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We show that complete intersection log del Pezzo surfaces with amplitude one in
weighted projective spaces are uniformly K-stable. As a result, they admit an
orbifold Kähler–Einstein metric.
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1. Introduction

Throughout the article, the ground field is assumed to be the field of complex
numbers. Let S be a codimension c complete intersection of type (d1, . . . , dc) in
a weighted projective space P(a0, . . . , an) that is quasi-smooth, well-formed and
a0 � a1 � · · · � an < d1 � · · · � dc. Suppose that S is a log del Pezzo surface. Then
we have exactly two possibilities:

(A) Either n = 3 and S ⊂ P(a0, a1, a2, a3) is a hypersurface of degree

d < a0 + a1 + a2 + a3

with amplitude I = a0 + a1 + a2 + a3 − d

(B) Or n = 4 and S ⊂ P(a0, a1, a2, a3, a4) is a complete intersection of two
hypersurfaces of degrees d1 and d2 such that

d1 + d2 < a0 + a1 + a2 + a3 + a4

with amplitude I = a0 + a1 + a2 + a3 + a4 − d1 − d2.

In the case (A), Johnson and Kollár [9] found the complete list of all possibili-
ties for the quintuple (a0, a1, a2, a3, d) in the case when the amplitude I is one.
Moreover, they computed the α-invariants and proved the existence of the orbifold
Kähler–Einstein metrics in the case when the quintuple (a0, a1, a2, a3, d) is not
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one of the following four quintuples

(1, 2, 3, 5, 10), (1, 3, 5, 7, 15), (1, 3, 5, 8, 16), (2, 3, 5, 9, 18).

To prove the above statement they used the criterion that a log del Pezzo
surface S admits an orbifold Kähler–Einstein metric whenever the α-invariant of
S is bigger than 2

3 . Later, Araujo [1] computed the α-invariants for two of these
four cases to show the existence of an orbifold Kähler–Einstein metric when
(a0, a1, a2, a3, d) = (1, 2, 3, 5, 10) or (a0, a1, a2, a3, d) = (1, 3, 5, 7, 15) and the
defining equation contains the monomial yzt where x, y, z and t are coordinates
with weights wt(x) = a0, wt(y) = a1, wt(z) = a2 and wt(t) = a3. Finally, Cheltsov,
Park and Shramov [2] computed the α-invariants for the remaining families.

For the case (A) every log del Pezzo surface S admits an orbifold Kähler–Einstein
metric except possibly the case when (a0, a1, a2, a3, d) = (1, 3, 5, 7, 15) and the
defining equation does not contain the monomial yzt whose α-invariant is 8

15 (< 2
3 ).

Recently Fujita and Odaka introduced δ-invariant which gives a strong criterion
showing the uniform K-stability of Q-Fano varieties (see [8]).

Theorem 1.1. Let X be a Q-Fano variety. Then X is uniformly K-stable if and
only if δ(X) > 1.

The estimation of the δ-invariant has been investigated on several log del Pezzo
surfaces in [4–7, 14, 15]. Moreover Li, Tian and Wang generalized in [13] the
result of Chen, Donaldson, Sun and Tian for the K-polystability and the existence
of the Kähler–Einstein metric to some singular Fano varieties. In virtue of the
δ-invariant method and the result [13], the paper [3] completes the problem of the
existence of the (orbifold) Kähler–Einstein metric on del Pezzo hypersurfaces with
I = 1, case (A):

Theorem 1.2 [3]. Let S be a quasi-smooth hypersurface in P(1, 3, 5, 7) of degree
15 such that its defining equation does not contain yzt. Then the surface S admits
an orbifold Kähler–Einstein metric.

Corollary 1.3. Every quasi-smooth hypersurface with I = 1 admits an orbifold
Kähler-Einstein metric.

In [10] and [11], we classified the log del Pezzo surfaces S for the case (B) when
S ⊂ P(a0, a1, a2, a3, a4) are quasi-smooth and well-formed complete intersection
log del Pezzo surfaces given by two quasi-homogeneous polynomials of degrees d1

and d2 with amplitude 1, and not being the intersection of a linear cone with another
hypersurface. Then there are 42 families. We denote family No. i as the number i
in the first column Γ of the table which is represented in [11, section 5].

