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Gravity currents are a ubiquitous density-driven flow occurring in both the natural
environment and in industry. They include: seafloor turbidity currents, primary vectors of
sediment, nutrient and pollutant transport; cold fronts; and hazardous gas spills. However,
while the energetics are critical for their evolution and particle suspension, they are
included in system-scale models only crudely, so we cannot yet predict and explain the
dynamics and run-out of such real-world flows. Herein, a novel depth-averaged framework
is developed to capture the evolution of volume, concentration, momentum and turbulent
kinetic energy from direct integrals of the full governing equations. For the first time,
we show the connection between the vertical profiles, the evolution of the depth-averaged
flow and the energetics. The viscous dissipation of mean-flow energy near the bed makes a
leading-order contribution, and an energetic approach to entrainment captures detrainment
of fluid through particle settling. These observations allow a reconsideration of particle
suspension, advancing over 50 years of research. We find that the new formulation can
describe the full evolution of a shallow dilute current, with the accuracy depending
primarily on closures for the profiles and source terms. Critically, this enables accurate
and computationally efficient hazard risk analysis and earth surface modelling.

Key words: gravity currents, shallow water flows, particle/fluid flow

1. Introduction
Gravity currents are fluid flows driven across a horizontal or shallowly sloped boundary by
a density difference with the surrounding fluid. These include industrial accidents such as
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the spreading of toxic gas (Rottman, Simpson & Hunt 1985), the failure of carbon dioxide
pipelines (Liu et al. 2019) and oil spills (Hoult 1972), along with environmental flows
such as cold fronts, katabatic winds, salinity currents (Simpson 1982, 1997) and currents
within frozen lakes (Jansen et al. 2021). In submarine environments, suspended particle
loads cause an excess of density over the surrounding ambient water, generating a gravity
current. These particle-driven turbidity currents play a dominant role in oceanic transport
processes, distributing particulates, nutrients and pollutants from the continental margin
to the deep ocean, preserving a record of palaeo-environments, and posing a hazard to
submarine infrastructure such as cables and pipes (Hsu et al. 2008; Carter et al. 2015). The
run-out of these currents is impressive, some currents traversing thousands of kilometres
(Lewis 1994; Savoye et al. 2009), and the cumulative deposits can be enormous, up to
107 km3 (Curray, Emmel & Moore 2002). Consequently, the dynamics of these currents is
of practical interest (Reece, Dorrell & Straub 2024).

1.1. Background
To maintain their excess density, turbidity currents must suspend their particle load
(Wells & Dorrell 2021). Early investigation into the energetics of particle suspension was
performed by Knapp (1938) and Bagnold (1962). They investigated the auto-suspension
for steady currents on sloped beds, where an arbitrarily large amount of particles of a
particular size can be transported by a current. These authors observed that, for flow
downhill, the driving force of the current was enhanced by having an additional particle
in suspension due to the mass of the particle. When the energy required to lift a particle
against settling was below the energy provided by the increased driving force then having
the particle in suspension was a net gain to the current’s energy, and auto-suspension
was possible. However, this analysis gives no thought to the means by which the work
done by the downslope force turns into work uplifting particles, which will involve
energy losses so that the Knapp–Bagnold condition is necessary but not sufficient. As
discussed by Bagnold (1966), the uplift of particles is turbulent in nature. Consequently,
it is understood that the downslope force maintains the speed of the current against
Reynolds stresses, the energy lost to Reynolds stresses transferred to entrained fluid and
the turbulent kinetic energy (TKE), and this turbulence uplifts the particles as a buoyancy
flux. In turbidity currents, the bulk energetics of this process has been captured in the
model of Parker, Fukushima & Pantin (1986) by depth averaging the governing equations.
The model captures the self-acceleration that can happen when the work by downslope
gravity exceeds the energy required to suspend particles, resulting in an igniting current
that progressively increases in both volume and sediment mass.

After four decades the model presented by Parker et al. (1986), and similar depth-
average shallow-water models (Bonnecaze, Huppert & Lister 1993), remain a foundation
for the theoretical understanding of turbidity currents (Wells & Dorrell 2021; Wahab
et al. 2022; Talling et al. 2023). The depth-average model itself captures the body of the
current, which is well approximated as hydrostatic; the non-hydrostatic front of the current
must be captured separately as a boundary condition (Benjamin 1968; Ungarish & Hogg
2018). Depth-average models in general are used across the breadth of gravity current
research (Stoker 1957; Ellison & Turner 1959; Huppert 2006; Meiburg, Radhakrishnan &
Nasr-Azadani 2015; Ungarish 2020). These models are mathematically simple, and can
therefore be used to analyse idealised gravity current dynamics such as collision with
obstacles (Skevington & Hogg 2020, 2023, 2024; Hogg & Skevington 2021) or flow over
an edge (Momen et al. 2017; Ungarish, Zhu & Stone 2019; Skevington, Hogg & Ungarish
2021). In addition to the conceptual insights they provide, there is a substantial reduction in
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complexity from a three-dimensional model which would be simulated directly, or through
a large-eddy or Reynolds-averaged approach, to a depth-average model. This simplicity
results in a substantial increase in the spatial and temporal scales which can be simulated.
For example, Wahab et al. (2022) were able to simulate the morphodynamic evolution
of the submarine fans generated by turbidity currents over geophysical scales. Similarly,
vast numbers of large-scale events must be simulated for the hazard forecasting and risk
management of other classes of gravity currents, such as hazardous gas spills, avalanches
and pyroclastic density currents. Thus, it is important to continue the development of the
depth-average modelling framework to ensure accurate prediction.

For accurate prediction of particle-driven currents, depth-average models must
accurately capture the energetics. The energy expended to hold the particles in suspension
consumes the TKE of the current. It is entirely possible for the sinks of TKE from uplift
and viscous dissipation to exceed production, at which point the turbulent energy begins
to decrease. In equilibrium simulations, it has been shown that there is a sharp threshold,
with the magnitude and distribution of TKE varying weakly with settling velocity until a
total collapse of the turbulence at a critical value (Cantero, Shringarpure & Balachandar
2012; Shringarpure, Cantero & Balachandar 2012) which has been confirmed empirically
(Eggenhuisen, Cartigny & de Leeuw 2017). Out of equilibrium, being overloaded with
particles does not necessarily result in a collapse of turbulence, instead causing deposition
to a reduced sediment load (Dorrell, Hogg & Pritchard 2013). There is evidence that after
transition onto a shallow slope the self-acceleration feedback sometimes runs in reverse, a
reduction in driving force causing less turbulence causing particle deposition causing less
driving force, resulting in a sudden deposition of the full transported load (Talling et al.
2007).

1.2. Motivation
We ask the question: Are the energetics predicted by Parker et al. (1986) reliable? There
is a substantial simplification in the derivation of the model to a top-hat profile, wherein
the velocity, concentration and TKE are uniform up to some depth, above which they
discontinuously vanish. A more general approach incorporates the key effects of the
profiles through shape factors. Top-hat models are not realistic, Parker et al. (1987)
show that the shape factors change by 38 % in real experimental flows, increasing to
45 % in the work of Islam & Imran (2010). Moreover, it was shown in Dorrell et al.
(2014) that including the shape in a depth-average model results in considerably different
predictions. While the simplification to top-hat models is not always present (e.g. Sher
& Woods 2015; Negretti, Flòr & Hopfinger 2017), the models being used to predict
the bulk energetics of gravity currents do not account for realistic profiles of velocity
and density, and the considerable differences caused by shape factors indicates that the
energetics are not reliably captured. For the discussion going forward, it will be important
that the derivation of Parker et al. (1986) eliminates any explicit inclusion of turbulence
beyond a quantification of the TKE. They show that, under the top-hat assumption, there
is a consistency relationship between the turbulent production (which passes energy from
the mean-flow kinetic energy to the TKE) and other properties of the flow (basal drag
and entrainment of ambient). A similar consistency relationship exists for the buoyancy
flux (energy from TKE to gravitational potential energy (GPE)). Thus, it is not possible
to specify either of these effects, and instead they are implied by the model. In Parker
et al. (1987) the assumption of a top-hat flow structure is relaxed, but no equivalent
consistency relationships for the turbulence are provided. This makes it appear as though
no such relationships exist and the turbulence requires some additional closure. However,
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this cannot be the case: there is nothing special about the top-hat model except for its
analytical simplicity. The consistency relationships do exist, they are just complicated and
unstated. To upgrade the modelling framework to one which includes the vertical profiles,
a new model is required similar to Parker et al. (1987) but which eliminates the turbulent
production and uplift like in Parker et al. (1986). We also require explicit expressions
for the consistency relationships, to ensure model closures such as vertical profiles and
entrainment produce the correct energetics.

Work by Toniolo et al. (2006) highlighted another connected deficiency in the standard
formulation: how entrainment is modelled. The particle settling velocity should reduce
the extent to which fluid is entrained, and in the non-turbulent case fluid should be
detrained (Toniolo et al. 2006; Dorrell & Hogg 2010). This deficiency arises because we
are parametrising the effect of the turbulent energetics in mixing the fluid, and not the
turbulent energetics themselves: previous authors have stressed that the physical origin
of entrainment is the turbulent buoyancy flux (Strang & Fernando 2001; Odier, Chen
& Ecke 2014). Arneborg et al. (2007) and Wells, Cenedese & Caulfield (2010) have
formulated a top-hat model of compositional currents where the buoyancy flux replaces
entrainment. Would an interpretation of entrainment in terms of buoyancy flux give rise
to the particulate effects discussed by Toniolo et al. (2006), Bolla Pittaluga, Frascati &
Falivene (2018) and Ma et al. (2024)?

The present paper answers the questions above. First, we build a new model which
allows for the specification of vertical structure, but otherwise requires an identical set
of closures to Parker et al. (1986), and we present the consistency relationships for the
implied turbulent processes. Thus, this model is a direct generalisation. By representing
entrainment in the same way, this first model inherits the same problems when it comes to
closing entrainment, and questions arise around the effect of particle settling. We present
an alternative model where we shift from requiring a closure for entrainment to a closure
for buoyancy flux, which is enabled by our consistency relationships. This alternative
model naturally includes the type of particulate effects demonstrated by Toniolo et al.
(2006).

Exploration of the energetics is further motivated by the results of Fukuda et al. (2023)
who demonstrated that the top-hat model (Parker et al. 1986) has a missing source of
energy, and postulated that these arise from the flow profiles. Here, we show that this is in
part true, the profiles of velocity and density give rise to a large number of additional terms
which cannot be neglected at leading order. However, a pseudo-equilibrium balance can
be established wherein the effects of profiles, while important, do not resolve the energetic
imbalance. Instead, this is resolved by two changes: the change in how entrainment is
incorporated into the model, and the inclusion of the viscous dissipation of mean-flow
energy.

1.3. Structure
This paper is structured as follows. We first derive the depth-average model in § 2, starting
from a three-dimensional system of equations (§ 2.1), averaging over depth (§ 2.2) and
discussing how to interpret the equations as a predictive model (§ 2.3). We then derive
the rates of transfer between the different energies in the current (§ 3.1), which are the
consistency relationships for model closures (§ 3.2). The full model is compared with
simulations, showing the importance of flow shape (§ 4.1) and mean-flow dissipation
(§ 4.2). We then discuss the difficulties of defining the depth and entrainment in gravity
currents (§ 5.1), an alternative approach in terms of buoyancy flux (§ 5.2) and how this
give rise to alternative model which incorporates particulate effects (§ 5.3). Particle auto-
suspension in turbidity currents is discussed in § 6. We highlight future research directions
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Figure 1. The configuration of the turbidity current, with the bed in grey, ambient in blue and current in brown
fading toward blue in the less concentrated upper regions. (a) A two-dimensional slice oriented with the vertical
direction up for the case when x is the downslope direction. (b) A three-dimensional view oriented with respect
to the coordinate system.

in § 7 and conclude in § 8. Appendices are provided discussing the dimensional scales
within gravity currents (Appendix A), comparing with the variables used by Ellison &
Turner (1959) (Appendix B), the depth average (Appendix C) and the depth-rescaling
symmetry group (§ D). The supplementary material includes details of the ensemble
averaging in § 2.1 and algebraic manipulations in § 3.1.

2. The generalised depth-average model
Here, we carefully derive the generalised depth-averaged model for a gravity current, as
depicted in figure 1. The model is constructed following similar arguments to Parker et al.
(1986). The derivation is presented to enable us to detail the reduced set of assumptions
about the shape of the velocity, density and turbulence profiles. We begin in § 2.1 with the
three-dimensional system of equations (2.1), which have been simplified by the scaling
analysis in § A. Then, in § 2.2, we average the simplified three-dimensional system over
the depth using the results in Appendix C to obtain the generalised system (2.16)–(2.22),
which is interpreted in § 2.3.

The system of equations is derived for a particle-driven turbidity current. However, the
essential feature that we rely upon is that the excess density of the current is linearly
dependent on some scalar, φ, which is advected by the current up to some velocity offset.
A thermal or salinity current could be captured by the model by taking φ to be the
temperature or salinity anomaly and neglecting settling and erosion.

2.1. The three dimensional system
We define a coordinate system (x, t) = (x, y, z, t), where t is time. The z direction is
approximately bed normal with b(x, y) the bed elevation (slowly varying) and the current
exists in the region z > b. The coordinate system is not necessarily so that z is vertical, so
that the first two components of gravity g need not be zero. We denote the angle of z to the
vertical by θ so that g3 = −g cos θ . In later sections (§§ 4 and 6) we restrict ourselves to a
two-dimensional bottom current where 0 < θ < π/2, g1 = g sin θ and g2 = 0, as depicted
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in figure 1; we do not make these assumptions in the derivation. Velocity is denoted by
u = (u, v, w) and volumetric concentration of particles by φ.

