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Summary

Using parametric models that describe the increase in mortality rates with age, we demonstrate

that environmentally induced heterogeneity among genetically identical individuals is sufficient to

generate biased estimates of age-specific genetic variance. Although the magnitude of the bias may

change with age, one general trend emerges: the true genetic variance at the oldest ages is likely to

be dramatically underestimated. Our results are robust to different manifestations of heterogeneity

and suggest that such a bias is a general feature of these models. We note that age-dependent

estimates of genetic variance for characters that are correlated with mortality (either genetically or

environmentally) can be expected to be similarly affected. The results are independent of sample

size and suggest that the bias may be more widespread in the literature than is currently

appreciated. Our results are discussed with reference to existing data on mortality variance in

Drosophila melanogaster.

1. Introduction

The two predominant evolutionary theories of sen-

escence – mutation accumulation and antagonistic

pleiotropy – predict that genetic variance for fitness

characters should increase with age for populations in

mutation–selection–drift equilibrium (Charlesworth,

1990, 1994; Partridge & Barton, 1993; Charlesworth

& Hughes, 1996). Two large demographic experiments

were undertaken to test this prediction using age-

specific mortality rates in Drosophila melanogaster.

Hughes & Charlesworth (1994) reported that additive

genetic variance for mortality rates increased mono-

tonically with age, while Promislow et al. (1996)

provide evidence for an initial increase and subsequent

decrease in genetic variance.

A reanalysis of both data sets by Shaw et al. (1999)

suggests an explanation for the contradictory obser-

vations. If small sample sizes are used, then a model

that describes an exponential increase in mortality

* Corresponding author. Max Planck Institute for Demographic
Research, Doberaner Strasse 114, D-18057 Rostock, Germany.
Tel : ­49 381 2081 164. Fax: ­49 381 2081 464. e-mail :
pletcher!demogr.mpg.de

rates throughout life (the Gompertz model : see below)

often provides a good fit to the observed mortality

data. More complicated dynamics at older ages, such

as levelling-off of mortality, are often undetected

(Pletcher, 1999). On the other hand, if large samples

are employed then levelling-off is observed, and the

mortality trajectories tend to be logistic rather than

Gompertzian (Carey et al., 1992; Curtsinger et al.,

1992; Vaupel et al., 1998). Shaw et al. (1999) show

that there is an intimate connection between the

detection of levelling-off and the behaviour of the

genetic variance at advanced ages ; in particular, with

smaller sample sizes and Gompertz dynamics, genetic

variance increases at advanced ages, while larger

samples and logistic behaviour produce declining

genetic variance later in life. The relatively small

samples per cohort in the Hughes and Charlesworth

experiment provide little statistical power for detecting

non-Gompertzian mortality dynamics and therefore

(under the model of Shaw et al.) little power for

detecting a decline in genetic variance at older ages

(Shaw et al., 1999).

A second type of experiment that is relevant to

understanding age-dependent patterns of genetic

variance involves the measurement of the effects of
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new mutations on age-specific mortality rates. None-

linear age-trajectories of mortality variance in Droso-

phila are reported by Pletcher et al. (1998, 1999) for

genetic variation resulting directly from spontaneous

mutations and from P-element-induced mutations

(S. D. Pletcher, unpublished data). Mutational vari-

ance is high for mortality early in life and essentially

zero at the oldest age. The lack of observed genetic

variation at older ages is puzzling. Mechanistic and}or

evolutionary explanations for why new mutations

have relatively little influence on old-age mortality

rates are not obvious (Pletcher et al., 1998; Promislow

& Tatar, 1998).

Age-related declines in genetic variance for mor-

tality rates seem to pose interesting challenges to

evolutionary theory (Promislow & Tatar, 1998).

However, whether the trends in the observed data

accurately represent underlying patterns is still open

to debate. Because individuals are either alive or dead,

mortality rates are measured on populations, and

individual death rates are assumed to reflect the

population measure. If all individuals in the popu-

lation are identical, then this assumption is justified.