Suppose that the log del Pezzo surface S is not one of the following:

• No. 3 : a complete intersection of two hypersurfaces of degrees 6 and 8 embedded
in P(1, 2, 3, 4, 5) such that the defining equation of the hypersurface of degree 6
does not contain the monomial yt, where y is the coordinate function of weight
2 and t is the coordinate function of weight 4.
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• No. 40 : a complete intersection of two hypersurfaces of degree 2n embedded
in P(1, 1, n, n, 2n − 1) where n is a positive integer.

Then the α-invariant of S is bigger than 2
3 , in fact they are bigger or equal to one,

so that it admits an orbifold Kähler–Einstein metric (see [10, theorem 1.9] and
[11, theorem 1.2]).

The present article completes the existence of the orbifold Kähler–Einstein metric
of the remaining two cases.

Theorem 1.4. Let S be a quasi-smooth member of family No. i with i ∈ {3, 40}.
Then the log del Pezzo surface S is uniformly K-stable so that it admits an orbifold
Kähler–Einstein metric.

Corollary 1.5. Every quasi-smooth weighted complete intersection with I = 1
admits an orbifold Kähler–Einstein metric.

2. Preliminary

2.1. Notation

Throughout the paper we use the following notations:

• For positive integers a0, a1, a2, a3 and a4, P(a0, a1, a2, a3, a4) is the weighted
projective space. We assume that a0 � a1 � a2 � a3 � a4.

• We usually write x, y, z, t and w for the weighted homogeneous coordi-
nates of P(a0, a1, a2, a3, a4) with weights wt(x) = a0, wt(y) = a1, wt(z) = a2,
wt(t) = a3 and wt(w) = a4.

• S ⊂ P(a0, a1, a2, a3, a4) denotes a quasi-smooth complete intersection log del
Pezzo surface given by quasi-homogeneous polynomials of degrees d1 and d2.

• The integer I = a0 + a1 + a2 + a3 + a4 − d1 − d2 is called the amplitude of S.

• H∗ is the hyperplane section on the log del Pezzo surface S cut out by the
equation ∗ = 0.

• px denotes the point on S given by y = z = t = w = 0. The points py, pz, pt

and pw are defined in a similar way.

• −KS denotes the anti-canonical divisor of S.

2.2. Foundation

X is Q-Fano variety, i.e., a normal projective Q-factorial variety with at most
terminal singularities such that −KX is ample.

Definition 2.1. Let (X, D) be a pair, that is, D is an effective Q-divisor, and let
p ∈ X be a point. We define the log canonical threshold (LCT, for short) of (X, D)
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and the log canonical threshold of (X, D) at p to be the numbers

lct(X,D) = sup{ c | (X, cD) is log canonical},
lctp(X,D) = sup{ c | (X, cD) is log canonical at p},

respectively. We define

lctp(X) = inf{ lctp(X,D) | D is an effective Q-divisor,D ≡ −KX},
and for a subset Σ ⊂ X, we define

lctΣ(X) = inf{lctp(X) | p ∈ Σ}.
The number α(X) := lctX(X) is called the global log canonical threshold (GLCT,
for short) or the α-invariant of X

Let S be a surface with at most cyclic quotient singularities, and let D be an
effective Q-divisor on X.

Lemma 2.2 [12]. Let p be a smooth point of S. Suppose that the log pair (S, D) is
not log canonical at the point p. Then multp(D) > 1.

Suppose that S has a cyclic quotient singular point q of type 1
r (a, b). Then there

is an orbifold chart π : Ū → U for some open set q ∈ U on S such that Ū is smooth
and π is a cyclic cover of degree r branched over q.

Lemma 2.3 [12]. Let q̄ ∈ Ū be the point such that π(q̄) = q. Then the log pair
(U, D|U ) is log canonical at the point q if and only if the log pair (Ū , D̄|Ū ) is log
canonical at the point q̄ where D̄ = π∗(D|U ).

Definition 2.4 [8]. Let k be a positive integer. We set h = h0(S, −kKS). Given
any basis

s1, . . . , sh

of H0(S, −kKS), taking the corresponding divisors D1, . . . , Dh with Di ∼ −kKS,
we get an anti-canonical Q-divisor

D :=
D1 + . . . + Dh

kh
.