Our goal is to represent each property of the flow field as a depth-averaged quantity
multiplied by a relatively steady shape function (i.e. slowly varying in x, y, t). Due to the
turbulent nature of the flow each variable, say f , has high wavenumber and high frequency
fluctuations. For this reason we introduce Reynolds averaging, specifically ensemble
averaging, with the average of a function f denoted f and fluctuation f ′ = f − f (e.g.
Drew & Passman 1999; Pope 2000). The averaged variables, f , are sufficiently smooth to
have their profiles represented by a slowly varying shape.

The (constant) density of water is ρ f and the density of the particles is ρs (ρs > ρ f
for bottom currents); it is assumed that the only density variations come from the
concentration so that the current density is ρ = ρ f + φ(ρs − ρ f ). It is assumed that the
particles are non-cohesive, dilute (φ � 1) and Boussinesq (Rφ � 1 where R = (ρs −
ρ f )/ρ f ) so that the bed elevation can be treated as constant in time and there are no high-
concentration effects on the flow such as hindered settling or concentration dependent
rheology.

To ensure that the the model only includes leading-order effects we introduce
dimensional scales. We employ a time scale T , and length scales Li corresponding to
the length (i = 1), width (i = 2) and depth (i = 3) of the current. The current is assumed
to be shallow, that is Lα � L3 for α ∈ {1, 2}. (Throughout, the subscripts α, β, γ will be
used for indices limited to 1, 2.) This also aligns the coordinate system: ∂b/∂xα scales
as L3/Lα � 1, the bed elevation is slowly varying. Considering the rotation of the
coordinate system θ , the bed can be quite steep provided that Lα/L3 � |tan θ | in the
downslope direction. We assume the averaged velocities ui scale as Ui = Li/T , this can
be viewed as a definition of the time scale. The scales of the turbulent transport terms are
approximated by an eddy viscosity model. The details of the scaling analysis are given in
Appendix A. Eliminating the small terms we deduce that at leading order

∂u j
∂x j

= 0, (2.1a)

∂φ

∂t
+ ∂

∂x j

(
u j φ

)+ ∂

∂z

(
w̃φ + J3

)
= 0, (2.1b)

∂uα

∂t
+ ∂

∂x j

(
u j uα

)
− ∂

∂z

(
τ R3α + ν

∂uα

∂z

)
+∂pT

∂xα

= Rgαφ for α ∈ {1, 2}, (2.1c)

∂pT

∂z
= Rg3φ, (2.1d)

∂k

∂t
+ ∂

∂x j

(
u j k
)

+ ∂T3

∂z
= P̃ − ε̃K + Rg3 J3, (2.1e)

which represent conservation of volume, particles, x and y momentum, z momentum and
TKE, respectively. For three-dimensional variables (as used here) we use the convention
that repeated indices should be summed over {1, 2, 3}. We denote the constant settling
velocity of the particles by ũ (w̃ < 0 for dense particles in a bottom current), the transport
of particles by J , the Reynolds stress by τ R , the viscosity by ν, the combined effect of
pressure and TKE relative to the hydrostatic ambient by pT and the TKE by k which is
transported by T , produced by P̃ and the dissipated by ε̃K . The hydrostatic approximation
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is common across the gravity current literature (e.g. Ellison & Turner 1959; Parker et al.
1986; Bonnecaze et al. 1993; Ungarish 2020).

The form of the system (2.1) is generic, and can be derived by averaging a variety of
models of dilute Boussinesq particle-laden flow. Following Parker et al. (1986), a simple
approach is applicable to situations where the particles are smaller than the Kolmogorov
length scale. From the perspective of the turbulent micro-scales the particles act as a
concentration field φ, similar to a concentration of salinity but moving at a speed u + ũ,
where by diluteness the velocity of the mixture is the same as the velocity of the fluid, and
k = (1/2)u′

i u
′
i . Averaging we obtain (2.1) (strictly the unsimplified system (A1)) with

τ Ri j = −u′
i u

′
j , Tj = 1

ρ
u′
j p

′ + 1
2u

′
j u

′
i u

′
i − ν

∂k

∂x j
, P̃ = τ Rji

∂ui
∂x j

, (2.2)

J j = u′
jφ

′, ε̃K = ν
∂u′

i

∂x j

∂u′
i

∂x j
. (2.3)

The particles are moved by the coherent fluctuations of the concentration and velocity, and
energy in these velocity fluctuations dissipated by viscosity.

For larger particles, we must use a more rigorous phase-averaging approach. We use the
results in Drew & Passman (1999), and the details are provided in the supplementary
material. We will state the non-dilute version of the definitions of variables and later
impose the dilute assumption. The velocity field of the mixture is the weighted average
of the velocity of the fluid and solid phases

u = 1

ρ

(
φρ f u f + (1 − φ)ρsus

)
. (2.4)

In this formalism, the concentration is only defined during the ensemble average so that
φ = φ. The particles move relative to the the mixture for two reasons, settling ũ and
turbulent effects u, so that

us = u + ũ + u. (2.5)

The TKE is defined as

k = ρu ju j − ρ u j u j

2ρ
. (2.6)

In the dilute limit, u tends to u f , k tends to (1/2)u′
i u

′
i and the expressions in (2.2) apply.

However, the transport of particles and the viscous dissipation appear different

J j := φu j , ε̃K := ν
∂u′

i

∂x j

∂u′
i

∂x j
− Rφgi ũi . (2.7)

The particles are transported by relative motion of the particle phase to the mixture, this
relative motion a consequence of turbulence. The settling velocity is, by definition, that
velocity at which the work done by gravity due to the settling motion is precisely balanced
by the viscous dissipation in the fluid, and we take ε̃K to represent all other viscous
dissipation of TKE.

The boundary conditions for (2.1) (strictly the unsimplified system (A1)) are as follows.
At the bed we impose no slip, i.e.

u j = u′ = v′ = 0 for z = b(x, y). (2.8a)
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Over a rigid bed we additionally have w′ = J3 = 0, and the treatment of the viscous
boundary layer at the bed requires care (important in the analysis of §§ 4 and 6); for this
reason, we include the full wall boundary layer in the model. For flows over an erosional
bed we allow w′ �= 0, J3 �= 0, so that the erosion is captured by J3. In the far field we
require

u′
j = J j = φ = pT = p′ = 0 for z = H(x, y, t). (2.8b)

In Parker et al. (1986, 1987), z = H is taken to be z → ∞, and it is also assumed that
u = v = 0 in the far field, so that all entrainment comes from the w at z → ∞. A similar
approximation is used for jets, mixing layers, wakes and boundary layers (e.g. Pope 2000).
The entrainment velocity is then defined, for a top-hat model, as

we = ∂h

∂t
− w

∣∣∣∣∣
z→∞

. (2.8c)

The function h(x, y, t) is termed the depth of the current: for a top-hat model this is
the location of the interface between the current and ambient. In gravity currents, the
approximation z → ∞ works well under a deep quiescent ambient fluid which is our
primary focus, but interpretation becomes problematic with a weakly counterflowing
ambient. We use a more careful formulation with z = H some interface beyond the
strong influence of the gravity current, but still with H − b∼ L3. This change does not
alter the depth-average model but aids interpretation. The equivalent condition in our
formulation is

we = ∂

∂t
(ςhh) +

( 2∑
α=1

uα

∂H

∂xα

− w

)∣∣∣∣∣
z=H

. (2.8d)

We require that, at the elevation z = H , uα (α ∈ {1, 2}) are small compared with their
values within the current so that minimal momentum is transferred between the ambient
and the current, uαH � Uα . In turbulent flow we > 0, the flow entrains ambient fluid. The
depth function h, the inclusion of the factor ςh , and other consequences of this definition
are explored in § 5. For now we simply note that typically ςh ≈ 1.

We close this subsection by performing some manipulations of the system (2.1). Firstly,
the mean-flow kinetic energy (MKE) equation is obtained by multiplying (2.1c) by uα and
summing over α ∈ {1, 2} and adding (2.1d) times w, giving

∂e

∂t
+ ∂

∂x j

(
u j e+ u j p

T
)

− ∂

∂z

2∑
α=1

(
τ R3α + ν

∂uα

∂z

)
uα = −P̃ − ε̃M + Rg ju j φ, (2.9)

where

e := 1
2

2∑
α=1

uα

2
, ε̃M :=

2∑
α=1

ν
∂uα

∂z

∂uα

∂z
. (2.10)

Technically, e is only the portion of the full kinetic energy resulting from the x, y
components of the mean flow; this expression arises naturally under the shallow
assumption L1, L2 � L3 and turns out to be the useful quantity in this context. Secondly,
the GPE that would be released if the excess mass of the current Rφ was moved
from elevation z to b is Rg(z − b)φ cos θ . The evolution equation for (z − b)φ is,
by (2.1b),
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∂

∂t
(z − b)φ + ∂

∂x j
(z − b)u j φ + ∂

∂z
(z − b)

(
w̃φ + J3

)
= [w + w̃]φ + J3 −

2∑
α=1

∂b

∂xα

uα φ. (2.11)

Again, technically this is not the full GPE, which is Rgi xiφ, but the portion of the GPE
that turns out to be the useful quantity for shallow flows.

2.2. Averaging over the depth
The equations in § 2.1 are integrated over the depth b≤ z ≤ H . The resulting system of
equations is written in terms of the depth-averaged variables

Φ = 1
h

∫ H

b
φdz, U1

1
h

∫ H

b
u1dz, U2 = 1

h

∫ H

b
u2dz, K = 1

h

∫ H

b
kdz.

(2.12)

Recall that, in general, h �= H − b, and that under a deep quiescent ambient we may
take H → ∞ to simplify. For the concentration field φ (as an example) at a single
point in (x, y, t), the depth average Φ has eliminated all information about the variation
of concentration with z. We carry this information forwards using a shape function
ξφ = φ/Φ which describes the variation of concentration relative to the depth average. It
is informative to write the shape function not as a function of z but of ζ := (z − b)/h. For
some gravity currents, a careful choice of h will enable the shape functions to be invariant
with respect to (x, y, t), all profiles of φ being the same up to a rescaling in magnitude,
Φ, and a vertical stretch, h; self-similarity. Generalising to all variables the decomposition
takes the form

φ(x, y, z, t) = ξφ(x, y, ζ, t) · Φ(x, y, t), (2.13a)

u1(x, y, z, t) = ξ1(x, y, ζ, t) ·U1(x, y, t), (2.13b)

u2(x, y, z, t) = ξ2(x, y, ζ, t) ·U2(x, y, t), (2.13c)
k(x, y, z, t) = ξk(x, y, ζ, t) · K (x, y, t), (2.13d)

where ξφ , ξ1, ξ2 and ξk are shape functions satisfying∫ ζH

0
ξ•(x, y, ζ, t)dζ = 1, ζH := H − b

h
. (2.13e)

Consequently, Φ, U1, U2 and K are the depth-average values of density, velocity and
TKE, while ξφ , ξ1, ξ2 and ξk capture the shape of the current. In particular, the expressions
defined in table 1 are the features of the shape that influence the averaged properties of the
current. The majority of the shape factors are of the form

σAB =
∫ ζH

0
ξAξBdζ, or σABC =

∫ ζH

0
ξAξBξCdζ, (2.14)

where we use ξz = 2ζ . The exceptions are indicated by the σ̃• or ς• notation. Note that
our choice of normalisation (2.13e) and shape factors (table 1 and figure 2) are different to
those used by some authors, see Appendix B.

There are two special cases of flows we will consider, along with the general case.
Firstly, when the shape of the current is in self-similar form, the shape functions do not
depend on x , y or t , meaning the shape factors in table 1 are constants. Secondly, for
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Definition Equations Top-hat

ςh See (2.8d and § 5.1) 2.16 1
σzφ 2

∫ ζH
0 ζ ξφ dζ 2.18a 2.20a 2.23 1

σαβ

∫ ζH
0 ξαξβ dζ 2.18a 2.19a 2.23 1

σαβγ

∫ ζH
0 ξαξβξγ dζ 2.19a 2.22a 1

σαφ

∫ ζH
0 ξαξφ dζ 2.17 2.19b 2.20b 2.22b 1

σαk
∫ ζH

0 ξαξk dζ 2.21a 2.22a 1
σαzφ 2

∫ ζH
0 ξαζ ξφ dζ 2.20a 1

σ̃αzφ 2
∫ ζH

0

∫ ζ1
0 ξα |ζ2 · ξφ |ζ1 dζ2dζ1 2.19a 1

ςαzφ (1/2)(σαzφ + σ̃αzφ) 2.22a 1
σ̃Dαzφ 2

∫ ζH
0

∫ ζ1
0 ∂ξα/∂xα |ζ2 · ξφ |ζ1 dζ2dζ1 3.6 0

ςφ ξφ |ζ=0 2.17 ςφ

Table 1. Definitions and properties of the shape factors. In the definitions we use the subscripts α, β, γ to
indicate numerical values of 1 or 2. We state the equations in this section where the shape factor appears, or
else the first equation where it appears. The values for top-hat flow are calculated using (2.15).