In many cases, however, individuals may vary in their

mortality characteristics and such a simplification

may be misleading (Vaupel & Yashin, 1985). It is

possible, for example, to develop a model in which

individual mortality rates increase exponentially with

age but population mortality rates decelerate and even

level off (Vaupel et al., 1979; Vaupel, 1990b). Such

models have been termed heterogeneity models be-

cause they assume that individuals in the population

are heterogeneous – either genetically or as a result of

environmental influences – for mortality charac-

teristics. Several authors have suggested heterogeneity

as an explanation for observing reduced genetic and

mutational variance at older ages (Promislow et al.,

1996; Pletcher et al., 1998; Service, 1999), but a

rigorous justification of this assertion has not been

presented. Heterogeneity is also the most popular

explanation for the levelling-off of mortality rates at

advanced ages (Kol’tower et al., 1993; Vaupel &

Carey, 1993; Jazwinski, 1996), and so it is natural to

invoke that same explanation for the second-order

behaviour.

Here we investigate the impact of environmentally

induced heterogeneity among individuals on the

estimated age patterns of genetically based variance

among groups of individuals. To this end we extend

the extensive work that has been carried out on fixed-

frailty models of heterogeneity (Vaupel, 1990a, and

references therein), and we develop a new model,

termed the accelerated-aging model, which assumes

heterogeneity influences the rate of change in mortality

rates with age rather than the baseline probability of

death. Relationships among the actual and estimated

age patterns of genetic variance are described for

several specific situations, and results are discussed

with reference to existing data on mortality variance

in Drosophila melanogaster.

2. Models of heterogeneity

(i) General considerations

Heterogeneity models strive to describe the observed

rate of death, over time, for a cohort of individuals

when age-specific death rates for individuals within

that cohort show significant variation. In such cases,

observed cohort mortality rates are not necessarily

reflective of mortality rates in the individual organism

(Beard, 1953; Vaupel et al., 1979; Vaupel & Yashin,

1985). As mentioned above, this poses a problem

when we are ultimately interested in individual, rather

than population, behaviour.

Heterogeneity within cohorts is quantified by the

random variable z. For clarity, z will be referred to as

the indi�idual risk, and we use µ(x, z) to denote the

mortality rate of individuals with individual risk z at

age x. Vaupel et al. (1979) showed that the observed

death rate of the cohort, µ- (x), is the weighted average

of the death rates of the individuals in the population:

µ- (x)¯&
¢

!

µ(x, z) f
x
(z) dz, (1)

where f
x
(z) is the conditional probability density

function of individual risk from the survivors to age

x ; f
x
(z) can be derived given the distribution of

individual risk at birth (see Appendix). Thus, given

information about the shape of individual mortality

trajectories, µ(x, z), and about the distribution of

heterogeneity at birth, cohort level mortality rates can

be calculated for any age.

(ii) Relati�e risk model

In this paper, the relative risk model refers to a model

of individual risk originally presented by Vaupel et al.

(1979) and further developed by Vaupel & Yashin

(1985). In this model, the mortality rate of individuals

with individual risk z can be written

µ(x, z)¯ zµ(x), (2)

where µ(x) is interpreted as a ‘baseline’ or ‘standard’

mortality rate for all individuals in the population.

The standard death rate, µ(x), also represents the

mortality rates for the class of individuals with a

relative risk of unity (Vaupel & Yashin, 1985).

Assuming that individual risk is gamma distributed

with mean 1 and variance σ#, the observed cohort

level mortality trajectory is

µ- (x)¯
µ(x)

1­σ#H(x)
, (3)
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where H(x) is the cumulative hazard (see Appendix)

(Vaupel & Yashin, 1985).