We call this kind of anti-canonical Q-divisor an anti-canonical Q-divisor of k-basis
type.

Then we can define the δ-invariant of S using an anti-canonical Q-divisor of
k-basis type. The definition of the δ-invariant of a Fano variety is the following.

Definition 2.5 [8]. For k ∈ Z>0, set

δk(S) := inf{ lct(S,D) | D is of k -basis type }.
Moreover, we define

δ(S) := lim sup
k→∞

δk(S).

It is called the δ-invariant of S.
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Definition 2.6. Let X be an irreducible projective variety of dimension n, and let
D be a Cartier divisor on X. The volume of D is defined to be the non-negative real
number

vol(D) = volX(D) = lim sup
m→∞

h0(X,OX(mD))
mn/n!

.

For a Q-divisor D on the surface S we can define its volume using the identity

vol(D) =
vol(λD)

λ2

for an appropriate positive rational number λ.
Let D be an anti-canonical Q-divisor of k-basis type with k � 1, and let C be

an irreducible reduced curve on S. We write

D = aC + Δ

where a is non-negative real number and Δ is an effective Q-divisor such that
C 	⊂ Supp(Δ). Let

τ = sup{ x ∈ R>0 | D − xC is pseudoeffective }.

In the case that D is an ample Q-divisor of k-basis type with k � 1 we can find
a better bound for a. One such estimate is given by the following very special case
of [8, lemma 2.2].

Theorem 2.7 [3, theorem 2.9]. Suppose that D is a big Q-divisor of k-basis type
for k � 1. Then

a �
∫ τ

0

vol(D − xC)dx + εk

where εk is a small constant depending on k such that εk → 0 as k → ∞.

Corollary 2.8 [3, corollary 2.10]. Suppose that D is a big Q-divisor of k-basis
type for k � 0, and

C ∼Q μD

for some positive rational number μ. Then

a � 1
3μ

+ εk,

where εk is a small constant depending on k such that εk → 0 as k → ∞.

3. Family No. 3

In this section we prove the following theorem:

Theorem 3.1. Let S be a quasi-smooth member of family No. 3. Then δ(S) � 5
4 .

Moreover, S admits an orbifold Kähler–Einstein metric.
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Proof. Let D be an anti-canonical Q-divisor of k-basis type on S with k � 0. By
lemmas 3.2–3.4 the log pair (S, 5

4D) is log canonical. Therefore δ(S) � 5
4 . �

We divide the proof of the above theorem into a sequence of lemmas. Let S ⊂
P(1, 2, 3, 4, 5) be a quasi-smooth complete intersection log del Pezzo surface given
by two quasi-homogeneous polynomials of degrees 6 and 8. By suitable coordinate
change we may assume that S is given by

wx + ξty + z2 + y3 = 0,
wz + t2 + g(x, y) = 0,

where ξ is a constant and g(x, y) is a quasi-homogeneous polynomial of degree 8.
Then S is singular only at the point pw, which is a cyclic quotient singularity of
type 1

5 (4, 3). Since the defining equation of degree 6 of a member of family No. 3
does not contain the monomial ty, ξ = 0. Thus S is given by

F = wx + z2 + y3 = 0,

G = wz + t2 + g(x, y) = 0.

Let Hx be the hyperplane section given by x = 0. Then it is isomorphic to the
variety embedded in P(2, 3, 4, 5) given by

z2 + y3 = 0,
wz + t2 + ζy4 = 0,

where ζ = g(0, 1). We consider the open set U = S \ Hw where Hw is the hyper-
plane section given by w = 0. Hx|U is isomorphic to the Z5-quotient of the affine
curve given by

(t2 + ζy4)2 + y3 = 0 (3.1)

in A2. From the equation (3.1), we can see that Hx is irreduciblyreduced and
singular at the point pw. Also, we have lct(S, Hx) = 7

12 .
Let D be an anti-canonical Q-divisor of k-basis type on S with k � 0. We put

λ = 5
4 .

Lemma 3.2. The log pair (S, λD) is log canonical along Hx \ {pw}.

