RESEARCH ARTICLE

Glasgow Mathematical Journal

Actions of nilpotent groups on nilpotent groups

Michael C. Burkhart^{1,2}

1University of Cambridge, Cambridge, UK ²Current Address: University of Chicago, Chicago, USA Emails: [mcb93@cantab.ac.uk,](mailto:mcb93@cantab.ac.uk) burkh4rt@uchicago.edu

Received: 31 January 2024; **Revised:** 10 November 2024; **Accepted:** 5 December 2024

Keywords: nilpotent-by-nilpotent group actions; primary decompositions in cohomology; fixed points of non-coprime actions **2020 Mathematics Subject Classification:** *Primary* - 05E18, 20D15, 20J06; *Secondary* - 20D45, 55N45

Abstract

For finite nilpotent groups *J* and *N*, suppose *J* acts on *N* via automorphisms. We exhibit a decomposition of the first cohomology set in terms of the first cohomologies of the Sylow *p*-subgroups of *J* that mirrors the primary decomposition of $H^1(J, N)$ for abelian *N*. We then show that if $N \rtimes J$ acts on some non-empty set Ω , where the action of *N* is transitive and for each prime *p* a Sylow *p*-subgroup of *J* fixes an element of Ω , then *J* fixes an element of Ω .

1. Introduction

Given a finite nilpotent group *J* acting on a finite nilpotent group *N* via automorphisms, crossed homomorphisms are maps $\varphi: J \to N$ satisfying $\varphi(jj') = \varphi(j)\varphi(j')^{j-1}$ for all *j*, $j' \in J$. Two such maps φ and φ' are cohomologous if there exists $n \in N$ such that $\varphi'(j) = n^{-1} \varphi(j) n^{j-1}$ for all $j \in J$; in this case, we write $\varphi \sim \varphi'$. We define the first cohomology $H^1(J, N)$ to be the pointed set $Z^1(J, N)$ of crossed homomorphisms modulo this equivalence relation where the distinguished point corresponds to the class containing the map taking each element of *J* to the identity of *N*.

We first show that the cohomology set $H^1(J, N)$ decomposes in terms of the first cohomologies of the Sylow p -subgroups J_p of J as follows:

Lemma 1. *For finite nilpotent groups J and N, suppose J acts on N via automorphisms. Then the map* $\varphi \mapsto \langle x_{p\in\mathcal{D}}\varphi|_{J_p}$ for $\varphi \in H^1(J,N)$ induces an isomorphism $H^1(J,N) \cong \langle x_{p\in\mathcal{D}}H^1(J_p,N)^{J_p} \rangle$ of pointed sets, *where D denotes the shared prime divisors of* |*J*| *and* |*N*|*, and for each p, Jp is the Sylow p-subgroup of J* and J'_p is the Hall p' -subgroup of *J*.

This parallels the well-known primary decomposition of $H^1(J, N)$ for abelian N (see Section [3](#page-3-0) for details). As the bijective correspondence between $H^1(J, N)$ and the *N*-conjugacy classes of complements to *N* in $N \rtimes J$ continues to hold for nonabelian N [\[6,](#page-3-1) Exer. [1](#page-0-0) in §1.5.1], Lemma 1 provides an alternate proof of a result of Losey and Stonehewer [\[5\]](#page-3-2):

Proposition 2 (Losey and Stonehewer)*. Two nilpotent complements of a normal nilpotent subgroup in a finite group are conjugate if and only if they are locally conjugate.*

Here, two subgroups $H, H' \leq G$ are locally conjugate if a Sylow *p*-subgroup of *H* is conjugate to a Sylow p -subgroup of H' for each prime p . It also readily follows that:

Proposition 3. *Let G be a finite split extension over a nilpotent subgroup N such that G*/*N is nilpotent. If for each prime p, there is a Sylow p-subgroup S of G such that any two complements of S* ∩ *N in S are conjugate in G, then any two complements of N in G are conjugate.*

We then establish a fixed point result for nilpotent-by-nilpotent actions in the style of Glauberman:

Theorem 4. *For finite nilpotent groups J and N, suppose J acts on N via automorphisms and that the induced semidirect product* $N \rtimes J$ *acts on some non-empty set* Ω *where the action of* N *is transitive. If* for each prime p, a Sylow p-subgroup of J fixes an element of Ω , then J fixes an element of Ω .

Glauberman showed that this result holds whenever the orders of *N* and *J* are coprime, without any further restrictions on *N* or *J* [\[4,](#page-3-3) Thm. 4]. Thus, this result is only interesting when |*N*| and |*J*| share one or more prime divisors (i.e. when the action is *non-coprime*). Analogous results hold if *N* is abelian or if *N* is nilpotent and $N \times J$ is supersoluble [\[2\]](#page-3-4).