The relative risk model that has clearly received the

most attention in the evolutionary and genetic

literature assumes that the standard mortality function

follows the Gompertz model :

µ(x)¯ aebx, (4)

where a is termed the baseline mortality parameter

and b is the rate parameter (Gompertz, 1825). In this

case, the cohort level mortality function is

µ- (x)¯
aebx

1­[σ# a(ebx®1)]}b
. (5)

This is the well-known logistic (or frailty) mortality

model (Vaupel & Yashin, 1985; Pletcher et al., 1998;

Service et al., 1999). The logistic model predicts

cohort-level mortality rates that increase exponentially

early in life and then decelerate and level off at

advanced ages. This is despite the fact (see equation 4)

that individual mortality rates continue to increase

exponentially.

(iii) Accelerated-aging model

In a model we call the accelerated-aging (AA) model,

individual risk affects the rate of increase in mortality

with age, rather than modifying mortality by an equal

proportion at all ages. This model is analogous to the

accelerated-failure models that are commonly used in

reliability engineering (Gertsbakh, 1989). Thus, the

AA model differs from the relative risk model of

Vaupel et al. (1979) in its most basic assumption

about the mortality effects of heterogeneity. For the

models discussed in this paper, the mortality rate of

individuals with individual risk z is assumed to follow

µ(x, z)¯ aebzx. (6)

The model is similar to the relative risk model in that

it assumes a Gompertzian baseline mortality, but in

this case z can not be interpreted as a relative risk, as

it influences mortality rates by different amounts at

different ages.

Unfortunately, the simple change in the placement

of the risk variable, z, greatly complicates subsequent

calculations of the cohort-level mortality trajectory.

Following the procedure outlined in the Appendix,

and assuming a gamma distribution of individual risk

at birth with mean 1 and variance σ#¯1}k, the

cohort mortality trajectory resulting from the AA

model can be expressed as

µ- (x)¯
a&

¢

!

zk−" exp²bzx®φ(x, z)´ dz

&
¢

!

zk−" exp²®φ(x, z)´ dz

, (7)

where φ(x, z)¯kz®[a(ebzx®1)]}bz. Although this

function is quite complicated, it can be evaluated

numerically for specific values of a, b and σ# and for

all ages x.

3. Heterogeneity and genetic variance

(i) Genetic effects on mortality rates

Fitness sensitivities for survival probabilities and

mortality rates decline with age. Thus, an age-

dependent increase in genetic variance in these traits

for populations in mutation–selection balance is

expected (Charlesworth, 1990; Charlesworth &

Hughes, 1996). The rate of increase, however, depends

on the scale of analysis and on the mode of gene

action. The classical evolutionary models of sen-

escence assume that genes act multiplicatively on age-

specific survival probabilities, P(x) (therefore

additively on µ(x)¯®lnP(x)) (Hamilton, 1966;

Charlesworth, 1994; Charlesworth & Hughes, 1996).

In this case, the genetic variance for mortality, µ(x), is

expected to increase with age at about the same rate as

the mean mortality rate (Charlesworth & Hughes,

1996), which results in a decline in the genetic variance

for lnµ(x) with age.

Recent evidence suggests, however, that genes act

multiplicatively on µ(x) ; thereby additively on the

logarithm of age-specific mortality rate, lnµ(x)

(reviewed in Promislow & Tatar, 1998). Evidence for

this idea is provided by the proportional effects of

phenotypic manipulations on mortality rates at all

ages and the log-normal distribution of the effects of

mutations on mortality (Promislow & Tatar, 1998). In

this situation, genetic variance for log-mortality is

expected to increase slightly faster than linearly with

age for populations with age-specific alleles in

mutation–selection balance (S. Pletcher, unpublished

results). Such patterns have been observed for lab-

oratory populations of Drosophila, where the genetic

variance of log-mortality increases markedly with age

early in life (Hughes & Charlesworth, 1994; Promislow

et al., 1996; Shaw et al., 1999).

To correspond with empirical results, we assume

that mutations act additively on lnµ(x). Although we

do not explicitly present them here, qualitatively

similar results are obtained if mortality rates are

treated on their natural scale (S. Pletcher, unpublished

data). Log-mortality rates are estimated from cohorts

that are composed of genetically identical individuals

(e.g. Hughes & Charlesworth, 1994; Promislow et al.,

1996; Pletcher et al., 1998; Shaw et al., 1999).