Proof. Suppose that the log pair (S, λD) is not log canonical at some point p ∈
Hx \ {pw}. We write

D = aHx + Δ

where a is non-negative rational number and Δ is an effective divisor such that
Hx 	⊂ Supp(Δ). By corollary 2.8 we have a � 1

3 + εk < 9
25 for k � 0. Since λa � 1

the log pair (S, Hx + λΔ) is not log canonical at the point p. By the inversion of
adjunction formula the log pair (Hx, λΔ|Hx

) is not log canonical at point p. We
have the inequalities

1
λ

< multp(Δ|Hx
) � Δ · Hx = (D − aHx) · Hx =

2
5
− 2

5
a,

which imply that a < −1. This is impossible. Therefore the log pair (S, λD) is log
canonical along Hx \ {pw}. �
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Lemma 3.3. The log pair (S, λD) is log canonical long S \ Hx.

Proof. Suppose that the log pair (S, λD) is not log canonical at some point
p ∈ S \ Hx. By suitable coordinate change we can assume that p = px.

Let C be the curve on S cut out by the equation y = 0. Then C passes through
the point p. Since the curve C is smooth at pw and C · Hx = 4

5 , it is irreducible
and reduced. Let L be the pencil cut out by the equations αxy + βz = 0 where
[α : β] ∈ P1. The base locus of L is given by z = yx = 0. Since S ∩ Hx ∩ Hz = {py}
and S ∩ Hy ∩ Hz = {px, pw} we have BS(L) = {px, py, pw}. Thus there is a general
member M ∈ L such that p ∈ M and C 	⊂ Supp(M). We have

multp(M)multp(C) � M · C =
12
5

.

It implies that multp(C) is either 1 or 2. We write

D = bC + Σ

where b is non-negative rational number and Σ is an effective Q-divisor such that
C 	⊂ Supp(Σ). By Corollary 2.8, we have b � 1

6 + εk < 1
3 for k � 0.

We assume that multp(C) = 1. Since λb � 1 the log pair (S, C + λΣ) is not
log canonical at the point p. By the inversion of adjunction formula the log pair
(C, λΣ|C) is not log canonical at the point p. We have the inequalities

1
λ

< multp(Σ|C) � Σ · C = (D − bC) · C =
4
5
− 8

5
b.

They imply that b < 0. It is impossible. Thus multp(C) = 2. From lemma 2.2 we
have the following inequalities

2
(

1
λ
− 2b

)
< multp(C)multp(D − bC) � C · (D − bC) =

4
5
− 8

5
b.

Then we have 1
3 < b. It is impossible. Thus the log pair (S, λD) is log canonical

along S \ Hx. �

Lemma 3.4. The log pair (S, λD) is log canonical at pw.

Proof. Suppose that the log pair (S, λD) is not log canonical at pw. We consider
the open set U given by w 	= 0. Then we may regard y and t are local coordinates
with weights wt(y) = 4 and wt(t) = 3 in U . Let π : S̄ → S be the weighted blow-up
at pw with weights wt(y) = 4 and wt(t) = 3. Then S̄ has the singular points q1 and
q2 of types 1

4 (1, 1) and 1
3 (1, 1), respectively. We have

KS̄ ∼Q π∗(KS) +
2
5
E, H̄x ∼Q π∗(Hx) − 12

5
E

where H̄x is the strict transform of Hx and E is the exceptional divisor of π. We
write

D = aHx + Δ
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where a is a non-negative rational number and Δ is an effective Q-divisor such that
Hx 	⊂ Supp(Δ). By corollary 2.8, we have

a � 9
25

(3.2)

for k � 0. We also have

Δ̄ ∼Q π∗(Δ) − mE

where Δ̄ is the strict transform of Δ and m is a non-negative rational number. To
obtain a bound of m we consider the inequality

0 � Δ̄ · H̄x = (π∗(Δ) − mE) ·
(

π∗(Hx) − 12
5

E

)
= Δ · Hx +

12
5

mE2.

Since Δ · Hx = (D − aHx) · Hx = 2
5 − 2

5a and E2 = − 5
12 , we have

m � 2
5
− 2

5
a. (3.3)

Meanwhile, we have

KS̄ + λ(aH̄x + Δ̄) + μE ∼Q π∗(KS + λD)

where

μ = λ

(
12
5

a + m

)
− 2

5
.

