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Summation of Series over
Bourget Functions

Mirjana V. Vidanović, Slobodan B. Tričković, and Miomir S. Stanković

Abstract. In this paper we derive formulas for summation of series involving J. Bourget’s generalization

of Bessel functions of integer order, as well as the analogous generalizations by H. M. Srivastava. These

series are expressed in terms of the Riemann ζ function and Dirichlet functions η, λ, β, and can be

brought into closed form in certain cases, which means that the infinite series are represented by finite

sums.

1 Introduction

Bessel functions play an important role in mathematics and physics. On the one

hand, they are suitable for the application of the theory of complex functions, and in

the theory of Fourier series they are used to replace trigonometric functions. On the

other hand, they are also used for solving various problems in mathematical physics

(especially with boundary value problems), acoustics, hydrodynamics, electromag-

netics, nuclear physics. Numerical values of the sums of the series in terms of Bessel

or related functions, as well as those in terms of the product of Bessel and trigono-

metric functions, particularly their closed forms, are necessary for finding solutions

of some problems in the theories of telecommunications, electrostatics, etc.

Bourget functions are a generalization of Bessel functions, so they are potentially

applicable. Books such as [4,5] offer a wide range of formulas which are very useful in

many areas. This paper is a contribution in this regard, since the new series in terms

of Bourget functions, obtainable from a general formula, are certainly valuable.

2 Preliminaries

We derived a summation formula for the series involving the trigonometric function

cosine [8, Theorem 1, p. 396]. Making use of the method used in [8], we can find

(see [9]) the other particular cases of that or similar type as well, writing all of them

in the form of a single formula

(2.1)

∞
∑

n=1

(s)n−1 f ((an − b)x)

(an − b)α
=

cπ

2Γ(α) f ( πα
2

)
xα−1 +

∞
∑

i=0

(−1)iF(α− 2i − δ)

(2i + δ)!
x2i+δ,

where α > 0, a =
{

1
2

}

b =
{

0
1

}

, s = 1 or s = −1, f =
{

sin
cos

}

δ =
{

1
0

}

. We have

adopted notations from [5]: to emphasize a direct relation between corresponding

Received by the editors May 23, 2006; revised November 26, 2006.
This work is supported by the Ministry of Science of Serbia.
AMS subject classification: Primary: 33C10; secondary: 11M06, 65B10.
Keywords: Riemann zeta function, Bessel function, Bourget function, Dirichlet function.
c©Canadian Mathematical Society 2008.

627

https://doi.org/10.4153/CMB-2008-062-6 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2008-062-6
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values, we deliberately do not write a comma within the same structure. For example,

in the first case, if we take a = 1, then b = 0; if we take a = 2, then b = 1. Similarly,

f = sin corresponds to δ = 1, and f = cos corresponds to δ = 0. We have retained

this principle throughout the paper. The values for c and F are in the Table (1.1),

where ζ, η, λ and β are the Riemann zeta function ζ(z) =
∑

∞

k=1 k−z , and Dirichlet

functions η(z) =
∑

∞

k=1(−1)k−1k−z
= (1 − 21−z)ζ(z), λ(z) =

∑

∞

k=0(2k + 1)−z
=

(1 − 2−z)ζ(z), β(z) =
∑

∞

k=0(−1)k(2k + 1)−z. The functions ζ, η, λ are analytic

in the whole complex plane except for z = 1, where they have a pole, The integral

representation

β(z) =
1

Γ(z)

∫

∞

0

xz−1ex

e2x + 1
dx

defines an analytical function for Re z ≥ 1, but it also satisfies the functional equation

β(z) = ( π
2

)z−1
Γ(1 − z) cos πz

2
β(1 − z) extending beta to the left side of the complex

plane Re z < 1. In addition, ζ(−2n) = η(−2n) = λ(−2n) = 0, whereas β(−(2n −

1)) = 0, n ∈ N.

Table 1

(1.1)

a b s c F for

1 1 ζ 0 < x < 2π
1 0

−1 0 η −π < x < π

1 1
2

λ 0 < x < π
2 1

−1 0 β −
π
2
< x < π

2

(1.2)

F f k

sin 2m − 1
ζ, η, λ

cos 2m

sin 2m
β

cos 2m − 1

We note that if f = sin and α = 2m or f = cos and α = 2m − 1, m ∈ N,

then the limiting value of the right-hand side of (2.1) should be taken into account

(see [8]). Also, for α = k (k ∈ N, see Table (1.2)), due to the vanishing of functions

F (ζ, η, λ at negative even integers, β at negative odd integers), the right-hand side

series truncates, so representation (2.1) is brought into closed form, from which we

easily get all particular cases, some of which are given in [1, 4, 5].