Mortality rates obtained from such cohorts can be

considered characteristic of a particular genotype, and

genetic variance is obtained by estimating the variance

in log-mortality among genotypes. Heterogeneity

occurs within genotypes as a result of micro-
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environmental differences among individuals during

development. Effects of heterogeneity on estimations

of genetic variance are examined in detail for two

simple cases : (i) the true genetic variance among

cohorts is constant across ages, and (ii) the true

genetic variance is increasing with age. For each case

the relative risk and AA models will be examined in

turn.

(ii) Case i: Constant genetic �ariance at all ages

Assume the following:

1. All individuals in all cohorts follow the Gompertz

mortality model (4).

2. Genotypes differ only with respect to the parameter

a in the Gompertz model. If alleles from different

loci act additively on log-mortality, then age-

specific mortality rates are normally distributed on

the log scale (Promislow et al., 1996; Pletcher et al.,

1998; Promislow & Tatar, 1998). Thus, we assume

that the random variable a*¯ ln(a) is normally

distributed with variance σ#
a*

.

3. Individuals within each genetic line are hetero-

geneous for individual risk, with individual z values

chosen from the gamma distribution with mean 1

and variance σ#. The distribution of individual risk

is identical for all genotypes.

Ignoring heterogeneity for the moment, assump-

tions 1 and 2 imply that the genotypic mortality rate

at age x for genetic line i follows.

µ
i
(x)¯ a

i
ebx (8a)

and

ln(µ
i
(x))¯ a$

i
­bx, (8b)

where a$
i

is normally distributed among genotypes

(see assumption 2). Thus, if the log-mortality rates of

indi�iduals could be measured, the mortality trajectory

for each genetic line, i, would follow (8b), and a

constant genetic variance at all ages would result as,

Var[ln(µ(x))]¯Var[a*­bx]¯Var[a*]¯σ#
a*

, which is

invariant over all ages.

(a) Relati�e risk model. Under the relative risk model,

the mortality rate for individual j of genetic line i will

follow

µ
i,j

(x)¯ z
j
a
i
ebx, (9)

where z is a random variable drawn from the

distribution of individual risk (see assumption 3).

Although the mortality trajectory for individuals of

each genotype is Gompertz with parameters (a
i
, b),

heterogeneity causes the observed cohort-level mor-

tality trajectory for genetic line i to take the form

µ-
i
(x)¯

a
i
ebx

1­[σ# a
i
(ebx®1)]}b

(10)

(see equation 5).

Transforming (10) to the log scale and adjusting for

the mean genotype value,

ga
i
(x)¯πα*

­a$
i
­bx®ln[1­

σ#

b
(eπ

a+a$i )(ebx®1)], (11)

where ga
i
(x) now represents the observed genotypic

value of the log-mortality rate in line i at age x, π
a*

is

the average (over all genetic lines) baseline log-

mortality parameter, a$
i

is normally distributed among

genetic lines with mean 0 and variance σ#
a*

, and σ# is

the variance of individual risk at birth.

To determine the age-specific genetic variance in the

presence of variation in individual risk, we require a

general expression for Var[ga (x)]. Using the delta

method (Lynch & Walsh, 1998), and noting that

¦ga
¦a*

¯ 01­
σ#

b
eπ

a*+a* (ebx®1)1−", (12)

results in

Var[ga (x)]¯σ#
a*01­

σ#

b
eπ

a* (ebx®1)1−#. (13)

This function is monotonic decreasing in x and

lim
xU

!

Var [ga (x)]¯σ#
a*

(14a)

and

lim
xU¢

Var [ga (x)]¯ 0. (14b)

Equations (13) and (14) show that the true genetic

variance is observed only at age 0, after which the

observed variance declines monotonically to zero.