It implies that the log pair (S̄, λ(aH̄x + Δ̄) + μE) is not log canonical at some
point q ∈ E. From the inequalities (3.2) and (3.3) we have μ � 1. It implies that
the log pair (S̄, λ(aH̄x + Δ̄) + E) is not log canonical at the point q. We consider
the case that E is smooth at the point q. By the inversion of adjunction formula
the log pair (E, λ(aH̄x + Δ̄)|E) is not log canonical at q. If q 	∈ H̄x then the log
pair (E, λΔ̄|E) is not log canonical at q. From this we have the inequalities

1
λ

< multq(Δ̄|E) � Δ̄ · E = −mE2 =
5
12

m.

They imply that 48
25 < m. From the inequality (3.3), it is impossible. Thus q ∈ H̄x.

From lemma 2.2 and the inequality (3.3) we have the inequalities

1
λ

< multq((aH̄x + Δ̄)|E) � (aH̄x + Δ̄) · E = a +
5
12

m � 1 + 5a

6
.

They imply that 19
25 < a. From the inequality (3.2), it is impossible. Thus E is

singular at the point q. Also, the point q is either q1 or q2.
Suppose that q = q1. Then there is a cyclic cover ϕ : Ũ → Ū of degree 4 branched

over q for some open set q ∈ Ū on S̄ such that Ũ is smooth. From lemma 2.3, the
log pair (Ũ , λΔ̃ + Ẽ) is not log canonical at some point q̃ where Δ̃ = ϕ∗(Δ|U ),
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Ẽ = ϕ∗(E|U ) and ϕ(q̃) = q. By the inversion of adjunction formula the log pair
(Ẽ, λΔ̃|Ẽ) is not log canonical at the point q̃. From this we have the inequalities

1
λ

< multq̃(Δ̃|Ẽ) � 4Δ̄ · E = −4mE2 =
5
3
m.

They imply that 12
25 < m. From the inequality (3.3), it is impossible. Thus q = q2.

Similarly, we can see that this case is impossible. Therefore the log pair (S, λD) is
log canonical at the point pw. �

By the above lemmas we prove that the log pair (S, λD) is log canonical.

4. On smooth points of family No. 40

Let Sn ⊂ P(1, 1, n, n, 2n − 1) be a quasi-smooth complete intersection log del
Pezzo surface given by two quasi-homogeneous polynomials of degree 2n, where
n is a positive integer bigger than 1. By suitable coordinate change we may assume
that Sn is given by

wx + z2 + zfn(x, y) + tf̂n(x, y) + f2n(x, y) = 0,
wy + t2 + zgn(x, y) + tĝn(x, y) + g2n(x, y) = 0

where fi, f̂i, gi and ĝi are homogeneous polynomials of degree i. Then Sn is only
singular at the point pw of type 1

2n−1 (1, 1). In the paper [10], we have α(S2) = 7/10.
It implies that S2 admits an orbifold Kähler–Einstein metric. Thus we only consider
the cases that n � 3.

Let D be an anti-canonical Q-divisor of k-basis type on Sn with k � 0. We set
λ = 6n

4n+3 . To prove that δ(Sn) > 1 along the smooth points of Sn, we consider the
following.

Lemma 4.1. The log pair (Sn, λD) is log canonical along Sn \ {pw}

Proof. For the convenience, we set S = Sn. Suppose that the log pair (S, λD) is
not log canonical at some point p ∈ S \ {pw}. Let L = | − KS | be the pencil cut
out on S by the equations αx + βy = 0 where [α : β] ∈ P1. Since the point p is not
the point pw, there is the unique curve C ∈ L passing through p. Without loss of
generality we can assume that p is contained in the open set Ux given by x = 1.
Then C is given by the equation y = ξx on S where ξ is a constant. On the open
set Ux, the affine curve C|Ux

is given by

w + z2 + zfn(1, ξ) + tf̂n(1, ξ) + f2n(1, xi) = 0,
ξw + t2 + zgn(1, ξ) + tĝn(1, ξ) + g2n(1, ξ) = 0

Thus it is isomorphic to the variety given by

ξ1z
2 + t2 + ξ2z + ξ3t + ξ4 = 0 (4.1)

where ξ1 . . . , ξ4 are constants. Since S is quasi-smooth at least one ξi in i ∈
{1, 2, 3, 4} is non-zero. It implies that the rank of the quadratic equation (4.1)
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is either 1 or 2. We assume that C is irreducible. By the quadratic equation (4.1),
C is smooth at the point p. We write

D = aC + Δ

where Δ is an effective Q-divisor such that C 	⊂ Supp(Δ) and a is a non-negative
constant. By corollary 2.8 we have λa � 1. By the inversion of adjunction formula,
the log pair (C, λΔ|C) is not log canonical at p. Then we have the inequalities

1
λ

< multp(Δ|C) � Δ · C =
4

2n − 1
− 4a

2n − 1
.

