ ρ2

(
s0 − π

2
+ δh2 + s

)
� 1 +

h

4π
for all |s| � δ

4
h2.

Integrating this inequality in s ∈ [−c, c], it follows from (2.5) and (2.6) that

|AFT
1 | + |AFT

2 | � 2c|Br|
(

1 +
h

4π

)
− 64

c2r2

δh2
� 2c|Br|

(
1 +

h

8π

)
, (2.7)

by the choice c = δh3/128π. Next, we consider two cases, depending on whether A1

and A2 satisfy a similar inequality.

Case 1. Assume first that

|A1| + |A2| � 2c|Br|
(

1 +
h

16π

)
,

then

|πx(A1)| + |πx(A2)| � |Br|
(

1 +
h

16π

)
.

Moreover, since πx(A1) ∪ πx(A2) ⊂ Br(ẑ), it follows that A := πx(A1) ∩ πx(A2)
satisfies |A| � h|Br|/16. By construction, we have

A =
{
x ∈ Br(ẑ) : ∃s1 ∈ Ic

(
s0 +

π

2

)
, s2 ∈ Ic

(
s0 − π

2
+ δh2

)
,

m(x) · eis1 > 0 and m(x) · eis2 > 0
}

⊂ Br(ẑ) ∩ {m · eis0 � cos(2δh2)
}
,
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so this implies ∣∣∣∣BR/2 ∩
{
m ·m0 � 1

2

}∣∣∣∣ � hr2. (2.8)

Case 2. Assume now that

|A1| + |A2| < 2c|Br|
(

1 +
h

16π

)
.

Then using (2.7) we obtain

|AFT
1 | − |A1| + |AFT

2 | − |A2| > 2c|Br| h16π
,

so either |AFT
1 | − |A1| or |AFT

2 | − |A2| is larger than half the right-hand side. We
consider without loss of generality only the first case:

|AFT
1 | − |A1| > |Br| ch16π

.

This implies a lower bound on the entropy dissipation ν(BR) thanks to lemma 2.1.
Specifically, we apply lemma 2.1 to t = t1 and φ ∈ C∞

c (B2r(ẑ) × I2c(s0 + π/2)) such
that

1x∈Br(ẑ)1s∈Ic(s0+π/2) � φ(x, s) � 1x∈B(1+ε)r(ẑ)1s∈I(1+ε)c(s0+π/2),

and |∂sφ| � 2/(εc), |∇xφ| � 2/(εr). We choose ε = h/192π to ensure

∣∣(B(1+ε)r(ẑ) × I(1+ε)c

) \ (Br(ẑ) × Ic)
∣∣ � ch

32π
|Br|.

Since |t1| � 8r/(δh2) and B2r+|t1|(ẑ) ⊂ BR, we deduce ν(BR) � δ3h11r � h11r.
Similarly, using (2.3) we have two cases: either∣∣∣∣BR/2 ∩

{
m ·m0 � −1

2

}∣∣∣∣ � hr2, (2.9)

or ν(BR) � h11r. So gathering all cases, we see that either both (2.8) and (2.9) are
satisfied, or ν(BR) � h11r, which is exactly the dichotomy of proposition 1.4.

3. Proof of proposition 1.5

To prove proposition 1.5, we briefly recall from [14] the notion of Lagrangian repre-
sentation of an entropy solution m of the eikonal equation. In [14, 15], the second
author shows the existence of a finite non-negative Radon measure ω on the set of
curves:

Γ =
{

(γ, t−γ , t
+
γ ) : 0 � t−γ � t+γ � 1,

γ = (γx, γs) ∈ BV((t−γ , t
+
γ ); Ω × R/2πZ),

γxis Lipschitz} ,
with the following three properties:
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• for every t ∈ (0, 1), the pushforward of ω, restricted to the section Γ(t) =
{(γ, t−γ , t

+
γ ) ∈ Γ: t−γ < t < t+γ }, by the evaluation map et : γ �→ γ(t) (a right-

continuous representative of γs is always considered), is uniform on the
‘epigraph’ Em = {m(x) · eis > 0}, that is,

(et)� [ωΓ(t)] = 1m(x)·eis>0 dxds; (3.1)

• the measure ω is concentrated on curves (γ, t−γ , t
+
γ ) ∈ Γ solving the character-

istic equation:

γ̇x(t) = eiγs(t) for a.e. t ∈ (t−γ , t
+
γ ); (3.2)

• the entropy dissipation measure (1.4) disintegrates along the Lagrangian curves
as

ν(A) =
ˆ

Γ

μγ(γ−1
x (A)) dω(γ) for all measurable A ⊂ Ω, (3.3)

where μγ = |Dtγs|, with the convention that a jump of γs from s− to s+ at time
t0 ∈ (t−γ , t

+
γ ) contributes distR/2πZ(s−, s+)δt=t0 to the jump part of μγ (see [14,

proposition 2.5]).

Moreover, the Lagrangian property (3.1) implies that ω is concentrated on curves
γ such that γx(t) is a Lebesgue point of m with m(γx(t)) · eiγs(t+) > 0, for a.e. t ∈
(0, 1) [14, lemma 2.7]. We denote by Γg ⊂ Γ the full-measure subset of Lagrangian
curves which satisfy that property together with the characteristic equation (3.2).

