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Abstract
For finite nilpotent groups J and N, suppose J acts on N via automorphisms. We exhibit a decomposition of the
first cohomology set in terms of the first cohomologies of the Sylow p-subgroups of J that mirrors the primary
decomposition of H1(J, N) for abelian N. We then show that if N � J acts on some non-empty set �, where the
action of N is transitive and for each prime p a Sylow p-subgroup of J fixes an element of�, then J fixes an element
of �.

1. Introduction

Given a finite nilpotent group J acting on a finite nilpotent group N via automorphisms, crossed homo-
morphisms are maps ϕ : J → N satisfying ϕ( jj′) = ϕ( j)ϕ( j′)j−1 for all j, j′ ∈ J. Two such maps ϕ and
ϕ ′ are cohomologous if there exists n ∈ N such that ϕ ′( j) = n−1ϕ( j)nj−1 for all j ∈ J; in this case, we
write ϕ ∼ ϕ ′. We define the first cohomology H1(J, N) to be the pointed set Z1(J, N) of crossed homo-
morphisms modulo this equivalence relation where the distinguished point corresponds to the class
containing the map taking each element of J to the identity of N.

We first show that the cohomology set H1(J, N) decomposes in terms of the first cohomologies of the
Sylow p-subgroups Jp of J as follows:

Lemma 1. For finite nilpotent groups J and N, suppose J acts on N via automorphisms. Then the map
ϕ �→ ×p∈Dϕ|Jp for ϕ ∈ H1(J, N) induces an isomorphism H1(J, N) ∼= ×p∈DH1(Jp, N)J′

p of pointed sets,
where D denotes the shared prime divisors of |J| and |N|, and for each p, Jp is the Sylow p-subgroup of
J and J′

p is the Hall p′-subgroup of J.

This parallels the well-known primary decomposition of H1(J, N) for abelian N (see Section 3 for
details). As the bijective correspondence between H1(J, N) and the N-conjugacy classes of complements
to N in N � J continues to hold for nonabelian N [6, Exer. 1 in §I.5.1], Lemma 1 provides an alternate
proof of a result of Losey and Stonehewer [5]:

Proposition 2 (Losey and Stonehewer). Two nilpotent complements of a normal nilpotent subgroup in
a finite group are conjugate if and only if they are locally conjugate.

Here, two subgroups H, H′ ≤ G are locally conjugate if a Sylow p-subgroup of H is conjugate to a
Sylow p-subgroup of H′ for each prime p. It also readily follows that:
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Proposition 3. Let G be a finite split extension over a nilpotent subgroup N such that G/N is nilpotent.
If for each prime p, there is a Sylow p-subgroup S of G such that any two complements of S ∩ N in S are
conjugate in G, then any two complements of N in G are conjugate.

We then establish a fixed point result for nilpotent-by-nilpotent actions in the style of Glauberman:

Theorem 4. For finite nilpotent groups J and N, suppose J acts on N via automorphisms and that the
induced semidirect product N � J acts on some non-empty set � where the action of N is transitive. If
for each prime p, a Sylow p-subgroup of J fixes an element of �, then J fixes an element of �.

Glauberman showed that this result holds whenever the orders of N and J are coprime, without any
further restrictions on N or J [4, Thm. 4]. Thus, this result is only interesting when |N| and |J| share one
or more prime divisors (i.e. when the action is non-coprime). Analogous results hold if N is abelian or
if N is nilpotent and N � J is supersoluble [2].

1.1. Outline

In the remainder of this section, we introduce some notation. We then prove the results in Section 2 and
conclude in Section 3.

1.2. Notation

All groups in this note are finite. For a nilpotent group J, we let Jp ∈ Sylp(J) denote its unique Sylow
p-subgroup and J′

p denote its Hall p′-subgroup so that J ∼= Jp × J′
p. We let gγ = γ −1gγ for g, γ ∈ G. We

otherwise use standard notation from group theory that can be found in Doerk and Hawkes [3].
For a subgroup K ≤ J, we let ϕ|K denote the restriction of ϕ ∈ Z1(J, N) to K and let resJ

K : H1(J, N) →
H1(K, N) be the map induced in cohomology. For ϕ ∈ Z1(K, N) and j ∈ J, define ϕj(x) = ϕ(xj−1