Thus, under the relative risk model, the selective death

of the most frail individuals within cohorts has the

effect of causing mortality curves among cohorts to

converge at older ages. This can be explained

intuitively by noting that genotypic mortality curves

differ only by the baseline mortality parameter, a, of

the Gompertz model. Since all genotypes share the

same rate parameter and the same distribution of

individual risk, all lines plateau at the same level (¯
b}σ#) and genetic variance is reduced to zero at very

old ages. This is despite the fact that the true genetic

variance is constant throughout life.

(b) Accelerated-aging model. For the AA model,

patterns of age-specific genetic variance must be

examined using numerical techniques. For each of

1000 genotypes, baseline mortality parameters a*¯
ln(a) were drawn from the normal distribution with a

mean of ln(0±001) and variance of 0±6. For each

genotype, log-mortality trajectories were calculated

by numerically integrating (7), and among-line vari-

ance was calculated at each age. This process was

repeated for many different parameter values (a, b,

and σ#), but the patterns were absolutely consistent –
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Fig. 1. Observed age-specific genetic variance for log-
mortality rates generated under the relative risk and
accelerated-aging (AA) models. Actual genetic variation is
constant (¯ 0±6) across all ages. Individuals age according
to the Gompertz mortality model. Genotypic baseline
mortality (a) parameters are normally distributed with
mean log(0±001) and variance 0±6. Rate (b) parameters are
0±14. Variance among genotypes was determined using
numerical methods. (A) Variance in individual risk is 0±1 ;
(B) variance in individual risk is 0±4.

although the true genetic variance is constant, the

estimated genetic variance declines monotonically

with age. At older ages, however, an asymptote of low

variance is apparently approached.

Fig. 1 shows predicted variance patterns (for two

different degrees of heterogeneity) for the AA model

and the relative risk model. For both models the true

genetic variance (¯ 0±6) is observed only at age 0,

after which the measured variance declines mono-

tonically. For a given amount of heterogeneity, the

decline in variance is more rapid in the AA model. For

both models, greater amounts of heterogeneity pro-

duce a more rapid decline in variance (Fig. 1).

(iii) Case ii : Increasing genetic �ariance with age

Assume the following:

1. All individuals in all cohorts follow the Gompertz

mortality model (4).

2. Genotypes differ only with respect to the parameter

b in the Gompertz model, and b is normally

distributed with variance σ#
b
.

3. Individuals within each genetic line are hetero-

geneous for individual risk, with individual z values

chosen from the gamma distribution with mean 1

and variance σ#. The distribution of individual risk

is identical for all genotypes.

In the absence of heterogeneity, the mortality rate

of genotype i is

µ
i
(x)¯ aebix (15a)

and

ln(µ
i
(x))¯ a*­b

i
x, (15b)

where a*¯ ln(a) and b
i
is a random variable described

in assumption 2. If we could accurately determine the

log-mortality rates of individuals, the genetic variance

would increase with the square of age, as Var[ln(µ(x))]

¯Var[a­bx]¯x#σ#
b
.

(a) Relati�e risk model. Although the genetic variance

is present in the rate parameter b, the mortality rate

for individual j in genetic line i is

µ
i,j

¯ az
j
ebix. (16)

Thus, the observed cohort-level mortality trajectory is

ga
i
(x)¯ a*­(π

b
­b

i
)x®ln91­

σ#

(π
b
­b

i
)

¬(ea*)(e(πb+bi)x®1):, (17)

where ga
i
(x) is the observed genotypic log-mortality

rate of line i at age x, a* is the baseline log-mortality

parameter, π
b
is the average (over all genetic lines) rate

parameter, b
i
is distributed normally among genetic

lines with mean 0 and variance σ#
b
, and σ# is the

variance of the risk distribution.