1.1. Outline

In the remainder of this section, we introduce some notation. We then prove the results in Section [2](#page-1-0) and conclude in Section [3.](#page-3-0)

1.2. Notation

All groups in this note are finite. For a nilpotent group *J*, we let $J_p \in Syl_p(J)$ denote its unique Sylow *p*-subgroup and *J*^{*p*} denote its Hall *p*'-subgroup so that $J \cong J_p \times J_p'$. We let $g^{\gamma} = \gamma^{-1} g \gamma$ for $g, \gamma \in G$. We otherwise use standard notation from group theory that can be found in Doerk and Hawkes [\[3\]](#page-3-5).

For a subgroup $K \leq J$, we let $\varphi|_K$ denote the restriction of $\varphi \in Z^1(J, N)$ to K and let res $^J_K : H^1(J, N) \to$ *H*¹(*K*, *N*) be the map induced in cohomology. For $\varphi \in Z^1(K, N)$ and $j \in J$, define $\varphi^j(x) = \varphi(x^{j-1})^j$. We say φ is *J*-invariant if $res_{K \cap K^j}^K \varphi \sim res_{K \cap K^j}^{K^j} \varphi^j$ for all $j \in J$ and let $inv_J H^1(K, N)$ be the set of *J*-invariant elements in $H^1(K, N)$. For any $\varphi \in Z^1(J, N)$, we have $\varphi^j(x) = n^{-1} \varphi(x) n^{x^{-1}}$ where $n = \varphi(j^{-1})$ so that $\varphi^j \sim \varphi$. Consequently, $res'_{K}H^{1}(J, N) \subseteq inv_{J}H^{1}(K, N)$.

For nilpotent *J* and $\varphi \in Z^1(J_p, N)$, any $j \in J$ may be written $j = j_p \times j'_p$ for $j_p \in J_p$ and $j'_p \in J'_p$ so that $\varphi^j(x) = \varphi(x^{j-1}_p)^{j_1 j_2} = \varphi'(x)^{j_2}$ for some $\varphi' \sim \varphi$. It follows that $\text{inv}_J H^1(J_p, N) = H^1(J_p, N)^{j_p}$, that is, the Jinvariant elements of $H^1(J_p, N)$ are those fixed under conjugation by J'_p .

To each complement *K* of *N* in *NJ*, we associate $\varphi_K \in Z^1(J, N)$ as follows. For $j \in J$, we have $j = n_j^{-1}k_j$ for unique $n_j \in N$ and $k_j \in K$; we then let $\varphi_K(j) = n_j = k_j j^{-1}$. Conversely, for any $\varphi \in Z^1(J, N)$, the subgroup $F(\varphi) = {\varphi(jj)}_{i \in J}$ complements *N* in *NJ*. In particular, $F(\varphi_k) = K$. Furthermore, $F(\varphi)$ and *F*(φ') are *N*-conjugate in *NJ* if and only if $\varphi \sim \varphi'$ so that *F* induces a correspondence between $H^1(J, N)$ and the *N*-conjugacy classes of complements to *N* in *NJ*. See Serre [\[6,](#page-3-1) Ch. I §5] for further details on nonabelian group cohomology.

2. Proofs of results

We begin by establishing Lemma [1.](#page-0-0)

Proof of Lemma [1.](#page-0-0) As *N* is nilpotent, the natural projection maps $N \rightarrow N_p$ induce an isomorphism:

$$
H^1(J, N) \cong \times_{p \in \mathcal{D}} H^1(J, N_p), \tag{1}
$$

where terms $p \notin \mathcal{D}$ drop by the Schur–Zassenhaus theorem [\[3,](#page-3-5) Thm. A.11.3]. Thus, we may focus our attention on $H^1(J, N_q)$ for some prime q . If *J* is also a q -group, we are done. Otherwise, we may consider the inflation-restriction exact sequence $[6, \text{Sec. I.5.8}]:$ $[6, \text{Sec. I.5.8}]:$

$$
1 \to H^1(J'_q, N_q^{J_q}) \to H^1(J, N_q) \xrightarrow{\operatorname{res}'_{J_q}} H^1(J_q, N_q)^{J'_q}.
$$

