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Abstract

For fixed m and a, we give an explicit description of those subsets of Fq, q odd, for which both x and
mx + a are quadratic residues (and other combinations). These results extend and refine results that date
back to Gauss.
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1. Introduction

Let p be an odd prime and q a power of p. We use Fq to denote the finite field of
order q. Throughout, ζ denotes a primitive element of Fq, so that 〈ζ〉 = F�q , the set of
nonzero elements of Fq. We also use �q and �q to denote the squares and nonsquares,
respectively, of Fq. The quadratic character η over Fq is the finite field extension of
the Legendre symbol:

η(x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1 if x ∈ �∗q,
−1 if x ∈ �q,
0 if x = 0.

The problem of considering when an element and a linear translate of that element
are both quadratic residues dates back at least to Gauss. Davenport comments in [2,
page 63] that Gauss determined the number of pairs x, x + 1 ∈ F�p for which x and
x + 1 had prescribed characters. Of course, these results have since been extended
to arbitrary fields: for example, Dickson gives the generalisation for square x in [3,
Theorem 67]. Davenport ascribes the full enumeration over arbitrary fields to Dickson
also. More modern treatments of this count were given by Raber [8] and Ralston [9] in
the 1970s. In 2002, Sun [10] gave an explicit description of those x in Fp for which
x and x + 1 were both squares or both nonsquares, thereby extending the original
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results of Gauss. In this note, we extend Sun’s results to all finite fields and all possible
prescribed character values, and for any linear translate.

To be more precise, let us fix m, a ∈ F�q . We define four subsets of F�q :

K1(a, m) = {x : η(x) = η(mx + a) = 1},
K2(a, m) = {x : η(x) = η(mx + a) = −1},
K3(a, m) = {x : η(x) = −1, η(mx + a) = 1},
K4(a, m) = {x : η(x) = 1, η(mx + a) = −1}.

The historical results described above all relate to the sets Ki(1, 1). As mentioned, Sun
gave explicit descriptions of the sets K1(1, 1) and K2(1, 1) over prime fields in [10].
Here, we provide an explicit description of each of the sets Ki(a, m) for any nonzero
a, m in any finite field. To do so, we first show how to relate each of these sets to an
explicit description of Ki(1, 1) and then give a complete description of the sets Ki(a, m).
The reduction to Ki(1, 1) is shown in the next section. The explicit descriptions of the
sets Ki(a, m) over an arbitrary finite field of odd order are given in Section 3. As shall
be seen, the main tool used to obtain these descriptions is the ‘S-set’ representation
of a finite field (see Lemma 3.1), which allows for a uniform treatment of all the sets
Ki(a, m).

2. Reduction process

Our first step is to reduce our problem to dealing with the sets Ki(1, 1). The reduction
step is completely reversible so that having complete descriptions of the sets Ki(1, 1)
suffices for our purposes.

The first and simplest reductions are those reductions involving m. As might be
expected, these reductions split based on the value of η(m).

LEMMA 2.1. Let Fq be a finite field and a, m ∈ F�q .

(i) If η(m) = 1, then

Ki(a, m) = m−1Ki(a, 1).

(ii) If η(m) = −1, then

K1(a, m) = m−1K3(a, 1),

K2(a, m) = m−1K4(a, 1),

K3(a, m) = m−1K1(a, 1),

K4(a, m) = m−1K2(a, 1).

PROOF. Suppose η(m) = 1. Then, η(x) = η(mx) for all x ∈ Fq. So, if x ∈ Ki(a, m), then
mx ∈ Ki(a, 1) and vice versa. Thus, Ki(a, m) = m−1Ki(a, 1) for i = 1, 2, 3, 4.

For the remainder, assume η(m) = −1. If x ∈ K1(a, m), then η(x) = 1 = η(mx + a).
Since η(m) = −1, η(mx) = −1. Hence, mx ∈ K3(a, 1). Thus, K1(a, m) = m−1K3(a, 1).
The other three cases follow similarly. �

https://doi.org/10.1017/S0004972724000698 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972724000698


[3] Consecutive residues and nonresidues 3

We now deal with the reduction of the a. In light of the previous lemma, we may
restrict ourselves to reducing the sets Ki(a, 1). For ease of notation, we denote Ki(a, 1)
by Ki(a) for i = 1, . . . , 4.