ςh

ς1zφ

ςφ

σzφ

σ1zφ

σ̃1zφ

σ1φ

σ1k

σ111

0.3 0.5 0.7 0.9 1 3 5

Altinakar (1988)

Breard & Lube (2017)

Brosh & Lube (2020)

Fukuda et al. (2023)

Eggenhuisen et al. (2020)

Farizan et al. (2019)

García (1993)

Islam & Imran (2010)

Koller et al. (2022)

de Leeuw et al. (2017)

Pohl et al. (2020)

Sequeiros et al. (2018)

Simmons et al. (2020)

Tesakar (1969)

Varjavand et al. (2015)

Michon et al. (1955)

Packman & Jerolmack (2004)

Figure 2. Violin plots of the distribution of values that each shape factor can take, computed from the dataset
compiled by Fukuda et al. (2023) (Simmons et al. (2020) are field data, all others are experimental). For each
shape factor (marked to the left) we plot the probability density for the distribution (computed using a kernel
method) as a black line. In the computation, the data are weighted to account for the large number of samples
from some sources. The data points for each shape factor are plotted at the horizontal location of their value,
and given a random vertical displacement within the kernel. Here, h is calculated by setting σ11 = 1, and ςh by
(5.1) with δ = 10−2.

top-hat flow, the shape functions take the form

ξφ =

⎧⎪⎨
⎪⎩

0, 1 < ζ,

1, 0 < ζ < 1,

ςφ ζ = 0,

ξ1 = ξ2 = ξk =
{

0, 1 < ζ,

1, 0 < ζ < 1,
(2.15)
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which yields the special values in table 1.
We next integrate the equations in § 2.1 over the depth b≤ z ≤ H using the results in

Appendix C and applying the boundary conditions (2.8) (Ellison & Turner 1959; Parker
et al. 1986). The indices α, β, γ take a value of 1 or 2 and sums range over these values.
Conservation of fluid volume is, by (2.1a),

∂

∂t
(ςhh) +

∑
β

∂

∂xβ

(
hUβ︸︷︷︸

volume flux

)
= Sh = we︸︷︷︸

entrainment velocity

. (2.16)

Conservation of particle volume is, by (2.1b),
∂

∂t
(hΦ) +

∑
β

∂

∂xβ

(
σβφhUβΦ︸ ︷︷ ︸
particle flux

)
= SΦ = − ςφwsΦ cos θ︸ ︷︷ ︸

deposition

+ Es .︸︷︷︸
erosion

(2.17)

Conservation of momentum is, by (2.1c), using (2.1d) to calculate the hydrostatic pressure,

∂

∂t
(hUα) +

∑
β

∂

∂xβ

(
σβαhUβUα︸ ︷︷ ︸
momentum flux

)
+ ∂

∂xα

( 1
2
σzφRgh

2Φ cos θ︸ ︷︷ ︸
pressure

)
= Sα, (2.18a)

Sα = − RghΦ cos θ
∂b

∂xα︸ ︷︷ ︸
pressure on bed slope

− u2
α∗︸︷︷︸

basal drag

+ RgαhΦ.︸ ︷︷ ︸
downslope gravity

(2.18b)

Conservation of MKE is, by (2.9),∑
β

∂

∂t

(
1
2σββhU

2
β

)
+
∑
βγ

∂

∂xβ

(
1
2σβγ γ hUβU

2
γ︸ ︷︷ ︸

MKE flux

)

+
∑
β

∂

∂xβ

(
1
2 σ̃βzφUβRgh

2Φ cos θ︸ ︷︷ ︸
pressure work

)
= SM = S̃M − hP − hBM︸ ︷︷ ︸

energy transfer

, (2.19a)

S̃M =
∑
β

σβφUβRgβhΦ︸ ︷︷ ︸
work by downslope gravity

− hεM︸︷︷︸
MKE dissipation

. (2.19b)

Conservation of GPE is, by the product of (2.11) and Rg cos θ ,
∂

∂t

(
1
2σzφRgh

2Φ cos θ
)

+
∑
β

∂

∂xβ

(
1
2σβzφUβRgh

2Φ cos θ︸ ︷︷ ︸
GPE flux

)
= SG = S̃G + hBM + hBK︸ ︷︷ ︸

energy transfer

,

(2.20a)

S̃G = −
∑
β

σβφUβRghΦ cos θ
∂b

∂xβ︸ ︷︷ ︸
variation in datum

− ws RghΦ(cos θ)2︸ ︷︷ ︸
energy loss to settling

. (2.20b)
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(The variation in datum arises because we measure GPE relative to the local bed elevation
in (2.11)). Conservation of TKE is, by (2.1e),

∂

∂t
(hK ) +

∑
β

∂

∂xβ

(
σβkhUβK︸ ︷︷ ︸

TKE flux

)
= SK = S̃K + hP − hBK︸ ︷︷ ︸

energy transfer

, (2.21a)

S̃K = − hεK︸︷︷︸
TKE dissipation

. (2.21b)

Summing (2.19)–(2.21) yields the equation for conservation of total energy, E ,

∂

∂t
(hE) +

∑
βγ

∂

∂xβ

(
1
2σβγ γ hUβU

2
γ︸ ︷︷ ︸

MKE flux

)

+
∑
β

∂

∂xβ

(
σβkhUβK︸ ︷︷ ︸

TKE flux

+ ςβzφUβRgh
2Φ cos θ︸ ︷︷ ︸

GPE flux and pressure work

)
= SE , (2.22a)

SE = −
∑
β

σβφUβRghΦ cos θ
∂b

∂xβ︸ ︷︷ ︸
variation in GPE datum

+
∑
β

σβφUβRgβhΦ︸ ︷︷ ︸
work by downslope gravity

− hεT︸︷︷︸
total dissipation

− ws RghΦ(cos θ)2,︸ ︷︷ ︸
GPE loss to settling

(2.22b)

where the total energy (per unit mass) is defined as

E =
∑
β

1
2σββU

2
β︸ ︷︷ ︸

MKE

+ K︸︷︷︸
TKE

+ 1
2σzφRghΦ cos θ︸ ︷︷ ︸

GPE

. (2.23)

While we will call E the total energy going forward, it is technically only the portion of the
total energy that is useful for describing shallow flows; see the discussion below (2.10) and
(2.11). Throughout our stating of the depth-averaged system, we have used the definitions
of settling velocity, erosion, basal shear velocity and depth-average total, mean flow and
turbulent dissipation as

ws cos θ = −w̃, Es = J3

∣∣∣∣∣
b

, u2
α∗ = ν

∂uα

∂z

∣∣∣∣∣
b

,

εT = εM + εK , hεM =
∫ H

b
ε̃Mdz, hεK =

∫ H

b
ε̃K dz − T3

∣∣∣
b
.

(2.24)

The terms marked as ‘energy transfer’ are the depth-averaged TKE production, turbulent
buoyancy flux and mean-flow buoyancy flux, defined as

P := 1
h

∫ H

b
P̃dz, (2.25a)

BK := Rg cos θ

h

∫ H

b
J3dz. (2.25b)
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BM := Rg cos θ

h

∫ H

b
w φdz, (2.25c)

respectively. We understand P as the rate of conversion of MKE to TKE, BK as the rate
of conversion of TKE to GPE and BM as the rate of conversion of MKE to GPE.

We briefly note that in figure 2 and other figures going forward, the data considered are
for unidirectional currents (U2 = ∂/∂y = 0) and the depth is defined following Ellison &
Turner (1959) and Parker et al. (1986) by setting σ11 = 1; that is take

h =
(∫ H

b
udz

)2/∫ H

b
u

2
dz. (2.26)

In our analysis h is arbitrary, and will be discussed thoroughly in § 5.

2.3. Interpretation as a classical volumetric model
As discussed in the introduction, the purpose of this derivation is to produce a system
of equations for the same unknown functions as Parker et al. (1986), but allowing for
the imposition of shape functions selected by the modeller to improve accuracy. We have
also incorporated arbitrary slowly varying topography b, again this can be specified by
the modeller, along with generalising to three-dimensional flows (that is, we include
variation in y). The equations governing volume (2.16), particles (2.17) and momentum
(2.18) are precisely these generalisations, and the case ςh = 1 has been used previously
(Dorrell et al. 2014; Sher & Woods 2015; Negretti et al. 2017). For the energetics, we
have derived a set of three equations for the separate contributions from MKE (2.19), GPE
(2.20) and TKE (2.21), along with their sum, which describes the evolution of the total
energy (2.22). Parker et al. (1986) present their model with an equation for the evolution
of TKE, and so we may naively think that (2.21) is the appropriate equation. However,
the key consideration is not the component of energy modelled, but the closures required
to complete the model. As was found by Parker et al. (1986) in their top-hat model, the
energy transfer terms are intimately related to other model closures, and we must therefore
eliminate them from the model. That is not to say these terms are not important (Odier
et al. 2014), but rather that they cannot be specified independently. The only equation
which does not include energy transfer terms is the equation for total energy (2.22). This
forms the model: the functions h, Φ, Uα , K are solved for using the system of equations
(2.16)–(2.18) and (2.22). To close the system the modeller must specify the topography, b,
and shape of the concentration, velocity and turbulence fields through the shape functions
in (2.13) which give rise to the shape factors in the model through the expressions in table
1. Additionally, the modeller must specify the parameters and closures present in the model
from Parker et al. (1986), including entrainment of ambient fluid at speed we, erosion of
the bed at rate Es , drag from the bed with shear velocity uα∗ and viscous dissipation of
energy at rate εT .

3. Consistency requirements for energy transfer
The system of governing equations (2.16)–(2.18) and (2.22) lacks explicit inclusion of the
energy transfer terms defined in (2.25), and yet it forms a closed system of equations
for the unknown functions h, Φ, Uα and K . Consequently, we can eliminate the time
evolution in the additional energetic equations (2.19)–(2.21) to obtain expressions for
P , BM and BK in terms of the source terms and the spatial gradients of the unknown
functions. This allows us to explore the bulk energetics of gravity currents. The expressions
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obtained are, unfortunately, rather complicated, but they give the full implications of the
equations in § 2.2. We endeavour to give some interpretation of the expressions here,
and give simplified expressions in § 4. Verification of these manipulations using the
computer algebra software Maple is provided as supplemental information. We begin with
a derivation of the energy transfer terms in § 3.1, and discuss their use for the development
of energetically consistent model closures in § 3.2.

3.1. Derivation of energetic consistency requirements
We begin by rearranging the equations for MKE (2.19a) and GPE (2.20a) so that the time
derivatives can be easily substituted from the governing equations for volume, particles
and momentum (2.16)–(2.18)

SM = −
⎛
⎝∑

β

1
2
σββU

2
β

⎞
⎠ ∂h

∂t
+
∑
β

σββUβ

∂

∂t
(hUβ) +

∑
β

1
2
hU 2

β

∂σββ

∂t

+
∑
β

∂

∂xβ

⎛
⎝∑

γ

1
2
σβγ γ hUβU

2
γ + 1

2
σ̃βzφUβRgh

2Φ cos θ

⎞
⎠,

(3.1a)

SG = 1
2
σzφRghΦ cos θ

∂h

∂t
+ 1

2
σzφRgh cos θ

∂

∂t
(hΦ) + 1

2
Rgh2Φ cos θ

∂σzφ

∂t

+
∑
β

∂

∂xβ

(
1
2
σβzφUβRgh

2Φ cos θ

)
.

(3.1b)

Due to the structure of the source terms SM , SG and SK , it is not possible to rearrange
them into expressions for P , BK and BM . Instead, two of these can be expressed in terms
of the remaining one. We choose to express P and BK in terms of BM , which yields

hP = −hBM −
(
SM − S̃M

)
, hBK = −hBM +

(
SG − S̃G

)
, (3.2)

with the second equality in the TKE equation (2.21a) then stating simply SE + SK + SG =
S̃E + S̃K + S̃G . The reason for this choice is that BM is a property of the mean flow, and
can therefore be deduced from the equations describing the mean flow, whereas the others
are properties of the turbulence requiring closure. A consequence of this choice is that hP
will be derived as the implied loss of MKE, while hBK is derived as the implied gain of
GPE, and this will be seen in the expressions to follow. To deduce BM , we employ the
continuity equation

∂u

∂x
+ ∂v

∂y
+ ∂w

∂z
= 0, thus w = −

∫ z

b

∂u

∂x
+ ∂v

∂y

∣∣∣
z′dz′. (3.3)

Substituting into the definition of BM (2.25c) and decomposing into shape functions (2.13)
to rewrite in terms of shape factors, we obtain the expression for hBM given below. To
obtain expressions for the other turbulent energy transfers, we begin with the expressions
in (3.2), into which we substitute our expression for hBM , the rearranged energy equations
(3.1) and eliminate time derivatives using the governing equations (2.16)–(2.18). These
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manipulations are algebraically challenging, and verification of the results using the
computer algebra package Maple are provided as supplemental information. Firstly, the
depth-integrated rate of conversion of MKE to TKE is

hP =1
2

⎛
⎝∑

β

σββ

ςh
U 2

β

⎞
⎠we +

∑
β

σββUβu
2
β∗ − hεM

+
∑
β

(σβφ − σββ)UβRhΦ

(
gβ − g cos θ

∂b

∂xβ

)

+ 1
2

∑
βγ

(
−σγγ

ςh
+ 2σγγ σβγ − σβγ γ

)
U 2

γUβ

∂h

∂xβ

+ 1
2

∑
β

(
−σββ

ςh
+ 4σ 2

ββ − 3σβββ

)
hU 2

β

∂Uβ

∂xβ

+ 1
2

∑
β �=γ

⎧⎪⎪⎪⎩ (−σγγ

ςh
+ 2σγγ σβγ − σβγ γ

)
hU 2

γ

∂Uβ

∂xβ

+ 2
(
σγγ σβγ − σβγ γ

)
hUβUγ

∂Uγ

∂xβ

⎫⎪⎪⎪⎭
+
∑
β

(
σββσzφ − ςβzφ

)
UβRghΦ cos θ

∂h

∂xβ

+ 1
2

∑
β

(
σββσzφ − σ̃βzφ

)
UβRgh

2 cos θ
∂Φ

∂xβ

+ 1
2

∑
β

⎧⎪⎪⎪⎩− 1
ςh

∂

∂t

(
ςhσββ

)+∑
γ

(
2σββ

∂σβγ

∂xγ

− ∂σββγ

∂xγ

)
Uγ

⎫⎪⎪⎪⎭hU 2
β

+ 1
2

∑
β

(
σββ

∂σzφ

∂xβ

− ∂σ̃βzφ

∂xβ

+ σ̃Dβzφ

)
UβRgh

2Φ cos θ. (3.4)