Further, relying on (2.1), we derived the summation formula [7]

(2.2)

∞
∑

n=1

(s)n−1 Jν((an − b)x)

(an − b)α
=

cπ( x
2
)α−1

2Γ(α−ν+1
2

)Γ(α+ν+1
2

) cos(α−ν
2
π)

+

∞
∑

i=0

(−1)iF(α− ν − 2i)( x
2
)ν+2i

i! Γ(ν + i + 1)
,
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where a, b, s, c, F are read from Table (1.1), α > 0, α > ν > −
1
2
, and Jν(z) are

Bessel functions of the first kind and order ν (see [10]) having the following integral

representation

(2.3) Jν(z) =
2( z

2
)ν

Γ( 1
2
)Γ(ν + 1

2
)

∫ π/2

0

sin2ν θ cos(z cos θ) dθ.

If, in (2.2), α − ν = 2m − 1 and f = cos or α − ν = 2m and f = sin (m ∈ N),

then one should take the limiting value, as in the case of (2.1). Apart from this, for

α− ν = k (k ∈ N, see Table (1.2)), the right-hand side series in (2.2) truncates, due

to the vanishing of F functions, giving rise to all closed form cases.

3 Definition of Bourget Functions

Bourget functions, first defined by J. Bourget [2] and investigated by K. K. Gorowara

[3], are represented by

(3.1) Jp,q(z) =
1

π

∫ π

0

(2 cos θ)q cos(pθ − z sin θ) dθ, p ∈ N0, q ∈ N.

For q = 0, they become Anger functions, defined by

Jp(z) =
1

π

∫ π

0

cos(pθ − z sin θ) dθ, p ∈ N0,

whence, after a rearrangement, one obtains (2.3) for ν = p. So Bourget functions

can be considered a generalization of Anger functions and Bessel functions for integer

order.

3.1 A Different Representation of Bourget Functions

First we shall write Bourget functions in a suitable form, taking into account each of

the four cases arising out of the formula (3.1) for even or odd p and q. Using the

cosine addition formula, from (3.1) we have

Jp,q(z) =
1

π

∫ π

0

(2 cos θ)q
(

cos pθ cos(z sin θ) + sin pθ sin(z sin θ)
)

dθ

=
1

π

∫ π

0

(2 cos θ)q cos pθ cos(z sin θ)dθ +
1

π

∫ π

0

(2 cos θ)q sin pθ sin(z sin θ)dθ

=
1

π
Ic +

1

π
Is,

where, for simplicity, Ic and Is denote the first and second integrals respectively.

Let p = 2n, n ∈ N0. After introducing a substitution θ = π − t , we find

Ic
= (−1)q

∫ π

0

(2 cos t)q cos(2nπ − 2nt) cos(z sin t) dt,
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and by applying the cosine addition formula once again, we obtain, for q odd,

Ic
= (−1)q

∫ π

0

(2 cos t)q cos 2nt cos(z sin t) dt = (−1)qIc
= −Ic.

Hence Ic
= 0 for p even and q odd, and (3.1) becomes

Jp,q(z) =
1

π

∫ π

0

(2 cos θ)q sin pθ sin(z sin θ) dθ (p + q odd).

Now let p = 2n + 1, p ∈ N0. We act in the same manner, but using Is instead. If

we substitute π − t for θ, we come, for q odd, to a relation

Is
= (−1)q

∫ π

0

(2 cos t)q sin(2n + 1)t sin(z sin t)dt = (−1)qIs
= −Is.

So Is
= 0 for q odd, and (3.1) becomes

Jp,q(z) =
1

π

∫ π

0

(2 cos θ)q cos pθ cos(z sin θ) dθ (p + q even).

Combining both formulas obtained for p+q odd and p+q even we can express Bour-

get functions (3.1) as a single formula comprising all four cases mentioned above, i.e.,

(3.2) Jp,q(z) =
1

π

∫ π

0

(2 cos θ)q f (pθ) f (z sin θ) dθ,

where f =
{

cos
sin

}

δ =
{

0
1

}

, p + q = 2m + δ, m ∈ N.

3.2 Another Type of Bourget Function

H. M. Srivastava [6] defined functions analogous to (3.1):

(3.3) Ip,q(z) =
1

π

∫ π

0

(2 cos θ)q sin(pθ − z sin θ) dθ, p ∈ N0, q ∈ N.

Because of the same structure, we shall also call the functions (3.3) Bourget functions.