LEMMA 2.2. Let a ∈ F�q . The following statements hold.

(i) If η(a) = 1, then

Ki(a) = aKi(1).

(ii) If η(a) = −1, then

K1(a) = aK2(1),
K2(a) = aK1(1),
K3(a) = aK4(1),
K4(a) = aK3(1).

PROOF. First, notice that η(x) = η(a)η(a−1x) and η(x + a) = η(a)η(a−1x + 1).
If η(a) = 1, then x ∈ Ki(a) implies a−1x ∈ Ki(1) as η(x) = η(a−1x) and η(x + a) =

η(a−1x + 1).
Now suppose η(a) = −1. As with the previous lemma, we prove one equality,

with the others following nearly identically. Let x ∈ K3(a). Then, η(x) = −1 and
η(x + a) = 1. So η(a−1x) = 1 and η(a−1x + 1) = −1 and hence, a−1x ∈ K4(1). �

3. Explicit representations

We now move to providing the explicit representations of the sets Ki(1). Our results
make use of the following useful partition of a finite field. We provide a proof for
completeness.

LEMMA 3.1. Let q be an odd prime power and a ∈ F�q .

(1) If a ∈ �∗q, then Fq = S0(a) ∪ S1(a) ∪ S2(a), where

S0(a) = {±2
√

a},
S1(a) = {u + au−1 : u ∈ Fq2 and uq−1 = 1 and u � ±

√
a},

S2(a) = {u + au−1 : u ∈ Fq2 and uq+1 = a and u � ±
√

a}.

(2) If a ∈ �q, then Fq = S1(a) ∪ S2(a), where

S1(a) = {u + au−1 : u ∈ Fq2 and uq−1 = 1}
S2(a) = {u + au−1 : u ∈ Fq2 and uq+1 = a}.

PROOF. We first show that for fixed a ∈ F�q , any x ∈ Fq can be written as x = u + au−1

for some u ∈ F�q2 with uq−1 = 1 or uq+1 = a. To see this, consider the quadratic
polynomial Y2 − xY − a over Fq. This factorises completely in Fq2 . Let u ∈ Fq2 be a root
of Y2 − xY − a, that is to say, u2 − xu + a = 0 and note that u � 0 as a � 0. Isolating x,
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we have x = u + au−1, where u ∈ Fq2 . As x ∈ Fq, we have xq = x, from which we obtain
uq + au−q = u + au−1, and rearranging yields

0 = u2q+1 − uq+2 − auq + au = u(uq−1 − 1)(uq+1 − a).

Thus, uq−1 = 1 or uq+1 = a.
Now suppose a ∈ �q. We have x = u + au−1 for u ∈ F�q2 . If x ∈ S0, then

x = ±2
√

a. Therefore, ±2
√

a = u + au−1, or multiplying through by u and rearranging,
u2 − ±2

√
au + a = 0. Factoring gives (u − ±

√
a)2 = 0, or in other words, u = ±

√
a. It

follows that S0 is disjoint from both S1 and S2.
It remains to show S1 and S2 are disjoint. Suppose x ∈ S1 ∩ S2. Then, x = u + au−1

for some u ∈ F�q2 with uq−1 = 1 and where u � ±
√

a. Also, x = v + av−1 for some
v ∈ F�q2 with vq+1 = a and where v � ±

√
a. So we have u + au−1 = v + av−1, or

multiplying through by uv and rearranging, uv(u − v) = a(u − v). So u = v or uv = a. If
u = v, then 1 = uq−1 = vq−1. Therefore, vq+1 = v2 = a, which implies v = ±

√
a, so that

x ∈ S0, which is a contradiction. If uv = a, then we again find vq−1 = 1, which we know
produces a contradiction. So, S1 ∩ S2 = ∅ and Fq = S0 ∪ S1 ∪ S2 where the S-sets are
pairwise disjoint. The case where a ∈ �q is almost the same, except that we no longer
have the set S0 to contend with. �

The S-set representation of a finite field is certainly not new and has been used in a
number of places over time. While it may appear so, it is not necessary to work in the
quadratic extension, as you can compute S0 (when required) and S1 from within Fq as
u ∈ F�q for S1. One can then obtain S2 as the complement. A specific and important
instance of their application has been in the study of the Dickson polynomials of
the first and second kind. The functional behaviour of both polynomial classes is
intimately tied to the S-sets. Indeed, practically all of the permutation polynomial
results for either class have relied specifically on the S-sets. (See Nöbauer [7] for
a full classification of permutation polynomials among the Dickson polynomials of
the first kind, and Henderson [4], Henderson and Matthews [5, 6] and Coulter and
Matthews [1] for establishing classes of permutation polynomials among the Dickson
polynomials of the second kind.) We note, in passing, that Henderson and Matthews
made a conjecture in [6] concerning permutation polynomials among the Dickson
polynomials of the second kind that remains unresolved.

Our main results will make use of the partition of Fq given in Lemma 3.1 as it
allows us to obtain a consistent form for all four sets. Below, when we write S�i , we
mean the nonzero elements of Si, though it is not necessarily the case that 0 will lie in
the set Si. We start with the explicit descriptions of the sets Ki(1), which are given in
the following two theorems.

THEOREM 3.2. For arbitrary odd q,

K1(1) = { 14α
2 : α ∈ S�1 (−1)} and K4(1) = { 14α

2 : α ∈ S�2 (−1)}.
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PROOF. For ease, define

A = { 14α
2 : α ∈ S�1 (−1)} and B = { 14α

2 : α ∈ S�2 (−1)}.

Lemma 3.1 shows that the sets A and B contain all nonzero squares except for −1 when
−1 is a square. So we have K1(1) ∪ K4(1) = A ∪ B. Now if a ∈ A, then a = 1

4 (u − u−1)2

for some u such that u ∈ Fq. So we can rewrite

a = 1
4 (ζk − ζ−k)2

for some primitive element ζ of Fq and integer k. From here, we can see that
a + 1 = 1

4 (ζk + ζ−k)2 which is a square in Fq, so that A ⊆ K1(1). It now suffices to show
that #K1(1) = #A. Towards this end, consider S�1 (−1). If q ≡ 1 (mod 4), then −1 is a
square in Fq so #S�1 (−1) = 1

2 (q − 3) − 1. Similarly, if q ≡ −1 (mod 4), then #S�1 (−1) =
1
2 (q − 1) − 1. Since S�1 (−1) is closed under negation, we have #A = 1

2 #S�1 (−1) and thus
A = K1(1) in each case by [9]. This then gives B = K4(1) since A and B are disjoint. �

THEOREM 3.3. Let ζ be a primitive element of Fq. Then,

K2(1) =
{

1
4ζ
α2 : α ∈ S�1 (−ζ)

}
and K3(1) =

{
1
4ζ
α2 : α ∈ S�2 (−ζ)

}
.

PROOF. Let

A =
{

1
4ζ
α2 : α ∈ S�1 (−ζ)

}
and B =

{
1
4ζ
α2 : α ∈ S�2 (−ζ)

}
.

Similar to Theorem 3.2, we can see that A ∪ B = K2(1) ∪ K3(1) and that A ∩ B = ∅.
Let a ∈ A. Then, a = 1

4ζ (ζ
k − ζ1−k)2 for some integer k, and thus,

a + 1 =
1
4ζ

(ζk + ζ1−k)2.

So we have A ⊆ K2(1). To finish the proof, we need only show that #A = #K1(1).
Again, consider S�1 (−ζ). If q ≡ 1 (mod 4), then −ζ is a nonsquare, so #S�1 (−ζ) =

1
2 (q − 1) since S�1 (−ζ) = S1. So #A = 1

4 (q − 1) and #B = 1
4 (q − 1). If q ≡ 3 (mod 4),

then −ζ is a square and so #S�1 (−ζ) = 1
2 (q − 3), and so #A = 1

4 (q − 3) and
#B = 1

4 (q − 3) giving A = K2(1) and B = K3(1). �

A nearly identical proof to the two above yields the following corollary, though you
could also use Lemma 2.2.

