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FENG LÜ, QI HAN� and WEIRAN LÜ
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Abstract

In this note, we prove a uniqueness theorem for finite-order meromorphic solutions to a class of difference
equations of Malmquist type. Such solutions f are uniquely determined by their poles and the zeros of
f − e j (counting multiplicities) for two finite complex numbers e1 , e2.
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1. Introduction and main result

We study finite-order meromorphic solutions f to the difference equation
n∑

j=1

a j f (z + c j) =
P( f )
Q( f )

=
bp f p + bp−1 f p−1 + · · · + b1 f + b0

dq f q + dq−1 f q−1 + · · · + d1 f + d0
=

∑p
k=0 bk f k∑q
l=0 dl f l

(1.1)

of Malmquist type. Here, a j (. 0), bk, dl are small functions of f , c j (, 0) are pairwise
distinct constants, P and Q are coprime polynomials and n, p, q are integers such that
p ≤ q = n. In view of Heittokangas et al. [6, Proposition 8 and Theorem 12], the
assumption p ≤ q = n is natural. We shall give several examples below to show that
our hypotheses are best possible.

Some qualitative properties of meromorphic solutions to (1.1) are known (see for
example [6, 11, 15] and the references therein). In this note, we investigate how
a finite-order meromorphic solution f to (1.1) is uniquely determined by its poles
and the zeros of f − e j for two distinct, finite complex numbers e1, e2. This is
motivated by the famous Nevanlinna five-value theorem and its improvements when
one considers meromorphic solutions to ordinary and partial differential equations.
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For example, Brosch [1] proved that a meromorphic solution to the Malmquist-type
ordinary differential equation (w′)n =

∑2n
j=0 a jw j in the complex plane C is uniquely

determined by three values. For Malmquist-type partial differential equations, we refer
the reader to, for instance, Hu and Li [7, 8] as well as some earlier work of Tu [13],
Hu and Yang [9, 10] and Gao [3].

Define I(z, f ) :=
∑n

j=1 a j f (z + c j) and H(z, f ) := Q( f )I(z, f ) − P( f ). Then (1.1) can
be rewritten as

H(z, f ) = 0. (1.2)

By applying the main ideas in [1], we will prove the following result for difference
equations.

Theorem 1.1. Let f be a finite-order transcendental meromorphic solution of (1.2) and
let e1, e2 be two distinct finite numbers such that H(z, e1),H(z, e2) , 0. If f and another
meromorphic function g share the values e1, e2 and∞ CM, then f = g.

We assume familiarity with the basics of Nevanlinna theory of meromorphic
functions in C, such as the first and second main theorems and the usual notation such
as the characteristic function T (r, f ), the proximity function m(r, f ) and the counting
function N(r, f ). We denote by S (r, f ) any quantity satisfying S (r, f ) = o(T (r, f )) as
r→∞, except possibly on a set of finite logarithmic measure, not necessarily the same
at each occurrence. Let a, f ,g be meromorphic functions on C. We say that a is a small
function of f whenever T (r, a) = S (r, f ). Given a, a small function of both f and g or
some value in C ∪ {∞}, we say that f and g share a CM if f − a and g − a have the
same zeros with the same multiplicities. Finally, the order of f , ρ( f ), is the quantity

ρ( f ) := lim sup
r→+∞

log T (r, f )
log r

.

Example 1.2. Below, we provide some examples that are related to the assumptions of
Theorem 1.1, which shows that our result is best possible.

(a) The number of shared values cannot be reduced. For example, the function
f (z) = (e2πiz + z + 1)−1 is a solution of the difference equation

H(z, f ) = [ f 2(z) − 1][ f (z + 1) + f (z − 1)] + 2 f (z) = 0,

while f and g(z) = e2πiz + z + 1 share the values 1,−1 CM with H(z, 1) = 2 and
H(z,−1) = −2.

(b) The condition H(z, e1),H(z, e2) , 0 cannot be dropped. For example, the function
f (z) = tan z is a solution of the difference equation

H(z, f ) = [ f 2(z) − 1]
[

f
(
z +

π

4

)
+ f

(
z −

π

4

)]
+ 4 f (z) = 0,

and f and g(z) = −tan z share the values ±i (as Picard exceptional values) and∞
CM with H(z,±i) = 0.
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(c) The condition p ≤ q cannot be extended to include p > q. For example, the
function f (z) = ez is a solution of the difference equation

H(z, f ) = [ f (z + 1) + f (z − 1)] − (e + e−1) f (z) = 0,

and f and g(z) = e−z share the values ±1 and ∞ CM with H(z, 1) = 2 − e − e−1

and H(z,−1) = e + e−1 − 2.
(d) The condition (p ≤) q = n cannot be weakened to (p ≤) q ≤ n. Notice that we

only need to eliminate the possibility q < n. For example, f (z) = ez + 1 satisfies
the following difference equation

H(z, f ) = [ f (z + 1) − e2 f (z − 1)] + (e2 − 1) = 0,

and f and g(z) = e−z + 1 share 0, 2 and∞ CM with H(z, 0) = e2 − 1 and H(z, 2) =

1 − e2.