Following a similar procedure as that for obtaining (3.2), the integral Ip,q can be

expressed in the form of

(3.4) Ip,q(z) =
(−1)δ+1

π

∫ π

0

(2 cos θ)q f (pθ) f (z sin θ) dθ,

where f =
{

cos
sin

}

δ =
{

0
1

}

, p + q = 2m + δ, m ∈ N, and f denotes a co-function of

the function f . Note that taking q = 0 in (3.3), we obtain the Weber function Ep(z)

of integer order p ∈ N0 (see [10]).
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Integral representations (3.2) and (3.4) have similar forms that enable us to rep-

resent them by means of a single formula,

(3.5) ϕp,q(z) =
τ

π

∫ π

0

(2 cos θ)q f (pθ)h(z sin θ) dθ,

where ϕp,q =
{

Jp,q

Ip,q

}

h =
{ f

f

}

τ =
{

1
(−1)δ+1

}

; f =
{

cos
sin

}

, δ =
{

0
1

}

, p + q = 2m + δ,

m ∈ N.

If q = 0 in (3.5) is allowed, the Bourget functions Jp,q and Ip,q become the Bessel

function Jp and the Weber function Ep, respectively. If the cases for even and odd p

are separated, a suitable form is obtained

(3.6)

φp(z) =
τ

π

∫ π

0

f (pθ)h(z sin θ) dθ, f =
{

cos
sin

}

, δ =
{

0
1

}

, p = 2m + δ,m ∈ N0,

where φp =
{

Jp

Ep

}

, h =
{ f

f

}

, τ =
{

1
(−1)δ+1

}

.

4 Series over Bourget Functions

If we put Bourget functions Jp,q or Ip,q, denoting them by ϕp,q, in place of the Bessel

function Jν in (2.2), we shall deal with a new type of series, i.e.,

(4.1) S
ϕp,q
α =

∞
∑

n=1

(s)n−1ϕp,q((an − b)x)

(an − b)α
, α > 0.

First, we replace ϕp,q in (4.1) with the integral from (3.5), and have

τ

π

∞
∑

n=1

(s)n−1

(an − b)α

∫ π

0

(2 cos θ)q f (pθ)h((an − b)x sin θ) dθ.

The interchange of summation and integration is allowed because of uniform con-

vergence of the right-hand side series in (4.2) with respect to θ ∈ [0, π] (see [8],

where we had h = cos, x cos θ instead of x sin θ, and θ ∈ [0, π
2

]). In keeping with it,

we determine convergence regions with respect to x. They are the same as those in

Table (1.1). Consequently (4.1) becomes

(4.2) S
ϕp,q
α =

τ2q

π

∫ π

0

cosq θ f (pθ)
(

∞
∑

n=1

(s)n−1h((an − b)x sin θ)

(an − b)α

)

dθ,

where α > 0, a =
{

1
2

}

b =
{

0
1

}

, s = 1 or s = −1, ϕp,q =
{

Jp,q

Ip,q

}

h =
{ f

f

}

τ =
{

1
(−1)δ+1

}

, and independently of that, f =
{

cos
sin

}

δ =
{

0
1

}

, p + q = 2m + δ,

m ∈ N. Now we apply (2.1), where we set x sin θ in place of x, so that we obtain

S
ϕp,q
α =

τ2q

π

∫ π

0

cosq θ f (pθ)×

( cπ(x sin θ)α−1

2Γ(α)h( πα
2

)
+

∞
∑

i=0

(−1)iF(α− 2i − d)

(2i + d)!
(x sin θ)2i+d

)

dθ.
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We have introduced a new parameter d depending on a choice of the function h in

(4.2), i.e., h =
{

sin
cos

}

d =
{

1
0

}

. Thus the previous formula becomes

(4.3) S
ϕp,q
α =

cτ2q−1xα−1

Γ(α)h( πα
2

)

∫ π

0

cosq θ f (pθ) sinα−1 θ dθ

+
τ2q

π

∞
∑

i=0

(−1)iF(α− 2i − d)