The terms in the first line are the energy required to accelerate entrained fluid, the
work done by drag and the MKE lost to viscous effects. The second line results from
an imbalance between work done by downslope gravity on the mean velocity and that
from velocity/density profiles, along with the imbalance of the implied work by varying
GPE datum and the vertical transport of material. The third line is the result of imbalances
in the energy changes associated with varying depth from a changing volume of fluid,
work done by depth-average momentum and the depth-resolved transport of MKE; the
fourth, fifth, and sixth lines similarly with the effect of varying velocity. The seventh and
eighth lines result from an imbalance of work done by the depth-average pressure/GPE
and depth-resolved transport of these quantities. The ninth line includes the effective
variation in MKE from the shape functions varying temporally and spatially, and similarly
the variation in MKE flux. The tenth line includes the imbalance between depth-average
and depth-resolved pressure work from varying shape functions, along with the vertical
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transport generated by varying ξβ . Next, the depth-integrated rate of conversion of TKE to
GPE is

hBK =1
2
Rgh cos θ

⎧⎪⎪⎪⎩ σzφ

ςh
Φwe + [2 − σzφςφ]wsΦ cos θ + σzφEs

+
∑
β

(
−σzφ

ςh
− σβφσzφ + 2ςβzφ

)
Φ

∂

∂xβ

(hUβ) +
∑
β

(−σβφσzφ + σβzφ
)
Uβh

∂Φ

∂xβ

+
[

ςh
∂

∂t

(
σzφ

ςh

)
+
∑
β

(
−σzφ

∂σβφ

∂xβ

+ ∂σβzφ

∂xβ

+ σ̃Dβzφ

)
Uβ

]
hΦ

⎫⎪⎪⎪⎭ . (3.5)

The terms in the first line are the GPE generated by entrainment, the energy expended
holding particles in suspension less the amount deposited, and the energy required to
erode. The first term in the second line is the imbalance in GPE from varying volume flux
as a consequence of changing depth, depth-average transport of GPE and depth-resolved
transport of both GPE and pressure; the second term similar with varying concentration.
The third line includes the effect of varying shape factors, including the direct change of
GPE, the imbalance between depth-average and depth-resolved GPE flux, along with the
vertical transport generated by varying ξβ . Finally, the depth-average rate of conversion of
MKE to GPE is

hBM =1
2
RghΦ cos θ

∑
β

(
2σβφUβ

∂b

∂xβ

− σ̃βzφh
∂Uβ

∂xβ

+ (σβzφ − σ̃βzφ
)
Uβ

∂h

∂xβ

− σ̃DβzφhU

)
, (3.6)

where the terms are the increase in GPE from flow generated by varying bed elevation,
the work done by pressure due to velocity gradients, the imbalance in the change of GPE
and work done by pressure due to changing depth and the vertical transport generated by
varying ξβ .

Using the values of the shape factors in table 1, top-hat flows simplify to

hP =U1u
2
1∗ +U2u

2
2∗ + 1

2 (U 2
1 +U 2

2 )we − hεM , (3.7a)

hBK = 1
2 Rgh cos θ

(
Φwe + [2 − ςφ]wsΦ cos θ + Es

)
, (3.7b)

hBM = 1
2 RghΦ cos θ

(
2U

∂b

∂x
+ 2V

∂b

∂y
− h

∂U

∂x
− h

∂V

∂y

)
. (3.7c)

For two-dimensional flow (U2 = ∂b/∂y = 0) with negligible mean-flow dissipation in the
boundary layer (εM = 0), the first two expressions match those from Parker et al. (1986),
and the third is consistent though never explicitly stated.

However, using the values from figure 2 we find that the additional terms from a
complete analysis (3.4)–(3.6) are not negligible. The difference between the coefficients
and the top-hat approximation is plotted in figure 3. This can be understood as representing
each of hP , hBK and hBM as the sum of the top-hat model and a correction based on
the shape of the current, and a coefficient of ±1 means the correction from including
shape factors is as large as the contribution from the top-hat model. Of course, we are
only comparing the size of the coefficients, and the size of the term also depends on
what this coefficient multiplies, but this analysis gives an indication of which terms are
important. The region where the terms are of magnitude less than 10 % of the top-hat
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σ11/ςh – 1

2(σ1φ – σ11)

2(σ2
11 – σ111)

2(σ11σzφ – ς1zφ)

2σ11σ1φ – σ111 – 1

σ11(2σ11 + σ1φ – 2ς1zφ/σzφ) – σ111

σ11(4σ11 + σ1φ – 2ς1zφ/σzφ) – 3σ111

σ11(σ11 – σ1zφ/σzφ)

σ11/σzφ – 1

σzφσ1φ – σ1zφ

σ11σzφ – σ̃1zφ

σzφ/ςh – 1

σzφ – 1

–σzφ/ςh – σ1φσzφ + 2ς1zφ
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2(σ1φ – 1)

σ̃1zφ – 1
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–σ11/ςh + 2σ2
11 – σ111
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11 – 3σ111
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Figure 3. The difference between the coefficients of the energy transfer terms and the top-hat approximation
to these terms (3.7), plotted using the same format as figure 2. Note that the majority of coefficients vanish in a
top-hat model, in which case the coefficients are plotted without modification. There are sections dedicated to:
hP (3.4); hBK (3.5); hBM (3.6); the pseudo-equilibrium simplification (4.4); and the volume-free production
(5.14), as indicated to the right.

terms is indicated by a grey band, and while a few of the coefficients do lie in this region
where they can (arguably) be neglected, many of them lie substantially outside of this
region. Thus, we cannot neglect the effect of shape on the energetics.

3.2. Using energetic consistency requirements
The governing equations we have derived includes balances for volume (2.16), particles
(2.17), momentum (2.18) and total energy (2.22). This system is similar to that proposed by
Parker et al. (1986), but crucially allows for the specification of flow shape in a model that
captures energetics. Shape factors are known to have a substantial influence on prediction
in models which do not capture energetics (Dorrell et al. 2014). This modelling framework
has the potential to be much more accurate because it allows for the inclusion of additional
physics. However, these additional physics appear in the model as closures specified by
the modeller, and there is a possibility that the selected closures are unsuitable in a subtle
way. Suppose that we take a selection of developed closures for shape functions (Islam &
Imran 2010; Abad et al. 2011), entrainment (Ellison & Turner 1959; Parker et al. 1986;
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Cenedese & Adduce 2010) and erosion (Parker et al. 1986; Dorrell et al. 2018; Guo 2020),
in addition to making some reasonable choice of drag coefficient, and constructing some
expression for the total dissipation (while method for this construction is presented in
Parker et al. (1986), it would be better to have an empirically verified closure). Then we
can simulate a current using the governing equations, and post-process the results to obtain
the energy transfer that implicitly occurred using (3.4)–(3.6). It is extremely unlikely that
independently developed closures will somehow yield the energy transfer seen in real
currents.

Consequently, the purpose of (3.4)–(3.6) is as consistency requirements to be used
during the development of closures. When a set of closures for the governing equations
have been developed using data from experiment or simulation, a final verification can
be performed by using the developed closures to predict the energy transfer, which can
be compared with the measured energy transfer. This final verification, if successful,
demonstrates that the set of closures are energetically consistent and will produce the
correct evolution of TKE. While the TKE may not always be the subject of interest,
having a model which is tightly constrained to real physics gives confidence in the model
in general.

For these consistency requirements to be useful in closure development, two things
are required. Firstly, the balances must be verified. Provided we are dealing with a
shallow Boussinesq gravity current under a deep unstratified ambient, this is principally
verification that there have been no algebraic mistakes in the derivation. Secondly, some
simplification of the consistency requirements must be made in order to make them usable
for model development. The supplied Maple script can be used to apply simplifications to
specific circumstances. The next section provides an example of simplifying the system
to a specific simulation configuration, and verifying the accuracy of both the full and
simplified form of the energetic transfer expressions.

4. Comparison of model with high resolution simulations

4.1. Two-dimensional pseudo-equilibrium flow
In this subsection we consider two-dimensional steady flow down a smooth slope (∂/∂t =
∂/∂y =U2 = b= 0, θ �= 0, use notation U ≡U1). Under such conditions we may expect
the fluid to reach a pseudo-equilibrium configuration after flowing a sufficient distance,
where the shape enters self-similar form (shape factors constant) and the following
dimensionless parameters become independent of x :

U√
Rgh cos θ

,
ws cos θ√

K
,

U 2

2K
. (4.1)

Up to constant coefficients, these are the Froude number (ratio of flow speed to velocity
scale), the Rouse number (ratio of particle settling to upwards turbulent diffusion) and the
ratio of MKE to TKE, respectively. These conditions imply

∂

∂x
(hΦ) = ∂U

∂x
= ∂K

∂x
= 0, (4.2)

as used by Parker et al. (1986). Simplifying the governing system (2.16)–(2.18) and (2.22)
using the pseudo-equilibrium conditions (4.2)

∂h

∂x
= we

U
, (4.3a)

0 = ςφwsΦ cos θ − Es, (4.3b)
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hBK

hP + hɛM

hBM

–hBM

10–10 10–8 10–6 10–4 10–2 100

Figure 4. The depth-integrated energy transfer calculated using the pseudo-equilibrium balance (4.4), plotted
using the same format as figure 2. The value of hBM can be positive or negative, so it is split over two lines.

(
σ11U

2 + 1
2σzφRghΦ cos θ

) we

U
= RghΦ sin θ − u2

1∗, (4.3c)(
1
2σ111U

2 + σ1k K + ς1zφRghΦ cos θ
)

we

= σ1φURghΦ sin θ − hεT − ws RghΦ(cos θ)2. (4.3d)

To obtain consistency requirements for the energetics in pseudo-equilibrium we
substitute (4.2) and (4.3) into the full expressions for hP , hBK and hBM (3.4)–(3.6) to
obtain

hP = σ1φUu
2
1∗ + (2σ11σ1φ − σ111

) 1
2U

2we

+ (σzφσ1φ − σ1zφ
) 1

2 RghΦ cos θwe − hεM , (4.4a)

hBK = 1
2 RghΦ cos θ

(
σ̃1zφwe + 2ws cos θ

)
, (4.4b)

hBM = 1
2 RghΦ cos θ

(
σ1zφ − σ̃1zφ

)
we. (4.4c)

This simplification puts hP and hBK in a format where they are easily compared with
top-hat expressions in (3.7), revealing an alteration in the magnitude of the terms and the
introduction of some additional terms, see figure 3. Compared with (3.7) the turbulent
production hP typically has a smaller contribution from the energy needed to accelerate
entrained fluid up to speed, but a new contribution from the energy required to uplift the
mass, while the turbulent production induced by entrainment is reduced, and similarly
the production by the mean flow hBM has a negative contribution from the energy
consumed by the entrainment uplift. The magnitude of the pseudo-equilibrium transfer
in real currents is plotted in figure 4, showing that hBM is small for this regime (but the
non-equilibrium terms may be large). It is difficult to compare the sizes of hBK and hP
without knowing the mean-flow dissipation hεM . Note that the currents used to plot figure
4 are not necessarily in pseudo-equilibrium balance, see § 6.

To investigate the pseudo-equilibrium dynamics we employ data from a Direct
Numerical Simulation (DNS) originally published in Zúñiga et al. (2024). (For similar
simulations see Salinas et al. 2019a,b, 2020, 2021, 2022, 2023, and for an experimental
configuration see Odier et al. 2014.) Here, a conservative (ws = Es = 0) gravity current
flowed down a slope of θ = 3◦ over 0 < x < 730 (b= 0), having been fed into the domain
at Re= 5650 at x = 0, 0 < z < 2, the units of their simulation such that Rg= 1/ sin θ .
The flow was simulated until it became statistically steady in time, and then time-averaged
statistics were computed. The resulting flow is shown in figures 5(a)–5(c). We compute
the depth-averaged variables and shape factors directly through integration over 0 = b≤
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Figure 5. Plots computed from the DNS data of Zúñiga et al. (2024). (a-c) The time-averaged fields of
concentration, velocity and TKE, the depths h (2.26) and h̃ (5.1) shown in dashed and dash-dot white
respectively. (d) The spatial variation of the depth-average quantities. (e) The spatial variation of the shape
factors. (f ) The residual in the full depth-averaged equations (2.16)–(2.18) and (2.22) or the pseudo-equilibrium
equations (4.3), computed from the simulation data using (4.5). In the legend the equation is indicated using
the corresponding conserved quantity. (g) The residual in the energy equations (2.22) and (4.3d) split over
contributions from MKE, GPE and TKE in (2.19)–(2.21), dividing by full energy flux rather than the flux for
the specific equation.
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z ≤ H = 60, the full height of the simulation domain, see figure 5(d,e). On x > 300 the
depth averages satisfy well the pseudo-equilibrium conditions (4.2), K being the last to
become steady. However, the concentration shape ξφ continues to slowly evolve over the
entire length of the simulation as can be seen through the shape factors σzφ , σ1zφ and σ̃1zφ .

Before going any further, we validate the depth-average model (2.16)–(2.18) and (2.22).
In steady state each equation is of the form F/x = S for some flux F and source S , and
we calculate the residual in each as

R= 1
F
∣∣∣∣∂F∂x − S

∣∣∣∣ , (4.5)

were the flux and source are computed directly from the simulation data. Consequently,
R−1 is the distance over which cumulative error would produce an O(1) change to the flux
if we were to integrate (4.5) with the given source. (In fact, since the residuals alternate
sign, the change to the flux may be seen as a random walk and thus residuals accumulate
over a distance of R−2.) By figure 5( f ), once the current has established (x > 100) the
length scale of residual accumulation is around 105, vastly longer than the simulation
domain. Splitting the residual in the energy equation over its components (figure 5g)
we see a similarly good agreement. The larger residual on x < 100 is a consequence of
the assumption that horizontal scales are much larger than vertical by which we omitted
terms in (2.1). We also plot the residual in the pseudo-equilibrium balance, ensuring the
computed residual is simply the direct simplification of (4.5) employing the assumptions.
Once the flow has reached the balance (x > 300) the residual in the system (figure 5f ) is no
larger than for the full equation, showing that this is an accurate simplification, however,
the residual in the split energy equations (figure 5g) is slightly larger with an accumulation
length scale of 104, which we will find is a consequence of the varying shape factors.