THEOREM 3.4. Let Fq be a finite field, ζ a primitive element of Fq, and a ∈ F�q . Then,

K1(a) = { 14α
2 : α ∈ S�1 (−a)},

K2(a) =
{

1
4ζ
α2 : α ∈ S�1 (−aζ)

}
,
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K3(a) =
{

1
4ζ
α2 : α ∈ S�2 (−aζ)

}
,

K4(a) = { 14α
2 : α ∈ S�2 (−a)}.

We now use Lemma 2.1 to get the representations of Ki(a, m).

THEOREM 3.5. Let Fq be a finite field, ζ a primitive element of Fq, and a, m ∈ F�q .

(i) If η(m) = 1, then

K1(a, m) =
{ 1

4m
α2 : α ∈ S�1 (−a)

}
,

K2(a, m) =
{ 1

4mζ
α2 : α ∈ S�1 (−aζ)

}
,

K3(a, m) =
{ 1

4mζ
α2 : α ∈ S�2 (−aζ)

}
,

K4(a, m) =
{ 1

4m
α2 : α ∈ S�2 (−a)

}
.

(ii) If η(m) = −1, then

K1(a, m) =
{ 1

4m
α2 : α ∈ S�2 (−aζ)

}
,

K2(a, m) =
{ 1

4mζ
α2 : α ∈ S�2 (−a)

}
,

K3(a, m) =
{ 1

4mζ
α2 : α ∈ S�1 (−a)

}
,

K4(a, m) =
{ 1

4m
α2 : α ∈ S�1 (−aζ)

}
.

Finally, Sun determined in [10] forms for K1(1) and K2(1) over prime fields.
However, Sun’s results do not have the same format as our general results above for
K1(1) and K2(1), even when we restrict to the prime case. For completeness, we give
the representations of Ki(1) in terms similar to Sun’s.

COROLLARY 3.6. Let ζ be a primitive element of Fq. Then,

K1(1) =
{
bk : bk =

(ζ2k − 1)2

4ζ2k and k = 1, . . . ,
⌊q − 3

4

⌋}
,

K2(1) =
{
bk : bk =

(ζ2k−1 − 1)2

4ζ2k−1 and k = 1, . . . ,
⌊q − 1

4

⌋}
,

K3(1) =
{
bk : bk =

4ζ2k−1

(ζ2k−1 − 1)2 and k = 1, . . . ,
⌊q − 1

4

⌋}
.
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Additionally, if q ≡ 1 mod 4, then

K4(1) =
{
bk : bk =

−(ζ2k−1 − 1)2

(ζ2k−1 + 1)2 and k = 1, . . . ,
q − 1

4

}
.

PROOF. Here, K1(1) follows from the fact that

(ζ2k − 1)2

4ζ2k =
1
4ζ

(ζk − ζ−k)2

and we have seen that this is exactly the form of K1(1) from Theorem 3.2. Similarly,
K2(1) follows from the fact that

(ζ2k−1 − 1)2

4ζ2k−1 =
1
4ζ

(ζk − ζ1−k)2

as seen in Theorem 3.3, and K3(1) follows from the fact that
1
x
+ 1 =

1 + x
x

,

and so if x ∈ K2(1), then x−1 ∈ K3(1) and vice versa.
To finish, for K4(1), −1 is a square when q ≡ 1 mod 4 and we can write

−1
x
− 1 =

1 + x
x
=
−(−1 − x)

x
.

Now, we see x ∈ K4(1) if and only if −1 − x−1 ∈ K3(1) and some simple arithmetic
produces the claimed description. �

We note that this second ‘explicit’ format, as given in Corollary 3.6, is missing the
q ≡ 3 mod 4 case for K4(1). The tricks we have used here do not work for this last case
where −1 ∈ �q, as they end up producing another element in K4. In particular, we find
that when q ≡ 3 mod 4, x ∈ K4(1) if and only if −1 − x−1 ∈ K4(1). While this gives
us some structural information about K4(1), it does not appear to lead to an explicit
description of its elements in the format of Corollary 3.6.
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