(2i + d)!
x2i+d

∫ π

0

cosq θ f (pθ) sin2i+d θ dθ,

where c, F, and convergence regions are read from Table (1.1). In order to find S
ϕp,q
α

we first need to calculate the right-hand side integrals. In this regard we shall consider

an integral

(4.4) Iα−1 =

∫ π

0

cosq θ f (pθ) sinα−1 θ dθ,

where p, q ∈ N, α > −1, f = sin or f = cos. Further, we make use of the formulas

(see [4])

cos pθ =

(

p

0

)

cosp θ −

(

p

2

)

cosp−2 θ sin2 θ +

(

p

4

)

cosp−4 θ sin4 θ − · · · ,

sin pθ =

(

p

1

)

cosp−1 θ sin θ −

(

p

3

)

cosp−3 θ sin3 θ +

(

p

5

)

cosp−5 θ sin5 θ − · · · ,

which can be written in the form of a single formula

f (pθ) =

[p/2]
∑

j=0

(−1) j

(

p

2 j + δ

)

cosp−2 j−δ θ sin2 j+δ θ dθ,

where f =
{

cos
sin

}

δ =
{

0
1

}

. Replacing f (pθ) in (4.4) with the right-hand side sum

from the preceding formula, we have

(4.5) Iα−1 =

[p/2]
∑

j=0

(−1) j

(

p

2 j + δ

)
∫ π

0

cosp+q−2 j−δ θ sinα−1+2 j+δ θ dθ.

The integral in (4.5) is of the type

J =

∫ π

0

cosa θ sinb θ dθ =

∫ π/2

0

cosa θ sinb θ dθ +

∫ π

π/2

cosa θ sinb θ dθ.

Introducing a substitution θ = t + π
2

in the second integral, we have

J =

∫ π/2

0

cosa θ sinb θ dθ + (−1)a

∫ π/2

0

cosb t sina t dt.
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Because of [1, (6.2.1), p. 258]

∫ π/2

0

cosa t sinb t dt =
1

2
B

( a + 1

2
,

b + 1

2

)

,

and considering that B(µ, ν) = B(ν, µ), we further have

J =
1 + (−1)a

2
B
( a + 1

2
,

b + 1

2

)

.

By virtue of this, (4.5) now becomes

Iα−1 =

[p/2]
∑

j=0

(−1) j

(

p

2 j + δ

)

1 + (−1)p+q−2 j−δ

2
B
( p + q − 2 j + δ + 1

2
,
α + 2 j + δ

2

)

,

where δ = 0 if we set f = cos in (4.4), and δ = 1 if f = sin. If we replace α− 1 with

2i + d in (4.4), we will obtain a quite similar formula for I2i+d, so that we finally find

(4.6) S
ϕp,q
α =

cτ2q−1

Γ(α)h
(

πα
2

) xα−1Iα−1 +
τ2q

π

∞
∑

i=0

(−1)iF(α− 2i − d)

(2i + d)!
x2i+dI2i+d,

where ϕp,q =
{

Jp,q

Ip,q

}

h =
{ f

f

}

τ =
{

1
(−1)δ+1

}

; f =
{

cos
sin

}

δ =
{

0
1

}

; h =
{

cos
sin

}

d =
{

0
1

}

.

The rest of the parameters we find in Table (1.1).

4.1 An Important Particular Case

We deal with a special case, placing q = 0 in (4.6) and taking into account the choice

of parameters in (3.6). It is easy to calculate the integrals

Iα−1 =

∫ π

0

f (pθ) sinα−1 θ dθ =
πΓ(α) f 3(

pπ
2

)

2α−1Γ( 1−p+α
2

)Γ( 1+p+α
2

)
,

I2i+d =

∫ π

0

f (pθ) sin2i+d θ dθ =
(2i + d)!π f 3( pπ

2
)

22i+dΓ(1 + i +
d−p

2
)Γ(1 + i +

d+p
2

)
,

where f =
{

cos
sin

}

p =
{

2m
2m+1

}

d =
{

0
1

}

, m ∈ N0. Replacing these values in (4.3), we

obtain a particular case of the formula (4.6) for p = 2m, m ∈ N0:

S J2m,0
α =

∞
∑

n=1

(s)n−1 J2m((an − b)x)

(an − b)α
=

cπ( x
2
)α−1

2Γ(α+1
2

− m)Γ(α+1
2

+ m) cos(απ
2

)

+

∞
∑

i=0

(−1)i( x
2
)2i+2mF(α− 2i − 2m)

i! (i + 2m)!
.
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Actually, this formula is a particular case of our previous formula (2.2) for ν = 2m,

which we have expected anyway, since for q = 0 Bourget functions reduce to Bessel

functions of integer order.

However, for p = 2m+1, m ∈ N0, from (4.6) we obtain a new summation formula

for the series over the Weber functions

∞
∑

n=1

(s)n−1E2m+1((an − b)x)

(an − b)α
=

cπ(−1)m( x
2
)α−1

2Γ(α
2
− m)Γ(α

2
+ m + 1) sin(απ

2
)

+

∞
∑

k=0

(−1)k( x
2
)2k+2m+1F(α− 2k − 2m − 1)

k! (k + 2m + 1)!
.