As $H^1(J'_q, N_q^{J_q})$ is trivial, res^{J_q} is injective. For any $\varphi \in H^1(J_q, N_q)^{J'_q}$, we may define $\tilde{\varphi}$ in terms of a representative crossed homomorphism as $\tilde{\varphi}(j'j) = \varphi(j)$ for $j \in J_q$ and $j' \in J'_q$. It is straightforward to verify that $\tilde{\varphi} \in Z^1(J, N_q)$ and $\tilde{\varphi}|_{J_q} \sim \varphi$. Thus, res^{*I_q*</sub> is also surjective and thus an isomorphism. Let $v : H^1(J_q, N_q) \to$} $H^1(J_q, N)$ denote the map induced by inclusion. From the decomposition [\(1\)](#page-1-1), $H^1(J_q, N_q) \cong H^1(J_q, N)$, and as

$$
H^1(J_q, N_q) \xrightarrow{\nu} H^1(J_q, N) \to H^1(J_q, N'_q)
$$

is exact [\[6,](#page-3-1) Prop. I.38] where $H^1(J_q, N'_q)$ is trivial, it follows that *v* is surjective and hence an isomorphism. As $\varphi \in H^1(J_p, N_p)^{J'_p}$ if and only if $v(\varphi) \in H^1(J_p, N)^{J'_p}$, it follows that $\Phi : H^1(J, N) \to \times_{p \in \mathcal{D}} H^1(J_p, N)^{J'_p}$ given by the composition $\varphi \mapsto \langle \varphi_{p \in \mathcal{D}} \varphi | J_p \rangle$ induces the desired isomorphism:

$$
H^1(J,N) \cong \times_{p \in \mathcal{D}} H^1(J_p, N_p)^{J_p'} \cong \times_{p \in \mathcal{D}} H^1(J_p, N)^{J_p'}.
$$
 (2)

 \Box

We now show how Propositions [2](#page-0-1) and [3](#page-0-2) follow from Lemma [1.](#page-0-0)

Proof of Proposition [2.](#page-0-1) Suppose *J* and *J'* each complement $N \triangleleft G$ as described in the hypotheses of the proposition. Let φ be a crossed homomorphism representing *J'* in $H^1(J, N)$. By hypothesis, $\varphi|_{J_p} \sim 1|_{J_p}$ for every prime *p*, where $1 \in Z^1(J, N)$ $1 \in Z^1(J, N)$ represents the distinguished point. Lemma 1 implies $\varphi \sim 1$ so that *J* and *J'* are conjugate. \Box

Proof of Proposition [3.](#page-0-2) Suppose *G* ≅ *N* \rtimes *J* satisfies the hypotheses of the proposition. Fix a prime *p*. Without loss, we may suppose any two complements of N_p in $S = J_p N_p$ are conjugate in *G*. If J'_p is such a complement, then $J'_p = (J_p)^g$ for some $g \in G$ so that $J'_p = (J_p)^n = (J_p)^n$ for some $j \in J$ and $n \in N$. In particular, J'_p is conjugate to J_p in J_pN . Thus, $H^1(J_p, N)$ is trivial. As the choice of prime p was arbitrary, Lemma [1](#page-0-0) implies that $H^1(J, N)$ is also trivial, allowing us to conclude. \Box

To prove Theorem [4,](#page-1-2) we also require:

Proposition 5. Let *H* be a subgroup of $G \cong N \rtimes J$ where *N* and *J* are nilpotent. If for each prime p, *H contains a conjugate of some* $J_p \in \text{Syl}_p(J)$ *, then H contains a conjugate of J.*

Proof of Proposition [5.](#page-2-0) It follows from the hypotheses that *H* supplements *N* in *G*. We induct on the order of *G*. If *H* is a *p*-group or all of *G*, the result is immediate. If multiple primes divide |*N*|, we have the nontrivial decomposition $N \cong N_p \times N'_p$ for some prime *p*. Induction in G/N_p implies $J^{n_0} \leq HN_p$ for some *n*₀ ∈ *N*_{*p*}. Induction in *G*/*N*_{*p*}</sub> implies *J*^{*n*₁} ≤ *HN*_{*p*} for some *n*₁ ∈ *N_p*. Thus, *J*^{*n*₀*n*₁ ≤ *HN_p* ∩ *HN*_{*p*}} = *H*, where the last equality proceeds from the following argument of Losey and Stonehewer [\[5\]](#page-3-2). Suppose $g \in HN_p \cap H$ HN'_p so that $g = h_0 n_0 = h_1 n_1$ for some $h_0, h_1 \in H$, $n_0 \in N_p$ and $n_1 \in N'_p$. Then $(h_1)^{-1} h_0 = n_1 (n_0)^{-1} \in H$. As *n*₀ and *n*₁ commute and have coprime orders, it follows that *n*₀, *n*₁ ∈ *H* so *g* ∈ *H*.