)j. We
say ϕ is J-invariant if resK

K∩Kjϕ ∼ resKj

K∩Kjϕ
j for all j ∈ J and let invJH1(K, N) be the set of J-invariant

elements in H1(K, N). For any ϕ ∈ Z1(J, N), we have ϕj(x) = n−1ϕ(x)nx−1 where n = ϕ( j−1) so that ϕj ∼ ϕ.
Consequently, resJ

KH1(J, N) ⊆ invJH1(K, N).
For nilpotent J and ϕ ∈ Z1(Jp, N), any j ∈ J may be written j = jp × j′p for jp ∈ Jp and j′p ∈ J′

p so that
ϕj(x) = ϕ(xj−1

p )jpj′p = ϕ ′(x)j′p for some ϕ ′ ∼ ϕ. It follows that invJH1(Jp, N) = H1(Jp, N)J′
p , that is, the J-

invariant elements of H1(Jp, N) are those fixed under conjugation by J′
p.

To each complement K of N in NJ, we associate ϕK ∈ Z1(J, N) as follows. For j ∈ J, we have
j = n−1

j kj for unique nj ∈ N and kj ∈ K; we then let ϕK( j) = nj = kjj−1. Conversely, for any ϕ ∈ Z1(J, N),
the subgroup F(ϕ) = {ϕ( j)j}j∈J complements N in NJ. In particular, F(ϕK) = K. Furthermore, F(ϕ) and
F(ϕ ′) are N-conjugate in NJ if and only if ϕ ∼ ϕ ′ so that F induces a correspondence between H1(J, N)
and the N-conjugacy classes of complements to N in NJ. See Serre [6, Ch. I §5] for further details on
nonabelian group cohomology.

2. Proofs of results

We begin by establishing Lemma 1.

Proof of Lemma 1. As N is nilpotent, the natural projection maps N → Np induce an isomorphism:
H1(J, N) ∼= ×p∈DH1(J, Np), (1)

where terms p /∈D drop by the Schur–Zassenhaus theorem [3, Thm. A.11.3]. Thus, we may focus our
attention on H1(J, Nq) for some prime q. If J is also a q-group, we are done. Otherwise, we may consider
the inflation-restriction exact sequence [6, Sec. I.5.8]:
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1 → H1(J′
q, N Jq

q ) → H1(J, Nq)
resJ

Jq−−→ H1(Jq, Nq)J′
q .

As H1(J′
q, N

Jq
q ) is trivial, resJ

Jq
is injective. For any ϕ ∈ H1(Jq, Nq)J′

q , we may define ϕ̃ in terms of a repre-
sentative crossed homomorphism as ϕ̃( j′j) = ϕ( j) for j ∈ Jq and j′ ∈ J′

q. It is straightforward to verify that
ϕ̃ ∈ Z1(J, Nq) and ϕ̃|Jq ∼ ϕ. Thus, resJ

Jq
is also surjective and thus an isomorphism. Let v : H1(Jq, Nq) →

H1(Jq, N) denote the map induced by inclusion. From the decomposition (1), H1(Jq, Nq) ∼= H1(Jq, N),
and as

H1(Jq, Nq)
ν−→ H1(Jq, N) → H1(Jq, N ′

q)

is exact [6, Prop. I.38] where H1(Jq, N ′
q) is trivial, it follows that v is surjective and hence an isomorphism.

As ϕ ∈ H1(Jp, Np)J′
p if and only if v(ϕ) ∈ H1(Jp, N)J′

p , it follows that � : H1(J, N) → ×p∈DH1(Jp, N)J′
p

given by the composition ϕ �→ ×p∈Dϕ|Jp induces the desired isomorphism:

H1(J, N) ∼= ×p∈DH1(Jp, Np)J′
p ∼= ×p∈DH1(Jp, N)J′

p . (2)

We now show how Propositions 2 and 3 follow from Lemma 1.

Proof of Proposition 2. Suppose J and J′ each complement N � G as described in the hypotheses of
the proposition. Let ϕ be a crossed homomorphism representing J′ in H1(J, N). By hypothesis, ϕ|Jp ∼ 1|Jp

for every prime p, where 1 ∈ Z1(J, N) represents the distinguished point. Lemma 1 implies ϕ ∼ 1 so that
J and J′ are conjugate.