Applying the delta model we obtain

Var[ga (x)]¯ 0π#
b
x­ea* σ#(eπ

bx®1®π
b
x)

π
b
[π

b
­σ# ea*(eπ

bx®1)] 1#σ#
b
. (18)

For a broad range of parameter values (including

those observed for Drosophila), this function is 0 at

birth, reaches a maximum at some intermediate age,

and asymptotes at large x at a level equal to the

squared coefficient of genetic variance of the slope

parameter.

lim
xU

!

Var[ga (x)]¯ 0 (19a)

and

lim
xU¢

Var[ga (x)]¯
1

π#
b

σ#
b
. (19b)

While the true genetic variance is increasing mono-

tonically with age as a result of variation in the slope

parameter of the Gompertzmodel, variation in relative
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Fig. 2. Observed age-specific genetic variance for log-
mortality rates generated under the relative risk and
accelerated-aging (AA) models. Actual genetic variation
increases with the square of age, x, such that V

G
¯

x#(0±00092). Individuals age according to the Gompertz
mortality model. Genotypic baseline mortality (a)
parameters are 0±001, while rate parameters (b) are
normally distributed with mean 0±14 and variance
0±00092. Variance among genotypes was determined using
numerical methods. (A) Variance in individual risk is 0±1 ;
(B) variance in individual risk is 0±4.

risk can cause the observed genetic variance to show

more complicated dynamics, in which variance

increases, reaches a maximum and subsequently

decreases to a relatively low level at the oldest ages

(Fig. 2). For very low π
b
(e.g.! 0±009), the approach

to the asymptote may be gradual and monotonic

(results not presented).

(b) Accelerated-aging model. As before, patterns of

age-specific genetic variance predicted by the AA

model were determined numerically. One thousand

random genotypic values for the b
i
were drawn from

the normal distribution with mean 0±14 and variance

0±00092. The variance was chosen to produce levels of

genetic variance comparable to those for the constant

variance situation examined above. For each geno-

type, log-mortality trajectories were calculated by

numerically integrating (7), and among-line variance

was determine for each age. We investigated variance

trajectories for several sets of average parameter

values, which varied over the range reported for

Drosophila, mice, and other laboratory populations

(Finch, 1990). The absolute level of variance at each

age was strongly influenced by the amount of variance

in the rate parameter. The overall shape of the

variance trajectories, however, was insensitive to the

degree of rate variance – genetic variance increases,

reaches a maximum at intermediate ages, and declines

to low levels late in life. As with the relative risk

model, very low levels of π
b

result in gradual,

monotonic approach to an apparent asymptote

(results not presented).

In comparison with the relative risk model, for a

given amount of variance in the distribution of

individual risk, the age trajectory of genetic variance

increases more rapidly, reaches a lower peak, and is

more right skewed (Fig. 2). Even when the variance in

b is increased to equalize the observed variances, the

age-dependent patterns produced by the two models

remain different.

(ii) Summary

The effects of the relative risk and AA models on the

observed age-trajectories of genetic variance can be

summarized as follows:

E Both models predict that the estimated genetic

variance at older ages will be substantially less than

the true genetic variance.

E When genetic variance is constant across ages, the

true variance is observed only at age 0, after which

the observed variance declines monotonically with

age. The decline is more rapid under the AA model

compared with the relative risk model (Fig. 1).

E More complicated dynamics are observed when the

true genetic variance increases with age as a result

of genetic variance in the slope parameter of the

Gompertz model. For a broad range of parameter

values, both models predict genetic variance to

increase from zero, reach a maximum at an

intermediate age, and then decline to relatively low

levels late in life. The AA model shows a more

rapid increase in genetic variance and a slower

decline within the likely range of observed data

(Fig. 2).