We now proceed under the assumption that $N = N_q$ for some prime q. Upon switching to a conjugate of *H* if necessary, we may suppose that $J_q \leq H$. Let *Z* denote the center of *N*. If $Z \cap H$ were nontrivial, then induction in $G/(Z \cap H)$ would allow us to conclude. Otherwise, in G/Z , induction implies that $J^g Z/Z \le ZH/Z$ for some $g \in G$. Let $\psi : H \to HZ/Z$ denote the isomorphism between *H* and HZ/Z . Then $K = \psi^{-1}(J^{g}Z/Z)$ complements $N \cap H$ in H and N in G . Let $\varphi \in Z^{1}(K, N)$ correspond to J . Then $\varphi|_{K_q}$ corresponds to J_q where $[\varphi|_{K_q}] \in H^1(K_q, H \cap N)^{K'_q} \cong H^1(K, H \cap N)$. In particular, there exists a complement, say *L*, to $H \cap N$ in *H* that contains J_q . *L* will also complement *N* in *G*, and as $Syl_p(L) \subseteq Syl_p(G)$ for all primes $p \neq q$, we may apply Proposition [2](#page-0-1) to conclude that $J^{g'} = L \leq H$ for some $g' \in G$. \Box

With this, we are prepared to prove Theorem [4.](#page-1-2)

Proof of Theorem [4.](#page-1-2) Given *J*, *N*, and Ω as described in the hypotheses of the theorem, let $G = N \rtimes J$ denote the induced semidirect product and consider the stabilizer subgroup G_{α} for some $\alpha \in \Omega$. As *N*

acts transitively, $G = NG_\alpha$. For each prime p, the hypotheses of the theorem imply $(J_p)^{n_p} \leq G_\alpha$ for some $J_p \in \mathrm{Syl}_p(J)$ and $n_p \in N$ so that Proposition [5](#page-2-0) allows us to conclude $J^g \leq G_\alpha$ for some $g \in G$. It follows that *J* fixes $g \cdot \alpha$. \Box

3. Conclusion

We conclude with a brief discussion of analogous results in the abelian case. For arbitrary *J* acting on abelian *N*, the restriction map $res'_{J_p}: H^1(J, N)_{(p)} \stackrel{\cong}{\to} inv_JH^1(J_p, N)$ induces an isomorphism for each prime *p*, where $H^1(J, N)_{(p)}$ is the *p*-primary component of $H^1(J, N)$ and $J_p \in Syl_p(J)$. Consequently, it follows from the primary decomposition of $H^1(J, N)$ that [\[1,](#page-3-6) Thm. III.10.3]:

$$
H^1(J, N) \cong \bigoplus_{p \in \mathcal{D}} \text{inv}_J H^1(J_p, N). \tag{3}
$$

Furthermore, for abelian *N*, suppose $G = N \times J$ acts on some non-empty set Ω , where the action of *N* is transitive, and for each prime *p* a Sylow *p*-subgroup of *J* fixes an element of Ω . Then, for arbitrary $\alpha \in \Omega$, the stabilizer G_{α} splits over $G_{\alpha} \cap N$ by Gaschütz's theorem [\[3,](#page-3-5) Thm. A.11.2] and is locally conjugate and thus conjugate to *J* by an argument analogous to the proof of Proposition [5.](#page-2-0) In particular, *J* fixes an element of Ω . In this note, we find that the decomposition [\(3\)](#page-3-7) and fixed point result continue to hold for nilpotent *N* if *J* is also nilpotent.

Acknowledgments. The author thanks the editor C. M. Roney-Dougal and an anonymous reviewer for detailed feedback which considerably improved the manuscript.

Competing interests. The author declares none.

References

- [1] K. S. Brown, Cohomology of groups, (Springer, New York, 1982).
- [2] M. C. Burkhart, Fixed point conditions for non-coprime actions, *Proc. Roy. Soc. Edinb. Sect. A* (in press).
- [3] K. Doerk and T. Hawkes, Finite soluble groups, (de Gruyter, Berlin, 1992).
- [4] G. Glauberman, Fixed points in groups with operator groups, *Math. Zeitschr.* **84** (1964), 120–125.
- [5] G. O. Losey and S. E. Stonehewer, Local conjugacy in finite soluble groups, *Quart. J. Math. Oxford (2)* **30** (1979), 183–190.
- [6] J.-P. Serre, *Galois Cohomology* (Springer, Berlin, 2002).