4.2 Limiting Value Cases

When h = sin and α = 2k or h = cos and α = 2k − 1, k ∈ N, the limiting value

of the right-hand side of (4.6) should be taken. For instance, if a = 2, b = 1, s = 1,

then c =
1
2

and F = λ (from Table (1.1)). If ϕp,q = Jp,q, we see that there follows

h = f , τ = 1, and taking f = cos, from the first line after (4.6) we read δ = 0. That

means h = cos, and we must have d = 0. So for p = 3 and q = 1, the formula (4.6)

becomes

∞
∑

n=1

J3,1((2n − 1)x)

(2n − 1)α
=

xα−1Iα−1

2Γ(α) cos( πα
2

)
+

2

π

∞
∑

i=0

(−1)iλ(α− 2i)

(2i)!
x2iI2i .

We now evaluate

Φ2k+1(x) = lim
α→2k+1

[ xα−1Iα−1

2Γ(α) cos( πα
2

)
+

2

π

k
∑

i=0

(−1)iλ(α− 2i)

(2i)!
x2iI2i

]

=
(−1)kx2kI2k

π(2k)!

(

ψ(2k + 1) + 1
2
ψ(k + 3) + γ− log x

2

+ 1
4k
ψ(k + 1

2
) − 2k+1

4k
ψ(k + 3

2
)
)

+
2

π

k−1
∑

i=0

(−1)iλ(2k + 1 − 2i)

(2i)!
x2iI2i ,

where γ is Euler’s constant and ψ is the digamma function, ψ(s) =
Γ

′(s)
Γ(s)

, whose

relation to the harmonic numbers Hn =
∑n

j=1
1
j

is ψ(n) = Hn−1 − γ, with ψ(1) =

−γ = Γ
′(1), and ψ(n + 1

2
) = −γ − 2 log 2 + 2

∑n−1
k=0

1
2k+1

. The above series now

becomes

∞
∑

n=1

J3,1((2n − 1)x)

(2n − 1)2k+1
= Φ2k+1(x) +

2

π

∞
∑

i=k+1

(−1)iλ(2k + 1 − 2i)

(2i)!
x2iI2i ,
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where 0 < x < π (see Table (1.1)). For instance,

∞
∑

n=1

J3,1((2n − 1)x)

(2n − 1)7
=

x6

10240

( 227

120
− log

x

4

)

−
7x4

1024
ζ(3) +

31x2

256
ζ(5) +

2

π

∞
∑

i=8

(−1)iλ(7 − 2i)

(2i)!
x2iI2i .

4.3 Closed Form Cases

If α− d = 2m and F = ζ, η, λ or α− d = 2m + 1 and F = β (m ∈ N0), the formula

(4.6) can be brought into closed form, which means that the sum in (4.6) then be-

comes finite, because the functions ζ, η, and λ vanish at negative even numbers and

the function β vanishes at negative odd numbers. So we write α = 2m + d + ε, where

ε =

{

0 F = ζ, η, λ,

1 F = β,

and we have

S
ϕp,q

2m+d+ε =

∞
∑

n=1

(s)n−1ϕp,q((an − b)x)

(an − b)2m+d+ε

=
cτ2q−1x2m+d+ε−1I2m+d+ε−1

Γ(2m + d + ε)h(mπ + d+ε
2

)
+
τ2q

π

m
∑

i=0

(−1)iF(2m − 2i + ε)

(2i + d)!
x2i+dI2i+d,

where ϕp,q =
{

Jp,q

Ip,q

}

h =
{ f

f

}

τ =
{

1
(−1)δ+1

}

; f =
{

cos
sin

}

δ =
{

0
1

}

; h =
{

cos
sin

}

d =
{

0
1

}

.

The rest of the parameters we find in Table (1.1).

For example, if a = 1, b = 0, s = −1, then c = 0 and F = η (see Table (1.1)),

meaning that ε = 0. If ϕp,q = Ip,q, there follows h = f , and if we take f = sin, then

δ = 1, which implies τ = 1. So h = cos, and according to the choice of h, we have

d = 0. So for p = 2 and q = 3, m = 2, the above formula becomes

∞
∑

n=1

(−1)nI2,3(nx)

n4
=

8

π

2
∑

i=0

(−1)iη(4 − 2i)

(2i)!
x2iI2i =

14π3

225
−

8πx2

105
+

16x4

945π
,

where −π < x < π (see Table (1.1)). We have made use of the property η(z) =

(1 − 21−z)ζ(z).
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