The properties of the turbulence and other source terms used in the residual analysis
are computed directly from the simulation data using (2.8d), (2.24) and (2.25), and are
plotted in figure 6(a). Crucially, we find that the viscous dissipation of the mean flow hεM
is almost equal to the turbulent production hP . Whether hP � hεM in general is discussed
later.

The values of hP , hBK and hBM are plotted in figures 6(b)–6(d). We see that the
values of the full model expressions from (3.4) to (3.6) agree very well with the exact
values from the simulations across all x (including small x where the curves go out of
the figure, the small amount of noise at large x arises from the x derivatives). Reducing
to self-similar form by neglecting the x derivatives of shape functions in the consistency
requirements (3.4)–(3.6) introduces a large error in the proximal region x < 300 (see figure
6b–d), but in the distal region x > 300 where the flow is equilibrated the error is small
and provides a reasonable approximation. Simplifying further to the pseudo-equilibrium
expressions (4.4) does not increase the error in the distal regions, the assumptions on
the depth-averaged variables (4.2) being satisfied to a much greater degree of accuracy
than the assumption that shape functions are independent of x . The top-hat approximation
increases the error more substantially. Plotting the coefficients of the difference of the
top-hat approximation and the pseudo-equilibrium approximation in figure 6(e) (the same
coefficients as in figure 3) we find that they are moderately large, which is the cause of the
error.

4.2. Mean-flow dissipation
Given the comparison in figures 6(b)–6(d), the greatest error in approximating the
turbulent processes arises from neglecting the mean-flow dissipation hεM because hP �
hεM . We ask, is this an unusual property of this flow or something we should expect
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Figure 6. Further plots computed from the DNS data of Zúñiga et al. (2024). (a) The properties of turbulence,
entrainment and drag computed directly from DNS data. (b–d) Comparing the values of hP , hBK and hBM
direct from simulation to the expressions in the full model (3.4)–(3.6), along with the simplifications of self-
similar flow ((3.4)–(3.6) neglecting derivatives of shape factors), the pseudo-equilibrium balance (4.4) and
top-hat flow (3.7). (e) The coefficients of the additional terms in (4.4) with respect to top-hat flow. ( f ) The
dimensionless mean-flow dissipation (red) and the approximation using Reichardt (1951) (black dashed).

to see in general? The mean-flow dissipation is a property of near bed flow. Working in
dimensionless wall variables u+ = u/u1∗ and z+ = zu1∗/ν we see that

hεM =
∫ H

0
ν

(
∂u

∂z

)2

dz = u3
1∗
∫ Hu1∗/ν

0

(
∂u+

∂z+

)2

dz+. (4.6)

While internal shear layers also technically contribute to this dissipation, these produce
a change in velocity of order U and thus to have a leading-order contribution the the
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mean-flow dissipation they must have a thickness of order νU2/u3
1∗ so that the Reynolds

number of the shear layer is of order U3/u3
1∗. In environmental currents the Reynolds

number of shear layers is much larger, even in the presence of jet sharpening (Dorrell
et al. 2019), and so the contribution to the mean-flow dissipation is only from the viscous
sub-layer between the bed and the logarithmic layer. This motivates a definition of the
dimensionless mean-flow dissipation as

ε+
M :=

∫ Hu1∗/ν

0

(
∂u+

∂z+

)2

dz+ = hεM
u3

1∗
. (4.7)

As a rough estimate, we may expect that there is a viscous sub-layer with u+ = z+ over
0 < z+ < 10, and a turbulent log layer where u+ = κ−1 ln z+ + const on z+ > 10, where
κ = 0.41 is the von Kármán constant, resulting in the approximation ε+

M ≈ 10 + 1/10κ2 =
10.6 showing that even the log layer does not contribute significantly to the value. The
estimate can be improved using the matched asymptotic of Reichardt (1951) (see Kadivar,
Tormey & McGranaghan 2021) which yields a value of ε+

M = 9.15. We plot ε+
M in figure

6( f ) and find that it lies very close to this estimate, but there is some slow downstream
evolution which is similar in kind to the evolution of the shape factors in figure 5(e).

While it is true that ε+
M is finite at high Reynolds numbers, the dimensionless turbulent

dissipation, ε+
K := hεK /u3

∗1, grows at high Reynolds number, so that ε+
M/ε+

K → 0 as Re→
∞. But how large does Re need to be for ε+

K to dominate? To answer, we use data from
channel flow between two boundaries (sometimes called plane Poiseuille flow) from Lee
& Moser (2015) and Kaneda & Yamamoto (2021). For this analysis we will employ a
Reynolds number Reτ where the length scale is the half-height of the channel and the
velocity scale is u∗1. Figure 7(a) shows that, sufficiently far downstream of the release, the
gravity current of Zúñiga et al. (2024) has the same dissipations as channel flow (length
scale in Reτ is flow depth (2.26)). From the data, the dissipations have curves of best fit
given by

ε+
M = 9.17 · (ln Reτ − 5.01)−0.0148, ε+

K = 3.62 · (ln Reτ − 3.28)0.856, (4.8)

with coefficients of determination (R2) of 0.8867 and 0.9997, respectively (figure 7b). To
account for the uncertainty in parameters we use a Bayesian approach. The uncertainty
of the data is estimated as the root-mean-square difference between the points and
the respective best-fit line. We use a uniform (improper) prior for the parameters, so
the Bayesian approach is equivalent to a likelihood approach. Sample curves from the
resulting posterior distribution are plotted faintly in figure 7(b,c) showing almost no
scatter. Extrapolations of these curves, and their ratio, are plotted in figure 7(c), which
has axes for both Reτ and Re. The latter is calculated with the channel-average velocity
as the velocity scale (equivalent to depth-average velocity for gravity currents), the two
Reynolds numbers related by Reτ � 0.09Re0.88 (Pope 2000). To account for error in the
functional form in the extrapolation we also show a power-law (straight line in log scale)
extrapolation of the best fit curve from the final data-point (dashed). We say that the
mean-flow dissipation is small when it is below 10 % of the turbulent dissipation, and
negligible when below 1 %. The small threshold is reached somewhere in the interval
1018 � Reτ � 1021 (109 for power-law extrapolation). The threshold is substantially above
the largest values ever measured in gravity currents, Reτ � 107 (figure 7d, green points
from Simmons et al. 2020). Thus, mean-flow dissipation is relevant at the Reynolds
numbers of all geophysical currents.
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Figure 7. Extrapolation of the dissipation to high Reynolds numbers, using three datasets of channel flow
simulations: + from Lee & Moser (2015), × from Kaneda & Yamamoto (2021) and ◦ from Orlandi (2019).
Here, ε+

M is red and ε+
K is blue. (a) The channel flow data and the gravity current data from Zúñiga et al. (2024)

(solid). (b) Curves of best fit for the channel flow dissipation. Plotted faintly are samples from a probability
distribution over curves, showing the uncertainty of the best-fit curve. (c) Extrapolation of the dissipation
best fit, and ratio of the extrapolations (purple). We also show a power-law extrapolation of the best-fit ratio
through the final data point. Two abscissae are given for (c) showing Reτ and Re. (d) The Reynolds number
for particulate gravity currents, plotted using the same format as figure 2.

The data from channel flow considered so far are all from smooth channels, and
particulate gravity currents always flow over a rough bed, the roughness appearing at the
particle scale and (for environmental currents) at the sales of benthic fauna and bedforms
(Olu et al. 2017; Sen et al. 2017; Azpiroz-Zabala et al. 2024). A large body of research
exists into flow over rough beds, see the recent review of Kadivar et al. (2021). There
are a great many parameters which can be used to characterise the bed roughness as
documented by Thakkar, Busseb & Sandhama (2017). For research on how roughness
effects the log-law region see Shringarpure et al. (2012) and Bilgin & Cantwell (2023), and
for the additional layers of the flow which are present in flow over roughness see Nikora
et al. (2004), Mazzuoli & Uhlmann (2017) and Forooghi et al. (2018). We use data from
Orlandi (2019), representing the roughness using the equivalent sand roughness k+

s which
is calculated from the log layer by fitting u+ = (1/κ) log(y+/k+

s ) + 8 (e.g. Schlichting &
Gersten 2016). The best fit curves in figure 8(a) are

ε+
M = 38.9 · (k+

s + 5.62)−0.719, ε+
K = 15.5 · (k+

s + 70.3)−0.201, (4.9)
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Figure 8. (a) Extrapolation of the dissipation to high roughness, ◦ are data from Orlandi (2019). Here, ε+
M is

red, ε+
K is blue and their ratio is purple, with Reτ given above. Curves of best fit are shown, and plotted faintly

are samples from a probability distribution over curves, showing the uncertainty of the best-fit curves. (b) The
mean particle diameter for particulate gravity currents, plotted using the same format as figure 2.

with coefficients of determination 0.9978 and 0.7126. For the mean-flow dissipation to
be small we require k+

s � 500 and to be negligible k+
s � 104. We expect these thresholds

to be only weakly dependent on Reτ , because ε+
K is largely independent of k+

s and only
varying by a factor of ∼ 10 over the Reτ of gravity currents, while ε+

M is independent
of Reτ . To reach k+

s � 104 requires bedforms � 104d+
50 high (figure 8b), green points

from Simmons et al. 2020), which may occur in natural settings but not in experiments.
Mean-flow dissipation is therefore important for experimental flows and moderately sized
turbidity currents, but not for large currents over bedforms.

4.3. Summary of comparison with simulations
There are two distinct alterations to the energetics of Parker et al. (1986) that have been
discussed in this section: flow shape and mean-flow dissipation. Regarding flow shape,
there is a clear hierarchy of approaches shown in figure 6: the top-hat model is the least
accurate, then the approaches which include flow shape but not its variation, and most
accurate is the model which includes the variations of flow shape. When fully including
flow shape and providing closures from the simulation, the model approaches the accuracy
of the full simulation, showing that the energetics can, in principle, be accurately captured
by a depth-average model. This accuracy improvement is relevant for predictive models
(§ 2.3) because the flow shape is incorporated into the models. Conversely, the mean-flow
dissipation is only relevant for assessing the consistency requirements (§ 3), which are
important for model development and interpretation. It is not included in the predictive
model outside of the total dissipation, which can be approximated separately. Nonetheless,
it can make a leading-order contribution to the implied energetics which is important for
the use of consistency requirements in closure development (§ 3.2), and the understanding
of particle suspension (§ 6).
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5. Depth, entrainment and detrainment

5.1. Gravity current depth
To this point we have not discussed the depth h(x, y, t); the model presented is
independent of the definition. A wide variety of measures of depth can be used (e.g.
Salinas et al. 2023), and the symmetry group in Appendix D can be used to transform
between different measures. For two-dimensional flow (U2 = ∂/∂y = 0) Ellison & Turner
(1959) measure the depth by enforcing σ11 = 1, equivalent to (2.26). To be consistent with
previous work we have used (2.26) in all figures, and state explicitly whenever it is used
with most expressions being for general depth. The advantage of (2.26) is that it enables
self-similar flow to be captured whenever it occurs, if instead depth is taken to be some
arbitrary function then even if the flow profiles are self-similar the shape functions in (2.13)
will still depend on (x, y, t). As a general point, whatever definition of depth is used in a
depth-averaged model, it must enable self-similar flow to be captured.

There is another measure of depth in the system: h̃ := ςhh appears in the definition
of entrainment (2.8d) which gives rise to the volume equation (2.16). By (2.8a) the
entrainment across z = b+ h̃ should be the same as across z = H , so b+ h̃ can be taken to
be any elevation above the region in which the velocity field is influenced by the presence
of the current. However, the surface z = b+ h̃ moves with the velocity field, and we wish
for the shape factor ςh = h̃/h to be a constant for self-similar flow. This means that it must
be on the edge of where the velocity field is influenced by the current, that is∫ b+h̃

b

√
u

2 + v
2
dz = (1 − δ)

∫ H

b

√
u

2 + v
2
dz for 0 < δ � 1. (5.1)

Our definition of h̃ is comparable to that used in some experimental investigations of
entrainment, in that it seeks a level at which the bed-parallel velocity has become small
(Odier et al. 2014; Maggi et al. 2023). In these, the entrainment rate is defined for steady
flow in terms of the velocity of fluid flow across this surface, we = −w(z = h̃). However,
in a depth-average model, the conditions which arise most naturally are

we = ∂

∂x
(Uh) for spatially evolving steady flow, and

we = ∂ h̃

∂t
for temporally evolving uniform flow.

(5.2)

The condition for steady flow is well known (Ellison & Turner 1959; Negretti et al.
2017; Martin, Negretti & Hopfinger 2019; Maggi et al. 2023), the uniform case less so.
The definition of h̃ is important because it controls the time evolution of depth through
conservation of volume (2.16): steady currents should have the same entrainment rate as
uniform currents when they have the same flow properties. Further investigation is required
to establish whether (5.1) gives the same entrainment in these two scenarios. Throughout,
we use (5.1) with δ = 0.01.