The above inequalities imply that a is negative. This is impossible. Thus C is
reducible. We now turn to the case that C is the sum of two irreducible curves L1

and L2, that is, we write

C = L1 + L2.

Then L1 and L2 satisfy the following intersection numbers:

L1 · (−KS) = L2 · (−KS) =
2

2n − 1
, L1 · L2 =

2n

2n − 1
, L2

1 = L2
2 = −2n − 2

2n − 1
.

Without loss of generality we can assume that p ∈ L1. We write

D = bL1 + Σ

where Σ is an effective Q-divisor such that L1 	⊂ Supp(Σ) and b is a non-negative
number. By theorem 2.7, we have

b � 1
D2

∫ τ(L1)

0

vol(D − xL1)dx + εk

where εk is a small constant depending on k such that εk → 0 as k → ∞. Since

D − xL1 ∼Q (1 − x)L1 + L2

and L2
2 < 0, we have vol(D − xL1) = 0 for x � 1. It implies that τ(L1) = 1.

Meanwhile, the equalities

(D − xL1) · L2 = ((1 − x)L1 + L2) · L2 =
2

2n − 1
− 2n

2n − 1
x

imply that (D − xL1) is nef whenever 1
n � x. Thus

vol(D − xL1) = (D − xL1)2 =
4

2n − 1
− 4

2n − 1
x − 2n − 2

2n − 1
x2

for 1
n � x. We next consider the volume of D − xL1 for 1 � x � 1

n . Let

P = (1 − x)D + (1 − x)
1

n − 1
L2
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be the nef divisor for 1 � x � 1
n . Then we write

D − xL1 = P +
(

n

n − 1
x − 1

n − 1

)
L2.

Since P · L2 = 0, the right-hand side of the above equation is the Zariski decompo-
sition of D − xL1. Thus

vol(D − xL1) = P 2 =
2

n − 1
(1 − x)2

for 1 � x � 1
n . Then we have

1
D2

∫ τ(L1)

0

vol(D − xL1)dx

=
2n − 1

4

(∫ 1
n

0

4
2n − 1

− 4
2n − 1

x − 2n − 2
2n − 1

x2dx +
∫ 1

1
n

2
n − 1

(1 − x)2dx

)

=
2n − 1

4

(
12n2 − 8n + 2
3(2n − 1)n3

+
2(n − 1)2

3n3

)
=

2n + 1
6n

.

Thus we obtain

b � 2n + 1
6n

+ εk.

It implies that λb � 1. By the inversion of adjunction formula we have

1
λ

< (D − bL1) · L1 =
2

2n − 1
+

2n − 2
2n − 1

b.

It implies that

(2n − 3)(4n + 1)
6n(2n − 2)

=
(

1
λ
− 2

2n − 1

)
2n − 1
2n − 2

< b.

This is impossible. Therefore the log pair (S, λD) is log canonical along S \ {pw}.
�

5. On the singular point of family No. 40

In this section we prove the following theorem.

Theorem 5.1. Let Sn ⊂ P(1, 1, n, n, 2n − 1) be a quasi-smooth member of family
No. 40 where n is a positive integer. Then δ(Sn) > 6n

4n+3 . Moreover, Sn admits an
orbifold Kähler–Einstein metric.

We divide the proof of the above theorem into a sequence of lemmas.
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5.1. Basis

Let L = H0(Sn, OSn
(k)) be the vector space where k is a positive integer. In this

subsection, we find a monomial basis of L. We define a subset of L as follows:

B =
{

f ∈ C[x, y, z, t, w]k

∣∣∣∣ f is a monomial whose form is one of the following:
we, zctdwe, xaybtd, xaybztd or xazctd.