The assumption that f is of finite order presents different issues. For example,
the function f (z) = esin z of infinite order is a solution of the difference equation
f (z + π) f (z) = 1, and f and g(z) = e2−sin z share the values 0, e,∞ CM. The hyper-order

ρ2( f ) := lim sup
r→+∞

log log T (r, f )
log r

of f is 1. There is an extension of the difference analogue of the lemma on the
logarithmic derivative for functions with ρ2( f ) < 1 (see [5]) and it seems that the
hypotheses of our Theorem 1.1 may be weakened to include such functions. However,
the finite-order assumption on f is essential in our proof (see the discussions following
equation (2.4)) and we are not able to see whether or not our result holds for functions
with small hyper-order of growth.

2. Proof of theorem 1.1

In this section, we shall prove Theorem 1.1. We use the following results, the first
of which is Theorem 3.2 of Halburd and Korhonen [4] or Theorem 2.4 of Laine and
Yang [12].

Lemma 2.1. Let f (z) be a transcendental meromorphic solution of finite order to the
difference equation (1.2). If H(z, a) . 0 for a small function a of f , then

m
(
r,

1
f − a

)
= S (r, f ). (2.1)

Lemma 2.2. If f is a transcendental meromorphic solution of finite order to (1.2), then

m(r, f ) = S (r, f ). (2.2)

Proof. By Laine and Yang [12, Theorem 2.3],

m(r, I(z, f )) = S (r, f ),

https://doi.org/10.1017/S0004972715000787 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972715000787


[4] Meromorphic solutions of Malmquist-type difference equations 95

where we recall that I(z, f ) =
∑n

j=1 a j f (z + c j). On the other hand, since p ≤ q = n,

T (r, I(z, f )) = T
(
r,

P( f )
Q( f )

)
= nT (r, f ) + S (r, f ).

By Chiang and Feng [2, Theorem 2.2], it follows that

nN(r, f ) ≥ N(r, I(z, f )) + S (r, f ) = T (r, I(z, f )) + S (r, f ) = nT (r, f ) + S (r, f ).

Thus, we see that T (r, f ) = N(r, f ) + S (r, f ), that is, m(r, f ) = S (r, f ). �

Proof of theorem 1.1. Since f and g share e1, e2 and ∞ CM, Nevanlinna’s second
main theorem gives

T (r, f ) ≤ N(r, f ) + N
(
r,

1
f − e1

)
+ N

(
r,

1
f − e2

)
+ S (r, f )

= N(r, g) + N
(
r,

1
g − e1

)
+ N

(
r,

1
g − e2

)
+ S (r, f ) ≤ 3T (r, g) + S (r, f ).

Similarly, we have T (r, g) ≤ 3T (r, f ) + S (r, g). Thus, ρ(g) = ρ( f ) <∞ and

T (r, f ) = T (r, g) + S (r, f ).

This follows from a result of Brosch [1]; see, for example, Yang and Yi [14, Section
5.5.2].

In addition, there exist two polynomials α, β such that
f − e1

g − e1
= eα and

f − e2

g − e2
= eβ. (2.3)

Thus, T (r, eα) ≤ T (r, f ) + T (r, g) + O(1) ≤ 2T (r, f ) + S (r, f ) and T (r, eβ) ≤ 2T (r, f ) +

S (r, f ).
When eα = 1, eβ = 1, or eα−β = 1, it is easy to see that f = g. We now suppose that

f , g and aim to deduce a contradiction. Define γ := β − α. By (2.3),

f = e1 + (e2 − e1)
eβ − 1
eγ − 1

. (2.4)

Therefore, T (r, f ) ≤ T (r, eα) + T (r, eβ) + S (r, f ), so that max{ρ(eα), ρ(eβ)} = ρ( f ).
Substituting the representation of f from (2.4) into (1.2) leads to

p∑
k=0

bk

[
e1 + (e2 − e1)

eβ(z) − 1
eγ(z) − 1

]k

=

{ n∑
j=1

a j

[
e1 + (e2 − e1)

eβ(z+c j) − 1
eγ(z+c j) − 1

]}{ q∑
l=0

dl

[
e1 + (e2 − e1)

eβ(z) − 1
eγ(z) − 1

]l}
.

Write eβ(z+c j) = eβ(z)+s j(z) and eγ(z+c j) = eγ(z)+t j(z). Here, s j and t j are polynomials of
degrees at most deg β − 1 and deg γ − 1, respectively. Since p ≤ q = n, we can rewrite
the above equation as

p∑
µ=0

2n∑
ν=0

aµ,ν eµβ+νγ =

n+1∑
µ=0

2n∑
ν=0

bµ,ν eµβ+νγ,
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where aµ,ν, bµ,ν are either 0 or polynomials in a j, bk, dl and es j , et j whose coefficients
are polynomials in e1, e2. By combining terms, this yields

n+1∑
µ=0

2n∑
ν=0

Aµ,ν eµβ+νγ = 0,

where Aµ,ν are completely determined by aµ,ν, bµ,ν or 0. In particular, we observe that

A0,2n =

( n∏
m=1

etm
)[( n∑

j=1

a je1

)( q∑
l=0

dlel
1

)
−

( p∑
k=0

bkek
1

)]
=

( n∏
j=1

et j

)
H(z, e1) , 0,

A0,0 =

( n∑
j=1

a je2

)( q∑
l=0

dlel
2

)
−

( p∑
k=0

bkek
2

)
= H(z, e2) , 0.