5.2. Relating entrainment to turbulence
The discussion above reveals the ad hoc nature of the volume equation (2.16). The interface
z = h̃ is not a physical property, but rather is constructed through heuristic arguments, with
different researchers coming up with different constructions. The entrainment rate we then
measures the flow rate across our constructed interface. This formulation is a historical
artefact: the original depth-averaged model was presented by Saint-Venant (1871) for
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open-channel flow, and in that context there is a clear interface between air and water
determining z = h̃. The source term is no longer entrainment, but could be interpreted as
heavy rain inflating the volume of the river or canal. There is no such clarity for gravity
currents: sometimes the upper interface is moderately sharp, but often it is highly diffuse
and the attempt to represent it as a mathematical surface is artificial.

Likewise, the physical interpretation of entrainment we is not clear: it is some measure
of the progressive mixing and dilution of the current, but one dependent on the imposed
interface. The physical origin of entrainment is known to be turbulence, in particular it
is the buoyancy flux which leads to the fluid becoming more dilute and disperse (Strang
& Fernando 2001; Arneborg et al. 2007; Wells et al. 2010; Odier et al. 2014). There is
a natural velocity which arises from these turbulent fluctuations, which we will term the
turbulent buoyancy velocity,

wB := 2
∫ H

b
J3dz

/∫ H

b
φdz = 2BK

RgΦ cos θ
. (5.3)

For a top-hat model (table 1) of a compositional current (ws = Es = 0) the consistency
requirement for BK (3.7b) gives we = wB, consistent with Wells et al. (2010). For a
particle-driven current, (3.7b) becomes

wB = we + [2 − ςφ]ws cos θ + Es
Φ

. (5.4)

This can be used to eliminate we from the governing equations, after which the top-hat
volume equation becomes

∂h

∂t
+
∑
β

∂

∂xβ

(hUβ) = we = wB − [2 − ςφ]ws cos θ − Es
Φ

. (5.5)

Different approaches have been taken to close the entrainment in model of particle-
driven currents. Suppose that ŵe is a closure of entrainment in compositional currents.
Historical models either neglect entrainment outright (Bonnecaze et al. 1993), or assume
that closures can be transferred directly from compositional to particle-driven currents as
we = ŵe (Parker et al. 1986). However, there is a range of physical processes in particle-
driven currents that are not present in compositional currents, and so it is not obvious
that the aggregate effect of these processes (entrainment) is transferred so easily. Instead,
it is reasonable to suppose that the effects of turbulence are most similar, the large-scale
vortices performing the mixing will view the particles as a concentration field. Thus wB
can be approximated as the same in the two classes of current. That is, if ŵB is a closure
for buoyancy velocity in compositional currents (top-hat gives ŵB = ŵe) then wB � ŵB.
Thus

we � ŵe − [2 − ςφ]ws cos θ − Es
Φ

, (5.6)

we expect particle-driven currents to be modified relative to compositional currents by
some detrainment, driven by settling and a reduction of available energy due to erosion. In
the limit of no turbulence and a horizontal bed (wB = Es = θ = 0) with vertical continuity
near the bed (ςφ = 1) this becomes the standard expression for dilute laminar detrainment
we � −ws (in this case we = −ws at early times, the approximation is exact despite the
top-hat criterion not always being satisfied as time advances, Dorrell & Hogg 2010). For
bypass flows where erosion balances deposition (Es = ςφΦws cos θ ) we find that we �
ŵe − 2ws cos θ .
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The approach (5.6) is comparable to the approach of Toniolo et al. (2006) who linearly
interpolated between the dynamics of compositional currents and laminar deposition to
model their experiments. Bolla Pittaluga et al. (2018) effectively use we = ŵe − ws cos θ ,
which is subsequently adopted by Ma et al. (2024). The energetic interpretation of
detrainment presented here gives a clear guide of how it is best implemented.

To understand the impact of detrainment on the turbulence, we first reconstruct the TKE
equation from Parker et al. (1986) by substituting the top-hat consistency requirements
from (4.4) into our TKE equation (2.21), yielding

∂

∂t
(hK ) +

∑
β

∂

∂xβ

(hUβK ) =
∑
α

(
Uαu

2
α∗ + 1

2U
2
αwe

)

− 1
2 Rgh cos θ

(
Φwe + [2 − ςφ]wsΦ cos θ︸ ︷︷ ︸+Es

)
− hεT .

(5.7)

The term with an underbrace has a rather strange interpretation. If ςφ < 2 it is reasonable;
the TKE is expended holding particles against gravity. However, for ςφ = 2 particle
suspension costs no energy, and for ςφ > 2 TKE is generated by particle settling (1 �
ςφ � 5 by figure 2). This term has long been recognised by Parker as greatly troubling
(private correspondence). Rewriting using wB we arrive at

∂

∂t
(hK ) +

∑
β

∂

∂xβ

(hUβK ) =
∑
α

(
Uαu

2
α∗ +

︷ ︸︸ ︷
1
2U

2
αwe

)

− 1
2 RghΦ cos θwB − hεT , (5.8)

with we computed using (5.4). This reformulation, and reinterpretation as wB being the
specified closure and not we, removes the troubling term. Energy is now simply expended
generating buoyancy velocity according to some closure for wB, as would be the case in a
compositional current. The expression with the overbrace is the MKE converted to TKE
during the process of accelerating entrained fluid. Provided that the entire term is positive
(i.e. the net entrainment is positive, we > 0) there is no problem with interpretation.
However, in a situation where the particle dynamics does not just reduce the entrainment
(we < wB) but actually creates detrainment (we < 0) there is a loss of TKE in the model.
This is because the top-hat model does not account for the momentum loss to the ambient
fluid in this case. This can be resolved by adding another source term to the momentum
equation (2.18) which is 0 for we ≥ 0 and weUα when we < 0, and similarly a term to the
MKE and total energy equations (2.19) and (2.22) which is we(U 2

1 +U 2
2 )/2 when we < 0.

Tracking through the influence of these extra terms, the overbraced term in (5.8) is zero
when we < 0.

This remedy for we < 0 in the TKE equation is specific to the case of the top-hat
model, and is not required in the model with shape functions. Instead, the detrainment of
fluid adjusts the velocity shape function to be raised relative to the concentration profile,
capturing the real physics at play. The principal goal of this manuscript is to include flow
shape in the modelling framework, which is important to the flow generally and not just for
detrainment. The pseudo-equilibrium case in § 4 is quite straightforward, the consistency
requirement (4.4b) yields

we = wB − 2ws cos θ

σ̃1zφ
. (5.9)
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Note that, typically, σ̃1zφ < 1 (figure 2) and thus for compositional currents we > wB.
The expression for we can be substituted into the pseudo-equilibrium governing equations
(4.3) to obtain the balances written in terms of the buoyancy velocity wB. Perhaps more
importantly, we can obtain the consistency requirements for turbulent production and
mean-flow buoyancy flux by substitution into (4.4a) and (4.4c), which are

hP = σ1φUu
2
1∗ + 2σ11σ1φ − σ111

σ̃1zφ

1
2U

2 (wB − 2ws cos θ)

+ σzφσ1φ − σ1zφ

σ̃1zφ

1
2 RghΦ cos θ (wB − 2ws cos θ) − hεM , (5.10a)

hBM = 1
2 RghΦ cos θ

(
σ1zφ

σ̃1zφ
− 1
)

(wB − 2ws cos θ) . (5.10b)

We can also use (5.9) to get an approximation for entrainment in pseudo-equilibrium
particulate currents

σ̃1zφwe + 2ws cos θ = wB � ŵB = σ̃1zφŵe, thus we � ŵe − 2ws cos θ

σ̃1zφ
. (5.11)

5.3. A volume-free energetic model of gravity currents
The approach used up to now is to rearrange a consistency requirement for buoyancy flux
hBK to express entrainment we in terms of the buoyancy velocity wB, which we expect to
have the same closures in particle-driven and compositional currents. We then substitute
for we wherever we see it. To apply this to the general case we would need to rearrange
(3.5) and substitute the result into the volume equation (2.16). This is algebraically
complex; here we present an equivalent but simpler approach (the equivalence is shown
in the supplemental Maple document). The consistency requirement (3.5) is derived from
the GPE equation (2.20) (see (3.2)), as

∂

∂t

(
1
2σzφRgh

2Φ cos θ
)

+
∑
β

∂

∂xβ

(
1
2σβzφUβRgh

2Φ cos θ
)

= S̃G + 1
2
RghΦ cos θwB + hBM . (5.12)

Here, S̃G is defined in (2.20b) and contains the effects of bed variation and particle settling;
hBM can be found in (3.6) derived as the uplift of concentration by the mean flow, and is
a consequence of the incompressibility condition (2.1a).

We can now offer an alternative to the classical volumetric framework for modelling
gravity currents, which was outlined in § 2.3. The governing equations are those
for particles (2.17), momentum (2.18), GPE (5.12) and total energy (2.22). This
model is closed by imposition of shape functions along with buoyancy velocity wB;
erosion Es ; drag uα∗; and dissipation εT . Consistency requirements for this system
of equations can be derived using the volume equation (2.16) to obtain an expression
for entrainment we, and either the MKE equation (2.19) or the TKE equation (2.21)
to obtain a closure for turbulent production hP . This is equivalent to rearranging the
expressions in § 3, see there for interpretation of terms. Substituting the definition of
wB from (5.3) into the consistency requirement for hBK (3.5) and rearranging for we
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we obtain

we = ςh

σzφ

⎧⎪⎪⎪⎩wB − [2 − σzφςφ]ws cos θ − σzφ
Es
Φ

+
∑
β

(
σzφ

ςh
+ σβφσzφ − 2ςβzφ

)
∂

∂xβ

(hUβ) +
∑
β

(
σβφσzφ − σβzφ

) Uβh

Φ

∂Φ

∂xβ

+
[

−ςh
∂

∂t

(
σzφ

ςh

)
+
∑
β

(
σzφ

∂σβφ

∂xβ

− ∂σβzφ

∂xβ

− σ̃Dβzφ

)
Uβ

]
h

⎫⎪⎪⎪⎭ . (5.13)

The two formulations of entrainment, we from velocity of ambient fluid fluid into the
current and wB from the turbulent mixing, are thus related as is expected but has not
previously been shown. (Note that the appropriate way to approximate a current by a top-
hat model when using a closure for buoyancy velocity is to define depth by σzφ = 1, so h is
twice the elevation of the centre of excess mass, Arneborg et al. 2007; Anjum, Mcelwaine
& Caulfield 2013.) The expression for we, (5.13), can be substituted into the consistency
requirement for hP (3.4) yielding

hP = 1
2

⎛
⎝∑

β

σββ

σzφ
U 2

β

⎞
⎠(wB − [2 − σzφςφ]ws cos θ − σzφ

Es
Φ

)
+
∑
β

σββUβu
2
β∗ − hεM

+
∑
β

(σβφ − σββ)UβRhΦ

(
gβ − g cos θ

∂b

∂xβ

)

+ 1
2

∑
βγ

(
σγγ

[
2σβγ + σβφ − 2

ςβzφ

σzφ

]
− σβγ γ

)
U 2

γUβ

∂h

∂xβ

+ 1
2

∑
β

(
σββ

[
4σββ + σβφ − 2

ςβzφ

σzφ

]
− 3σβββ

)
hU 2

β

∂Uβ

∂xβ

+ 1
2

∑
β �=γ

⎧⎪⎪⎪⎩ (σγγ

[
2σβγ + σβφ − 2

ςβzφ

σzφ

]
− σβγ γ

)
hU 2

γ

∂Uβ

∂xβ

+ 2
(
σγγ σβγ − σβγ γ

)
hUβUγ

∂Uγ

∂xβ

⎫⎪⎪⎪⎭
+ 1

2

∑
βγ

σγ γ

(
σβφ − σβzφ

σzφ

)
hU 2

γUβ

Φ

∂Φ

∂xβ

+
∑
β

(
σββσzφ − ςβzφ

)
UβRghΦ cos θ

∂h

∂xβ

+ 1
2

∑
β

(
σββσzφ − σ̃βzφ

)
UβRgh

2 cos θ
∂Φ

∂xβ

+ 1
2

∑
β

⎧⎪⎪⎪⎩ − 1
σzφ

∂

∂t

(
σzφσββ

)
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Figure 9. Equivalent plots to those in figure 6 but for the case of the volume-free energetic model (§ 5.3).

+
∑
γ

(
σββ

∂

∂xγ

[2σβγ + σγφ] − ∂σββγ

∂xγ

− σββ

σzφ

[
∂σγ zφ

∂xγ

+ σ̃Dγ zφ

])
Uγ

⎫⎪⎪⎪⎭hU 2
β

+ 1
2

∑
β

(
σββ

∂σzφ

∂xβ

− ∂σ̃βzφ

∂xβ

+ σ̃Dβzφ

)
UβRgh

2Φ cos θ. (5.14)

The consistency requirement for mean-flow uplift of particles (3.6) is not affected, and
is used to close (5.12). The accuracy of these expressions is verified in figure 9 in the same
way as the consistency expressions for the classical volumetric model were verified in
figure 6, § 4. The coefficients in (5.13) and (5.14) calculated for real currents are included
in figure 3.

This new formulation does not contain an equation for volume, and eliminates the
need for an arbitrary imposition of a interfacial surface. This model is closed directly
by a measure of the turbulence, the buoyancy velocity (5.3). The only time when the
interfacial surface z = h̃ needs to be specified is when using the consistency relationship
for entrainment (5.13), which depends on ςh = h̃/h. This model is volume free in that
it does not explicitly include a volume equation, and instead the evolution is governed
by the energetics. The way that incompressibility (2.1a) enters the formulation is through
the derivation of mean-flow uplift of concentration (3.3), and in deducing the implied
entrainment rate (5.13).