Proof of Proposition 3. Suppose G ∼= N � J satisfies the hypotheses of the proposition. Fix a prime
p. Without loss, we may suppose any two complements of Np in S = JpNp are conjugate in G. If J′

p is
such a complement, then J′

p = (Jp)g for some g ∈ G so that J′
p = (Jp)jn = (Jp)n for some j ∈ J and n ∈ N. In

particular, J′
p is conjugate to Jp in JpN. Thus, H1(Jp, N) is trivial. As the choice of prime p was arbitrary,

Lemma 1 implies that H1(J, N) is also trivial, allowing us to conclude.

To prove Theorem 4, we also require:

Proposition 5. Let H be a subgroup of G ∼= N � J where N and J are nilpotent. If for each prime p, H
contains a conjugate of some Jp ∈ Sylp(J), then H contains a conjugate of J.

Proof of Proposition 5. It follows from the hypotheses that H supplements N in G. We induct on the
order of G. If H is a p-group or all of G, the result is immediate. If multiple primes divide |N|, we have the
nontrivial decomposition N ∼= Np × N ′

p for some prime p. Induction in G/Np implies Jn0 ≤ HNp for some
n0 ∈ N ′

p. Induction in G/N ′
p implies Jn1 ≤ HN ′

p for some n1 ∈ Np. Thus, Jn0n1 ≤ HNp ∩ HN ′
p = H, where

the last equality proceeds from the following argument of Losey and Stonehewer [5]. Suppose g ∈ HNp ∩
HN ′

p so that g = h0n0 = h1n1 for some h0, h1 ∈ H, n0 ∈ Np and n1 ∈ N ′
p. Then (h1)−1h0 = n1(n0)−1 ∈ H. As

n0 and n1 commute and have coprime orders, it follows that n0, n1 ∈ H so g ∈ H.
We now proceed under the assumption that N = Nq for some prime q. Upon switching to a conjugate

of H if necessary, we may suppose that Jq ≤ H. Let Z denote the center of N. If Z ∩ H were nontriv-
ial, then induction in G/(Z ∩ H) would allow us to conclude. Otherwise, in G/Z, induction implies that
JgZ/Z ≤ ZH/Z for some g ∈ G. Letψ : H → HZ/Z denote the isomorphism between H and HZ/Z. Then
K =ψ−1(JgZ/Z) complements N ∩ H in H and N in G. Let ϕ ∈ Z1(K, N) correspond to J. Then ϕ|Kq cor-
responds to Jq where [ϕ|Kq ] ∈ H1(Kq, H ∩ N)K′

q ∼= H1(K, H ∩ N). In particular, there exists a complement,
say L, to H ∩ N in H that contains Jq. L will also complement N in G, and as Sylp(L) ⊆ Sylp(G) for all
primes p �= q, we may apply Proposition 2 to conclude that Jg′ = L ≤ H for some g′ ∈ G.

With this, we are prepared to prove Theorem 4.

Proof of Theorem 4. Given J, N, and� as described in the hypotheses of the theorem, let G = N � J
denote the induced semidirect product and consider the stabilizer subgroup Gα for some α ∈�. As N
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acts transitively, G = NGα. For each prime p, the hypotheses of the theorem imply (Jp)np ≤ Gα for some
Jp ∈ Sylp(J) and np ∈ N so that Proposition 5 allows us to conclude Jg ≤ Gα for some g ∈ G. It follows
that J fixes g · α.

3. Conclusion

We conclude with a brief discussion of analogous results in the abelian case. For arbitrary J acting on
abelian N, the restriction map resJ

Jp
: H1(J, N)(p)

∼=−→ invJH1(Jp, N) induces an isomorphism for each prime
p, where H1(J, N)(p) is the p-primary component of H1(J, N) and Jp ∈ Sylp(J). Consequently, it follows
from the primary decomposition of H1(J, N) that [1, Thm. III.10.3]:

H1(J, N) ∼= ⊕p∈DinvJH
1(Jp, N). (3)

Furthermore, for abelian N, suppose G = N � J acts on some non-empty set�, where the action of N is
transitive, and for each prime p a Sylow p-subgroup of J fixes an element of�. Then, for arbitrary α ∈�,
the stabilizer Gα splits over Gα ∩ N by Gaschütz’s theorem [3, Thm. A.11.2] and is locally conjugate
and thus conjugate to J by an argument analogous to the proof of Proposition 5. In particular, J fixes an
element of�. In this note, we find that the decomposition (3) and fixed point result continue to hold for
nilpotent N if J is also nilpotent.
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