The proof of proposition 1.5 is based on two main tools. The first, lemma 3.1, is a
dichotomy stating that either Lagrangian curves passing through a given set create
a lot of dissipation, or one can find an almost-straight Lagrangian curve passing
through that set. The second ([12, lemma 5.2], a slightly more precise version of
[14, lemma 3.1], itself adapted from [15, lemma 22]) is another dichotomy: given
an almost-straight Lagrangian curve, either the density of points at which m lies
in the semi-circle indicated by the s-component of that curve is high, or a lot of
dissipation must be created. The succession of these two dichotomies is reflected in
the three alternatives in the conclusion of proposition 1.5. We first state and prove
the first tool, and then proceed to the proof of proposition 1.5.

Lemma 3.1. For any R > 0 such that BR ⊂ Ω, any measurable set A ⊂ BR ×
R/2πZ, and any η ∈ (0, 1), we have either

ν(BR) � η

R

∣∣{(x, s) ∈ A : m(x) · eis > 0}∣∣ , (3.4)

or there exists a curve γ ∈ Γg and a connected component J of γ−1
x (BR) such that

J ∩ γ−1(A) �= ∅ and μγ(J) � η.

Proof of lemma 3.1. Assume that the second alternative of lemma 3.1 is not
verified: for every curve γ ∈ Γg and every connected component J of γ−1

x (BR)
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intersecting γ−1(A), we have μγ(J) > η. Then we claim that

μγ(γ−1
x (BR)) � η

R
T (γ), T (γ) =

∣∣{t ∈ (t−γ , t
+
γ ) : γ(t) ∈ A}∣∣ , (3.5)

for all γ ∈ Γg. To prove (3.5), denote by Jk = (t−k , t
+
k ) the connected components

of γ−1
x (BR) which intersect γ−1(A). We show next that μγ(Jk) � η|Jk|/R for all

k. On the one hand, if |Jk| � 4R then μγ(Jk) � η|Jk|/R because μγ(Jk) > η by
assumption. On the other, from the characteristic equation (3.2) and the definition
of μγ = |Dtγs|, we have the inequality:

|γx(t2) − γx(t1) − eiγs(t1)(t2 − t1)| � μγ([t1, t2])|t2 − t1|,

and we deduce that in any interval J ⊂ (0, 1) such that γx(J) ⊂ BR and |J | � 4R,
we must have μγ(J) � 1/2. Therefore, if |Jk| � 4R, cutting Jk in disjoint subinter-
vals of length between 4R and 8R, we obtain that μγ(Jk) � |Jk|/R � η|Jk|/R. So
we have

μγ(γ−1
x (BR)) �

∑
k

μγ(Jk) � η

R

∑
k

|Jk|,

which implies (3.5) since γ−1(A) ⊂ ⋃
k Jk. From (3.5) and the fact that ω(Γ\Γg) = 0

we infer

ν(BR) =
ˆ

Γ

μγ(γ−1
x (BR)) dω(γ) � η

R

ˆ
Γ

T (γ) dω(γ),

where the first equality comes from disintegration (3.3). Making use of the
Lagrangian property (3.1) to rewrite the last expression, we see that it is precisely
equal to the right-hand side of (3.4), which concludes the proof of lemma 3.1. �

Proof of proposition 1.5. We recall that m0 = eis0 and the sets X± are defined by

X±=BR/2 ∩ {±m · eis0 � 1/2}.

For any ŝ ∈ [s0 − π/4, s0 + π/4], we apply lemma 3.1 to A(ŝ) = BR/2 × Iη(ŝ), where
Iη(ŝ) = [ŝ− η, ŝ+ η]. If η ∈ (0, π/12) then we have m(x) · eis > 0 for all (x, s) ∈
X+ × Iη(ŝ), and therefore,

∣∣{(x, s) ∈ A(ŝ) : m(x) · eis > 0}∣∣ � η|X+|.

So, we have either ν(BR) � η2|X+|/R, or there exists a curve γ ∈ Γg and a
connected component J of γ−1

x (BR) intersecting A(ŝ) such that μγ(J) < η. In
that second case, applying [12, lemma 5.2] we deduce that either ν(BR) � η3R
or |BR ∩ {m · eiŝ � −2η}| � ηR2. We fix η = 1/4 and summarize the preceding
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discussion: for all ŝ ∈ [s0 − π/4, s0 + π/4], we have

ν(BR) � |X+|
R

, or ν(BR) � R, or
∣∣BR ∩ {m · eiŝ � −1/2}∣∣ � R2.

Similarly, for all ŝ ∈ [s0 + 3π/4, s0 + 5π/4], we have

ν(BR) � |X−|
R

, or ν(BR) � R, or
∣∣BR ∩ {m · eiŝ � −1/2}∣∣ � R2.

We conclude that we have either (1.10), or ν(BR) � R, or
∣∣BR ∩ {m · eis � −1/2}∣∣ � R2,

for all s ∈ [s0 − π/4, s0 + π/4] ∪ [s0 + 3π/4, s0 + 5π/4]. This corresponds exactly to
the three alternatives in the statement of proposition 1.5. �
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