(2.5)

Next, we will prove that

deg β = deg γ = deg(µβ + νγ) = deg(µβ − νγ) (2.6)

for any µ, ν ≥ 0 such that (µ, ν) , (0, 0).
First, we claim that, for an integer d ≥ 0,

degα = deg β = deg γ = d. (2.7)

Suppose that eβ − 1 and eγ − 1 have a largest common factor ξ, so that eβ − 1 = ξβ1
and eγ − 1 = ξγ1, where ξ, β1, γ1 are entire functions such that β1, γ1 have no common
nonconstant factor. From (2.4), f = e1 + (e2 − e1)β1γ

−1
1 and, from (2.1) and (2.2),

T (r, f ) = m
(
r,

1
f − e1

)
+ N

(
r,

1
f − e1

)
+ O(1) = N

(
r,

1
β1

)
+ S (r, f ),

T (r, f ) = m(r, f ) + N(r, f ) + O(1) = N
(
r,

1
γ1

)
+ S (r, f ).

Furthermore,

T (r, eβ) = N
(
r,

1
eβ − 1

)
+ S (r, f ) = N

(
r,

1
β1

)
+ N

(
r,

1
ξ

)
+ S (r, f )

= T (r, f ) + N
(
r,

1
ξ

)
+ S (r, f )

and

T (r, eγ) = N
(
r,

1
eγ − 1

)
+ S (r, f ) = N

(
r,

1
γ1

)
+ N

(
r,

1
ξ

)
+ S (r, f )

= T (r, f ) + N
(
r,

1
ξ

)
+ S (r, f ).

Combining the preceding equalities yields

T (r, eβ) = T (r, eγ) + S (r, f ).
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On the other hand, it is easy to see that

f = e2 + (e2 − e1)
(eβ − 1
eγ − 1

− 1
)

= e2 + (e2 − e1)
eα − 1
eγ − 1

eγ,

so, by applying the same analysis to eα − 1 and eγ − 1,

T (r, eα) = T (r, eγ) + S (r, f ).

This proves (2.7) and, as a result, ρ(eα) = ρ(eβ) = ρ(eγ) = ρ( f ).
Next, we will prove that, when µν , 0,

deg (µβ + νγ) = d. (2.8)

On the contrary, suppose that deg (µβ + νγ) < d. For brevity, write Ξ1 := eµβ+νγ. Then
Ξ1 is a small function of e−α by (2.7), so that

T (r,Ξ1 e−µα) = T (r, e−µα) + S (r, f ) = T (r, eµα) + S (r, f ) = µT (r, eα) + S (r, f ).

On the other hand, using (2.7) again,

T (r,Ξ1 e−µα) = T (r, e(µ+ν)(β−α)) = T (r, e(µ+ν)γ)
= (µ + ν)T (r, eγ) + S (r, f ) = (µ + ν)T (r, eα) + S (r, f ).

That is, ν = 0, which is a contradiction, so that (2.8) is confirmed.
Finally, we will prove that, when µν , 0,

deg (µβ − νγ) = d. (2.9)

On the contrary, suppose that deg (µβ − νγ) < d. For brevity, write Ξ2 := eµβ−νγ. Then
Ξ2 is a small function of e−α by (2.7). If µ ≥ ν,

T (r,Ξ2 e−µα) = T (r, e−µα) + S (r, f ) = T (r, eµα) + S (r, f ) = µT (r, eα) + S (r, f ).

On the other hand, using (2.7) again,

T (r,Ξ2 e−µα) = T (r, e(µ−ν)(β−α)) = T (r, e(µ−ν)γ)
= (µ − ν)T (r, eγ) = (µ − ν)T (r, eα) + S (r, f ).

That is, ν = 0, which is a contradiction. If ν ≥ µ, we use Ξ−1
2 = e−(µβ−νγ) instead to

observe that

T (r,Ξ−1
2 eνα) = T (r, eνα) + S (r, f ) = ν T (r, eα) + S (r, f ).

On the other hand, using (2.7),

T (r,Ξ−1
2 eνα) = T (r, e−(µβ−νγ)eνα) = T (r, e(ν−µ)β)

= (ν − µ)T (r, eβ) + S (r, f ) = (ν − µ)T (r, eα) + S (r, f ).

That is, µ = 0, which is a contradiction again. Hence, (2.9) and thus (2.6) follow.
By definition, we easily notice that

T (r, Aµ,ν) = S (r, eµβ+νγ) and T (r, Aµ,ν) = S (r, eµβ−νγ).

Thus, by Borel’s lemma (see for example [14, Theorem 1.51]), we have Aµ,ν ≡ 0. This
clearly contradicts (2.5), and so completes the proof. �
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98 F. Lü, Q. Han and W. Lü [7]
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