More complicated dynamics of the estimated genetic

variance as a function of age occur when both the

baseline mortality and rate parameters of the

Gompertz model are allowed to exhibit genetic

variation. For these cases, reasonably useful equations

relating the variance at each age as a function of

variance in the mortality parameters could not be

obtained. Such equations were even more involved
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Fig. 3. Actual age-specific trajectories of genetic variance
for log-mortality rates, and observed variance resulting
from heterogeneity among individuals. Individuals age
according to the Gompertz mortality model. For all three
panels, genotypic baseline mortality (a) and rate (b)
parameters are distributed as multivariate normal with
mean vector ²log(0±001), 0±14´ and variance vector ²0±6,
0±00092´. Variance among genotypes was determined
using numerical methods. The actual genetic variance
depends on the correlation between the two parameters.
(A) correlation is 1±0 and V

G
¯ 0±6­x­0±00092x# (x is

age in days) ; (B) correlation is 0 and V
G
¯

0±6­0±00092x# ; (C) correlation is ®1±0 and V
G
¯

0±6®x­0±00092x#. The variance of the heterogeneity
distribution (σ#) is 0±2.

when we considered the possibility of genetic co-

variance between parameters. Nevertheless the

equations could be evaluated numerically, and Fig. 3

provides useful examples of the range of behaviours

from the models.

When the genetic correlation between baseline

mortality (a) and rate parameters (b) of the Gompertz

model is near 1±0, the actual genetic variance grows

quite rapidly from birth. Rather surprisingly, het-

erogeneity causes an overestimate of the genetic

variance at younger ages and an underestimate later in

life (Fig. 3A). When a and b are uncorrelated the

pattern is similar to that produced by variance in b

alone (Fig. 3B) – variance is underestimated at the

oldest ages. In cases where the baseline mortality and

rate parameters are highly negatively correlated, the

pattern of observed variance can be quite complex. In

our example, the relative risk model reveals variance

that declines early in life, increases through middle

age, and decreases again very late in life (Fig. 3C).

4. Discussion

We have shown that environmentally induced het-

erogeneity among genetically identical individuals is

sufficient to generate biased estimates of age-specific

genetic variance for log-mortality rates. In the presence

of heterogeneity, the shape of the estimated age-

trajectory of genetic variance may deviate significantly

from the true underlying function (Figs 1–3). When

individual, non-genetic variation is taken into account,

situations where (i) the actual genetic variance is

constant across ages or (ii) the actual genetic variance

increases with age can result in a variety of estimated

patterns of variance. Observed variance can decrease

monotonically with age (Fig. 1) ; increases early, reach

a maximum and decrease at older ages (Fig. 2) ; or

decrease at very early ages, increase and then decrease

again (Fig. 3). In certain situations the estimated age

pattern of genetic variance among cohorts only weakly

reflects the actual genetic variation among individuals

of different genotypes.

These results are robust to different manifestations

of heterogeneity and to different mortality patterns.

They suggest that such observations may be general

features of these models. Moreover, age-dependent

measures of variance for any character that is

genetically or environmentally correlated with mor-

tality can be expected to be influenced by this

phenomenon. Variation in the quality of the en-

vironment experienced by different individuals might

be expected to induce positively correlated effects on

many life-history characters (De Jong & van

Noordwijk, 1992; Stearns, 1992), suggesting this bias

may be more widespread than is currently appreciated.

We point out that such a bias is inevitable and is not

alleviated with increased sample size. The results
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presented in Figs. 1–3 assume that cohorts are

composed of essentially infinite numbers of indi-

viduals. To the extent that small samples result in the

extinction of high-mortality cohorts, the bias will be

even greater.

Based on estimates of weekly log-mortality rates,

Promislow et al. (1996) suggest that genetic variance

increases and subsequently decreases with age in

experimental populations of Drosophila melanogaster.

They argue that such an observation is inconsistent

with predictions of current evolutionary models of

senescence, which seem to predict a monotonic

increase in genetic variance with age (Charlesworth,

1990, 1994; Charlesworth & Hughes, 1996). It is clear

from our analysis, however, that in the presence of

heterogeneity, an obser�ed decrease in genetic variance

among cohorts is not inconsistent with an actual

genetic variance that increases monotonically with

age. Shaw et al. (1999) were able to estimate genetic

variance in the parameters of the logistic mortality

model (5), which incorporates the assumptions of the

relative risk models of heterogeneity. They found

significant genetic variance in all three parameters of

the model (a, b and σ#). If the relative risk model is

assumed to be true, the negative genetic correlation

between a and b implies that the actual genetic

variance is high at birth, decreases until approximately

age 15 days post-eclosion, and subsequently increases

indefinitely with age. A decline in the estimated

genetic variance is a result of significant variance in

frailty (i.e. a significant average σ#). Thus, if environ-

mentally induced heterogeneity is the sole cause of the

reduction in observed genetic variance at advanced

ages, the Promislow et al. (1996) results are not at

odds with current evolutionary theory.