A key observation is that, even for compositional currents, the entrainment we is no
longer equal to, or even proportional to, the buoyancy velocity wB (5.13). Consequently,
in the general case, we require new closures for wB. Early results on this have been
documented by Wells et al. (2010), but further work is required to parametrise the
stirring and mixing of the density field. See Caulfield (2021) for a review of this research
area.
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6. Novel implications for particle auto-suspension
Here, we investigate how the energetics of a gravity current influence the particle load
it carries. We begin our discussion by illustrating how the Knapp–Bagnold criterion
(Knapp 1938; Bagnold 1962) can be derived from our system of equations. This criterion
identifies when the increased downslope gravitational work provided by suspended
particles provides the requisite energy to keep the particles suspended, a condition referred
to as auto-suspension. From the TKE equation (2.21), to not deplete the supply of turbulent
energy we require the turbulent production exceeds the buoyancy flux. Using the pseudo-
equilibrium balance, which was shown in § 4 to give a good description of a slowly
evolving current on a flat bed, the TKE equation (2.21) simplifies to

hP = hBK + hεK + σ1k Kwe. (6.1)

This implies the Knapp–Bagnold energetic principle

hP > hBK . (6.2)

Consequently, neglecting entrainment and mean-flow dissipation,

σ1φUu
2
1∗ > ws RghΦ(cos θ)2. (6.3)

Approximating σ1φ ≈ 1 and (cos θ)2 ≈ 1, and using (4.3c) to rewrite drag in terms of bed
slope, we arrive at

U sin θ > ws, (6.4)

the standard representation of the Knapp–Bagnold criterion. This can either be interpreted
as the maximum particle size that can be transported by a given current (upper bound on
ws), or the minimum speed of the gravity current to be sustainable over long distances
(lower bound on U ). For gravity currents, this simple analysis ignores a lot of effects, and
we expand on it using the understanding of gravity current energetics developed.

For dilute mono- and poly-disperse fluvial systems, it has been observed that (Garcia
2008; van Maren et al. 2009; Dorrell et al. 2018; Fukuda et al. 2023)

hBK = EΦ · hP, (6.5)

where EΦ , related to the flux Richardson number, represents the efficiency of suspending
sediment, and typically satisfies 0 < EΦ < 1. For gravity currents (Fukuda et al. 2023) we
treat (6.5) as the definition of the efficiency and explore when its value may be predictable.
From the quasi-equilibrium balance (6.1), the final term can be neglected because TKE,
K , is small compared with the MKE, ∝ 1/2U2, see (4.4a). Substituting in (6.5) we obtain

hBK
hεK

= EΦ

1 − EΦ

= Γ, (6.6)

where Γ is a mixing coefficient. The analysis of Osborn (1980) gives Γ < 1/5 so that
EΦ < 1/6. More recently larger values of Γ have been reported (Maffioli, Brethouwer &
Lindborg 2016; Mashayek, Caulfield & Alford 2021), we take EΦ = 1/6 as a reasonable
estimate.

To be able to examine the suspension efficiency of the dataset used in figure 2 we require
values of hP and hBK . Ideally, we would use direct measurements, which we do not have
for most of the data, or we would use the full expressions (3.4)–(3.6) but these require
derivatives of the depth-averaged quantities and shape factors. Instead, we use the pseudo-
equilibrium expressions (4.4) which were shown to provide a good level of accuracy
provided the current is slowly evolving (figure 6). We make the weak requirement that
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Figure 10. Energetics of particle suspension in a classical volumetric model using the entrainment models of
Ellison & Turner (1959) (a,c,e) and Cenedese & Adduce (2010) (b,d,f ), for symbols see legend in figure 2.
(a,b) Turbulent production (neglecting mean-flow dissipation) against buoyancy flux, rearranged in (c,d) to
show the concentration. In both (b,c) lines of constant efficiency are shown in black (EΦ = 1), grey (EΦ = 1/6)
and dashed black (EΦ ∈ {10−1, 10−2, 10−3}), and a best fit line is shown in purple. (e,f ) The dimensionless
mean-flow dissipation against the concentration, the region outside of the bounds (6.9) shaded grey.

the flow has a non-zero erosion rate (Es > 0) by the condition of Guo (2020) (see Fukuda
et al. 2023) and is dilute, Φ ≤ 10−2. We also require that the residual (4.5) in the pseudo-
equilibrium momentum balance (4.3c) is such that error accumulates over a distance
of more than 103/2h, that is hR< 10−3/2, where we use the entrainment closure from
Cenedese & Adduce (2010). We include only experimental data, the field measurements
reported by Simmons et al. (2020) are for flow in a sinuous channel and levee overspill
and are not in pseudo-equilibrium.

For the moment we neglect the mean-flow dissipation (we will discuss this later), and
examine the balance (6.5) in figure 10(a,b). We use the entrainment relationships from
Ellison & Turner (1959) and Cenedese & Adduce (2010) to show how little different
empirical closures effect the results, and in figure 10 a classical volumetric model is
assumed (§ 2.3) where entrainment models from compositional currents are used directly
(§ 5.2). We observe an approximately linear trend (figure 10a,b), indicating that (6.5) is
perhaps a reasonable approximation, although there is over an order of magnitude of
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variation in the efficiency EΦ . It is possible to rewrite (6.5) to give a prediction of the
sediment concentration

Φ = EΦ · hP
hNK

. (6.7)

Here, NK is the normalised buoyancy flux, that is the buoyancy flux per unit sediment
concentration. In pseudo-equilibrium this is, by (4.4b),

hNK := hBK
Φ

= 1
2 Rgh cos θ

(
σ̃uzφwe + 2ws cos θ

)
. (6.8)

Plotting the balance (6.7) in figure 10(c,d) we observe that the scatter collapses around
a nonlinear trend (these plots are very similar to figure 3c in Fukuda et al. 2023). This
implies that some process correlated with the particle concentration is controlling the
mixing efficiency. This should not be the case, and indicates a problem with the analysis.

So far we have neglected hεM , the mean-flow dissipation, which was shown in § 4.2 to
be of leading order for the experimental flows in the dataset, with bounds

0 < ε+
M � 9.15. (6.9)

Narrowing down this value further requires both detailed information about the structure
of the bed roughness and how this relates to dissipation. Consequently, we engage in
a plausibility analysis: Could the results be explained by mean-flow dissipation in the
permissible range?

The effect of increasing hεM moves points in figure 10(c,d) to the left, and we observe
what happens when we move all the points to a line of equal efficiency and back calculate
the dissipation. Moving all the points to the line EΦ = 1/6 results in figure 10(e,f ). Many
of the points require ε+

M < 0, which we interpret as the real current either having more
production or less buoyancy flux than captured by the model.

To this point we have been considering a classical volumetric model (§ 2.3), where a
closure for entrainment developed for compositional currents, ŵe, may be directly used
for a particle-driven current, we � ŵe. In the volume-free energetic model (§ 5.3), it is
the turbulent buoyancy velocity (5.3) for which a closure for a compositional current, ŵB,
may be used in a particle-driven current, wB � ŵB. We do not have such a closure, but
have shown how to construct something equivalent from entrainment models in (5.11).
We repeat the analysis of energetics in particle suspension, see figure 11. Now, there is
a difference between the closures of Ellison & Turner (1959) and Cenedese & Adduce
(2010), which arises because hBK is determined solely by the entrainment closure and
is not dependent on the settling velocity. For both closures, there is a broad range of
efficiencies when mean-flow dissipation is neglected. Exploring what values ε+

M could
take (figure 11e–f ) there is reasonably narrow range of values for satisfying the bounds
(6.9), except for three points in figure 11( f ) (perhaps these flows are rapidly depositing
sediment, or the entrainment model is in error).

Our plausibility analysis is thus a success, the departure from constant efficiency (6.7)
observed by Fukuda et al. (2023) and reproduced in figure 10(c) can be corrected using
two effects: mean-flow dissipation, and the settling velocity reducing the entrainment
rate. Compared with Parker et al. (1986), both of these effects reduce the implied rate of
turbulent production by (4.4a). The reduced entrainment rate, by design, exactly cancels
the settling term in (4.4b), meaning that the implied buoyancy flux is no longer given an
artificial boost to account for the need to suspend particles. The reduction in both of these
turbulent terms allows, in principle, for the suspension efficiency (6.5) to be independent
of particle concentration as expected.
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Figure 11. The same as figure 10 but for a volume-free energetic model.

7. Future work
We here overview additional work required to realise the potential of this new modelling
framework. To enable the model to be used predictively, accurate closures are required
for the shape, entrainment, erosion, drag and dissipation. A large experimental dataset
exists for the shape of the velocity and concentration profiles, but comparatively little
data exist for TKE (figure 2). The shape depends on the Froude number (Abad et al.
2011) along with a wider set of dimensionless parameters (4.1), and establishing this
dependence is key to understanding the evolution of currents. The total dissipation also
needs to be properly quantified, Parker et al. (1986) provide an approximate form based
on heuristic arguments but an empirically verified closure would be preferable. Closures
for the other parameters exist, but have been developed separately; ideally, the full set
of closures should be developed in accordance with the consistency relationships (§ 3)
which would ensure that the energetics predicted by the model are accurate. At laboratory
scale or over smooth beds, the use of the consistency requirement for turbulent production
requires an understanding of the mean-flow dissipation and how this relates to roughness
(§ 4.2). Regarding entrainment, it is worth further exploring whether an energetic approach
would be more accurate than the prevailing volumetric approach (§ 5). The transfer of
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closures from compositional to particulate currents needs to be verified against high-
resolution velocity and concentration fields across different settling velocities. The model
and closures capture the body of the current, and require boundary conditions for the front
to be developed, similar those by Benjamin (1968) and Ungarish & Hogg (2018) but with
the profiles in the current specifiable. The goal is to develop a set of closures sufficiently
accurate to capture the extremely long run-out of real-world currents (Azpiroz-Zabala et al.
2017) and the development of sedimentary deposits over geological time scales (Wahab
et al. 2022).

8. Summary and conclusion
In this work we have constructed a novel depth-averaged modelling framework that for
the first time accurately captures the bulk dynamics of a gravity current, allowing for
arbitrarily shaped profiles of concentration, velocity and TKE to be implemented (§ 2).
Prior to this work, profiles of velocity and concentration have been used in depth-average
models of gravity current that do not attempt to capture energetics, and separately research
has been conducted on the turbulence and mixing processes. Our work connects these two
research efforts, enabling models which accurately capture energetics in a depth-average
framework (§ 4). These energetic balances inform the dynamics of particle suspension, and
by providing a robust mathematical framework within which to understand the energetics
we enable a new and deeper understanding of particulate gravity currents (§ 6).

With the modelling framework we propose two classes of predictive model for the
flow depth, concentration, velocity and TKE, which require different closures. Both
require specification of the shape of the velocity, concentration and TKE profiles, along
with expressions for the erosion of particles, basal drag and viscous dissipation of
energy. The first class of model, which we term a classical volumetric model (§ 2.3),
requires specification of some interface over which entrainment occurs along with
the entrainment rate (§ 5.1). The resulting model consists of equations for volume,
concentration, momentum and total energy. Models which make use of volume are by
far the most common class of model in the gravity current community, and go back to
Ellison & Turner (1959) and Parker et al. (1986). Our model is a direct generalisation of the
classical model derived by Parker et al. (1986), and differs from it only by the possibility to
specify arbitrary profiles through shape factors. The top-hat version of our model where all
shape factors are unity precisely recovers the model of Parker et al. (1986). In the optimal
case where the shape factors are taken directly from DNS simulation, the model is able
to reproduce the results of DNS with almost no error and is substantially more accurate
than the top-hat version (§ 4). This gives confidence that, with high-quality closures,
the new model can produce accurate predictions of the flow evolution including the
energetics.

This approach has some shortcomings in its capturing of entrainment. The construction
of an interface over which there is entrainment of ambient fluid is artificial, the upper
region of a gravity current is highly diffuse and there is no surface separating the current
from the ambient (§ 5.2). Moreover, it is commonplace to using an entrainment closure
from compositional currents in a particulate current, which results in the implied uplift
of particles by turbulence (the turbulent buoyancy flux) being an increasing function of
particle settling velocity (§ 3.1). The buoyancy flux should only be dependent on the
distribution of particles and the strength of the turbulence, and artificially inflating it to
provide additional support for the particles is not only erroneous but also confuses attempts
to understand particle suspension (§ 6). Instead, the available work of the buoyancy flux is
split between upholding the particles against settling and entraining ambient fluid.

1009 A30-36

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 IP

 a
dd

re
ss

: 1
8.

11
7.

23
2.

23
4,

 o
n 

24
 A

pr
 2

02
5 

at
 1

5:
43

:5
3,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.
 h

tt
ps

://
do

i.o
rg

/1
0.

10
17

/jf
m

.2
02

5.
28

5

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2025.285


Journal of Fluid Mechanics

For these reasons, we propose a second class of model wherein it is the buoyancy
flux which is closed for directly, not the entrainment, which removes the need for
an interface over which the entrainment occurs. Careful consideration shows that the
appropriate formulation of the model is as equations for concentration, momentum, GPE
and total energy, and we term this class volume-free energetic models (§ 5.3). This class
corresponds much more closely to a physical understanding of gravity currents, which
do have budgets of excess mass, momentum and energy, but typically not a clear region
to define a volume. Models which require a closure of the buoyancy flux directly are far
less common, but do exist (Arneborg et al. 2007; Wells et al. 2010). It is likely that the
processes which generate buoyancy flux in compositional currents are the same as those
in particulate currents, which would allow for the same closures to be used for both. This
assumption was used to help understand the dynamics of particle suspension in § 6.