The same argument can be applied to the data of

Pletcher et al. (1998, 1999), who observed relatively

high mutational variance (genetic variance generated

by spontaneous mutations) early in life and little or no

variance at older ages. A lack of mutational effects on

old-age mortality rates is suggested and, if true, the

results are intriguing (Pletcer et al., 1999).

Unfortunately, heterogeneity among individuals could

not be estimated, leaving open the possibility that the

actual genetic variance in these studies is constant or

increasing with age – an alternative that leads to

different conclusions about mutational effects.

5. Conclusions

If individuals are heterogeneous for mortality charac-

teristics, the estimated genetic variance may decline

substantially with age even when the actual genetic

variance is rapidly increasing. Therefore, the precise

role of non-genetic heterogeneity in influencing the

observed decline in genetic variance is an important

and open question. We have not provided any evidence

in favour of heterogeneity as an explanation for the

observations; rather we establish this as a valid

hypothesis. Given the current data, it is equally

possible that the reduction of variance at older ages

reflects some biological constraint on the expression

of age-dependent characters. A needed empirical

approach is to directly measure or manipulate the

amount of heterogeneity in a cohort of organisms to

test the influence of non-genetic variation on observed

mortality rates. Khazaeli et al. (1999) attempted such

an experiment using Drosophila by manipulating larval

development to reduce the chances for environ-

mentally induced variation in experimental cohorts.

They report no significant effect of heterogeneity (as

described by the parameter σ# in the relative risk

model) on the mortality differences between homo-

geneous and control cohorts (Khazaeli et al., 1999).

Distinguishing individual from cohort behaviour is

fundamental to the interpretation of age-specific data,

and it remains to be seen whether non-genetic, cohort

heterogeneity figures prominently in the explanation

of age-specific changes in genetic variance. Irrespective

of the ultimate outcome, there are certain requirements

in the short term. Experimental procedures for

measuring and manipulating environmentally induced

heterogeneity are needed, as are improved statistical

techniques for quantifying age-dependent environ-

mental variation among individuals. Biological models

of aging that predict mortality deceleration and}or

variance reduction with age are vital for providing

alternative models to describe data and for directing

further research into potential genetic mechanisms of

life-history variation.

Appendix

The conditional density of individual risk given

survival to age x is

f
x
(z)¯

f
!
(z) e−H(x,z)

&
¢

!

f
!
(z) e−H(x,z) dz

, (A 1)

where µ(x, z) is the mortality rate for an individual

with risk z, f
!
(z) is the distribution of individual risk in

the population at birth and H(x, z) is the cumulative

hazard from birth to age x for an individual with

risk z

H(x, z)¯&x

!

µ(x, z) dz (A 2)

(Vaupel & Yashin, 1985).

Equations (1), (A 1) and (A 2) allow us to derive the

expected cohort-level mortality rate based on a model

describing how individual mortality rates change with

age. Given a functional form for µ(x, z) we use (A 2)

to calculate H(x, z). Assuming a certain distribution
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of individual risk in newborn individuals (e.g. a

normal or gamma distribution), (A 1) is used to

obtain the age-specific conditional distribution of risk

among survivors to age x. Given this distribution, (1)

is used to calculate the expected cohort mortality rate

at age x. Performing this series of calculations for each

age in the lifespan generates an observed cohort-level

mortality trajectory based on individual mortality

trajectories of the form given by µ(x, z).
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