Both classes of predictive model have some effects which are directly closed for,
and others which are implied by the model as indirect predictions. For these indirect
predictions to be accurate, model closures must be validated to ensure they give the correct
indirect predictions through what we have termed consistency requirements (§ 3.2). In
both classes the turbulent production, which transfers energy from the mean flow to the
turbulence, is implied from the loss of mean-flow energy (§§ 3.1 and 5.3). There is also
loss of mean-flow energy directly to viscosity in the boundary layer by the bed, and we
show that this makes a leading-order contribution at Reynolds numbers up to and beyond
geophysical scales (§ 4.2). For the case of bed roughness, which is present for almost
all particulate currents and many compositional currents, structures that are very large
(∼ 104 wall units) are required before the mean-flow dissipation is negligible. However,
an understanding of mean-flow dissipation is lacking in the literature at large, which
makes using the consistency requirements challenging. Large-scale particulate currents
over bedforms, along with gravity currents propagating along a strong density interface
rather than a solid boundary (a type of intrusion), will not have such a strong mean-
flow dissipation and so the consistency requirement may be more easily employed. What
is much more straightforward is in the use of the consistency requirement for buoyancy
flux in classical volumetric models (§ 3.1), which becomes a consistency requirement for
entrainment in volume-free energetic models (§ 5.3). For particulate currents, the implied
entrainment incorporates the particle detainment by settling, which has been discussed by
several authors without theoretical justification (Toniolo et al. 2006; Bolla Pittaluga et al.
2018; Ma et al. 2024); here, we provide that justification. These consistency requirements
not only provide insight into entrainment, but in future can be used to constrain closures
to produce energetically consistent models in the developed depth-average framework.
This would enable the energetics to be captured in system-scale models, giving accurate
prediction of hazardous environmental flows at geophysical scales.

Supplementary materials. Supplementary materials are available at https://doi.org/10.1017/jfm.2025.285.
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Appendix A. The scales of the flow within the current
The full system of Boussinesq Reynolds averaged Navier-Stokes equations is

∂u j
∂x j

= 0, (A1a)

∂φ

∂t
+ ∂

∂x j

(
[u j + ũ j ]φ + J j

)
= 0, (A1b)

∂ui
∂t

+ ∂

∂x j

(
u j ui − τ Rji − ν

∂ui
∂x j

)
+ 1

ρ f

∂ p

∂xi
= Rgiφ, (A1c)

∂k

∂t
+ ∂

∂x j

(
u j k + Tj

)
= P − ε̃K + Rg j J j . (A1d)

Here, we document the scale analysis used to simplify (A1) to (2.1). Throughout this
section we will make claims of processes that occur in the flow, and use these to balance
terms. We do not claim that these processes are always occurring, but simply that they are
processes we wish to capture, and they set the largest scale the terms can take anywhere in
the current given a particular slope.

As stated in the main text, we employ a time scale T , and length scales Li ({L1, L2} �
L3), and assume the Reynolds-averaged velocities scale as Ui = Li/T . We denote the
scale of the Reynolds-averaged pressure by P , the TKE scale by K , the TKE dissipation
scale by E and the scale of the Reynolds-averaged concentration as ϕ. Without loss of
generality we assume that the x, y plane is orientated so that y is horizontal and g2 = 0. We
define the gravitational scales to be Gi = |Rgiϕ| so that G1 = G3|tan θ |. All scales should
be understood as the scale of the depth average (Appendix C) of the given quantity. Note
that it is possible to perform the depth average first and then the analysis of scales, which
is preferable from the perspective of formal justification. However, this approach increases
the complexity of the analysis substantially, which is why the order of presentation here
has been chosen.

We first consider the momentum equation (A1c). To examine the scales of the system we
require scales for the components of the Reynolds stress. For the purpose of constructing
scales only we employ the eddy viscosity approximation, that is

τ Ri j = −2
3kδi j + τ Di j , where τ Di j = νt

(
∂ui
∂x j

+ ∂u j
∂xi

)
, (A2)

is the deviatoric Reynolds stress, and the eddy viscosity νt (x, t) has scale N . We also
employ the scales

‖ũ‖� L3

T
, Ji ∼ N ϕ

Li
, and Ti ∼ N K

Li
. (A3)

Now (A1c) becomes (outside of the viscous boundary layer so we can neglect viscosity)

∂ui
∂t

+ ∂

∂x j

(
u j ui

)
︸ ︷︷ ︸

Li/T 2

= − 1
ρ f

∂ p

∂xi︸ ︷︷ ︸
P/ρ f Li

− 2
3

∂k

∂xi︸ ︷︷ ︸
K /Li

+ ∂

∂x j

(
νt

∂ui
∂x j

)
︸ ︷︷ ︸
N Li/L 2

j T

+ ∂νt

∂x j

∂u j
∂xi︸ ︷︷ ︸

N /LiT

+ Rgiφ︸ ︷︷ ︸
Gi

,

(A4)
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where the scales of the flow within the current are given beneath the brace under each
term. In the downslope direction (i = 1) the driving force, scale D , is provided by the
larger of the pressure + TKE gradient and the longitudinal component of gravity, i.e.

D = max

⎛
⎝ 1

ρ f
P + K

L1
, G1

⎞
⎠ . (A5)

The driving force accelerates the flow until the turbulent viscous effects are sufficiently
strong, causing all three effects to appear at leading order

L1

T 2 = D = N L1

L 2
3 T

, thus D = L1

T 2 , N = L 2
3

T
. (A6)

In the bed-normal (i = 3) direction, the pressure+TKE gradient is generated by the effects
of gravity

1
ρ f

P + K

L3
= G3 � L3

T 2 . (A7)

How this balance interacts with the downslope balance depends on the slope angle. On a
very shallow slope

|tan θ | ≤ L3

L1
we have G1 ≤

1
ρ f

P + K

L1
, thus D =

1
ρ f

P + K

L1

so that G3L3 = 1
ρ f

P + K = DL1 = L 2
1

T 2 ,

and G3 � L3

T 2 implies L1 � L3;

(A8)

the current is driven by longitudinal pressure gradients. On a moderate to steep slope

|tan θ | ≥ L3

L1
we have G1 ≥

1
ρ f

P + K

L1
, thus D = G1

so that 1
ρ f

P + K = G3L3 = G1L3

|tan θ | = DL3

|tan θ | = L1L3

T 2|tan θ | ,

and G3 � L3

T 2 implies L1 � L3|tan θ |;

(A9)

the current is driven directly by the longitudinal component of gravity. Combining the two
cases, the scales have bounds

G1 ≤ L1

T 2 , G3 ≤ L 2
1

T 2L3
, 1

ρ f
P + K ≤ L 2

1
T 2 , (A10)

where the first is equality on moderate to steep slopes, and the latter two are equality on
shallow slopes. Analysing the turbulent production, the dominant contribution is

P � νt

(
∂u

∂z

)2

+ νt

(
∂v

∂z

)2

∼ N
U 2

1 + U 2
2

L 2
3

= L 2
1 + L 2

2
T 3 , (A11)
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thus by (A1d)

K = L 2
1 + L 2

2
T 2 , E = L 2

1 + L 2
2

T 3 . (A12)

Using the developed scales, simplifications can be made to the system of equations (A1)
by neglecting terms order L3/L1 or L2/L1 smaller than the largest, yielding (2.1). This
analysis preserves terms which are large in the wall boundary layer which is dominated by
z derivatives, up to the fact that we need to re-include the viscous stress.

Appendix B. Comparison with Ellison–Turner variables and shape factors
The choice of shape factors used in the main text differs from the choice made by Ellison
& Turner (1959), and developed by Parker et al. (1986, 1987). There, the fluxes were
simplified by defining

u(x, y, z, t) = ξuET(x, y, ζ, t) ·UET(x, t), (B1a)

φ(x, y, z, t) = ξφET(x, y, ζ, t) · ΦET(x, t), (B1b)
k(x, y, z, t) = ξkET(x, y, ζ, t) · KET(x, t), (B1c)

where the quantities ξuET, ξφET, ξkET satisfy∫ ζH

0
ξuETdζ = 1,

∫ ζH

0
ξ2
u ETdζ = 1, (B2a)∫ ζH

0
ξuETξφETdζ = 1,

∫ ζH

0
ξuETξkETdζ = 1. (B2b)

Above, we have identified variables specific to the Ellison–Turner scaling by an ET
subscript. The definitions have been modified to be compatible with our lack of self-similar
assumption so that the variables ξ•ET depend on x , y and t as well as ζ , and our finite range
of integration in the vertical direction.

These shape functions may be used to compute shape factors, and those measured by
Parker et al. (1987) and Islam & Imran (2010) are defined in table 2. In this table, several of
the shape factors have simplified expressions listed, and in each case this has been achieved
by switching the order of integration of ζ1 and ζ2. For a5, we subsequently integrate the
product ζdξuET/ζ by parts. The simplifications for a2, a4, a5 and a6 do not rely on the finite
extent of the integrals and we may take the limit ζH → ∞; nor on the shape functions
satisfying (B2). Thus, these equalities are satisfied by any shape function, including
those measured in experiment. What is concerning, is that some experimental results do
not satisfy the equalities proved above. In the measurements of Parker et al. (1987) we
have

a4

a7
= 1.00,

a5
1
2(a8 − a7)

= 0.86,
a6

a8
= 1.16, (B3)

while in those of Islam & Imran (2010)

a4

a7
= 0.87,

a5
1
2 (a8 − a7)

= 1.08,
a6

a8
= 0.71. (B4)
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Definition Simplified Equiv.

a0 ςh

a1
∫ ζH

0 ξφET dζ 1/σ1φ

a2 2
∫ ζH

0

∫ ζH
ζ1

ξφET|ζ2 dζ2dζ1 2
∫ ζH

0 ζ ξφ |ETdζ σzφ/σ1φ

a3
∫ ζH

0 ξ3
u ETdζ σ111/σ

3
11

a4 2
∫ ζH

0

∫ ζH
ζ1

ξuET|ζ1ξφET|ζ2 dζ2dζ1 a7

a5
∫ ζH

0

∫ ζH
ζ1

ζ1(∂ξuET/∂ζ )|ζ1ξφET|ζ2 dζ2dζ1 (1/2)(a8 − a7)

a6 2
∫ ζH

0

∫ ζH
ζ1

ξuET|ζ2ξφET|ζ2 dζ2dζ1 a8

a7 2
∫ ζH

0

∫ ζ1
0 ξuET|ζ2ξφET|ζ1 dζ2dζ1 σ̃1zφ/σ11σ1φ

a8 2
∫ ζH

0 ζ ξφETξuETdζ σ1zφ/σ11σ1φ

a9
∫ ζH

0 ξkETdζ 1/σ1k
r0 ξφET|ζ=0 ςφ/σ1φ

Table 2. The shape factors used by Parker et al. (1987), with a0 being additional here. The first column is the
symbols used for the shape factors. The second is their definition (modified here to account for possible lateral
variation). The third is simplified expressions for the shape factors. In the fourth we express these shape factors
in terms of the ones defined in table 1.

If the integrals were evaluated exactly then all the ratios would be 1. We expect that the
discrepancy comes from under-resolved numerical integration, though differences of up to
30 % do suggest significant problems.

To close this section, we demonstrate how to convert between the Ellison–Turner
variables (table 2) and those used here (table 1). Observe that

U2
ET =U 2

1 , UETΦET = σ1φU1Φ, UETKET = σ1kU1K . (B5)

Consequently

UET =U, ΦET = σ1φΦ, KET = σ1k K ,

ξuET = ξ1, ξφET = 1
σ1φ

ξφ, ξkET = 1
σ1k

ξk .
(B6)

Substitution of (B6) into the definitions in table 2 yields the equivalent expressions listed,
which can be inverted to obtain

σzφ = a2

a1
, σ11 = 1, σ111 = a3, σ1φ = 1

a1
,

σ1k = 1
a9

, σ1zφ = a8

a1
, σ̃1zφ = a7

a1
, ςφ = r0

a1
.

(B7)

These can in turn be substituted into (2.16)–(2.18) and (2.21) and taking the steady state
over a flat bed with constant ai obtain the system from Parker et al. (1987).

Appendix C. The depth-average operator
To average the system of equations (2.1) over the depth we introduce the depth-averaging
operator, 〈•〉, defined as

〈 f 〉 (x, y, t) := 1
h(x, y, t)

∫ H(x,y,t)

b(x,y)
f (x, y, z, t)dz. (C1)
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Using the Leibniz rule, the depth average of derivatives transforms as

h

〈
∂ ft
∂t

+ ∂ fx
∂x

+ ∂ fy
∂y

+ ∂ fz
∂z

〉
= ∂

∂t
(h〈 ft 〉) + ∂

∂x
(h〈 fx 〉) + fx

∣∣∣
b

∂b

∂x
+ fy

∣∣∣
b

∂b

∂y
− fz

∣∣∣
b

− ft
∣∣∣
H

∂H

∂t
− fx

∣∣∣
H

∂H

∂x
− fy

∣∣∣
H

∂H

∂y
+ fz

∣∣∣
H

. (C2)

To depth integrate an equation we apply the operator h 〈•〉 using (C2) to the system (2.1)
and apply the boundary conditions (2.8). We substitute for the depth-average variables as

Φ =
〈
φ
〉
, Uα =

〈
uα

〉
K =

〈
k
〉
. (C3)

Appendix D. Depth-rescaling symmetry group
For any c(x, y, t) > 0, equations (2.16)–(2.22) are invariant under

h �→ ch, Φ �→ 1
c
Φ, Uα �→ 1

c
Uα, K �→ 1

c
K , (D1a)

ζ �→ 1
c
ζ, ξφ �→ cξφ, ξα �→ cξα, ξk �→ cξk, (D1b)

with b and H unchanging, which results in the changes to the shape factors

ςh �→ c−1ςh, σzφ �→ c−1σzφ, σαβ �→ cσαβ, (D2a)

σαβγ �→ c2σαβγ , σαφ �→ cσαφ, σαk �→ cσαk, (D2b)

σαzφ �→ σαzφ, σ̃αzφ �→ σ̃αzφ, ςαzφ �→ ςαzφ, σ̃Dαzφ �→ σ̃Dαzφ, (D2c)

ςφ �→ cςφ. (D2d)

This symmetry can be used to transform between different measures of depth.
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