}

where C[x, y, z, t, w]k is the set of quasi-homogeneous polynomials of degree k with
weights wt(x) = wt(y) = 1, wt(z) = wt(t) = n and wt(w) = 2n − 1. The equations

− wx = z2 + zfn(x, y) + tf̂n(x, y) + f2n(x, y) (5.1)

and

− wy = t2 + zgn(x, y) + tĝn(x, y) + g2n(x, y) (5.2)

hold in Sn. From the equations (5.1) and (5.2), we can obtain

yz2 = xt2 + zhn+1(x, y) + tĥn+1(x, y) + h2n+1(x, y). (5.3)

From the equations (5.1), (5.2) and (5.3) we can see that L is generated by B on
Sn.

Claim. The set B is the basis of L.
In a neighbourhood U of Sn at pw, we may regard z and t are local coor-

dinates with weights wt(z) = 1 and wt(t) = 1. Then U is isomorphic to the
quotient of C2 by the action ζ · (z, t) �→ (ζz, ζt) where ζ is a primitive (2n − 1)-
th root of unity. We have the isomorphism σ : C/Z2n−1 → U given by (z, t) �→
(z2 + f>2n, t2 + g>2n, z, t) where f>2n and g>2n are power series such that the
orders are greater than 2n. Then for a section s(x, y, z, t, w) ∈ L the local equation
in U is given by σ∗(s(x, y, z, t, 1)). We consider the following set:

T =
{

g ∈ C[z, t]
∣∣∣∣ There is a monomial x in B such that

the Zariski tangent term of σ∗(x) is g.

}
.

Let x = xaybzctdwe be a monomial in L. Then σ∗(x) is

(z2 + f>2n)a(t2 + g>2n)bzctd = z2a+ct2b+d + h(z, t)

where h(z, t) is the power series such that the order of h(z, t) is greater than
2a + 2b + c + d. Thus the Zariski tangent term of σ∗(x) is z2a+ct2b+d. It implies
that every element of T is a monomial in C[z, t].

Lemma 5.2. The number of elements of the set T is equal to the number of elements
of the set B.
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Proof. Let x1 = xa1yb1zc1td1 and x2 = xa2yb2zc2td2 be monomials in the set B such
that the Zariski tangent terms of σ∗(x1) and σ∗(x2) are equal. Then we have

c1 + 2a1 = c2 + 2a2, d1 + 2b1 = d2 + 2b2.

Since the two monomials x1 and x2 have same degree, we have

a1 + b1 + n(c1 + d1) = a2 + b2 + n(c2 + d2).

From the above equations, we obtain the equations

a1 + b1 = a2 + b2, c1 + d1 = c2 + d2.

If a1 = a2 then we have b1 = b2, c1 = c2 and d1 = d2. Thus we can assume that
a1 > a2. Then we have b1 < b2, c1 < c2 and d1 > d2. We can write the two
monomials x1 and x2 as

xa2yb1zc1td2xa1−a2td1−d2 , xa2yb1zc1td2yb2−b1zc2−c1 .

They imply that 2(a1 − a2) = c2 − c1 and 2(b2 − b1) = d1 − d2. We also have
a1 − a2 = b2 − b1 and c2 − c1 = d1 − d2. Thus the two monomials x1 and x2 are

xa2yb1zc1td2(xt2)a1−a2 , xa2yb1zc1td2(yz2)a1−a2 .

However monomials of the form (yz2)ξxaybzctd are not contained in the set B where
ξ is a positive integer. Therefore the two monomials x1 and x2 are equal. �

By lemma 5.2, we obtain the following.

Corollary 5.3. The set B is the basis of L.

Proof. We consider the following set:

Z =
{

g ∈ C[z, t]
∣∣∣∣ There is a section s in L such that

the Zariski tangent term of σ∗(s) is g.

}
.

It is obvious that dimC Z � dimC L. Since T ⊂ Z, we have |T | � dimC Z. We also
have dimC L � |B|. By lemma 5.2 we have dimC L = |B|. Consequently, B is the
basis of L. �

5.2. Monomial

We consider the ring C[z, t]. The order of monomials in the ring C[z, t] is the
graded lexicographic order with z < t. We set l = h0(Sn, OSn

(k)). All elements of
the basis B can be written

xa1yb1zc1td1we1 , . . . , xalyblzcltdlwel

in the order of their Zariski tangent terms. we set a =
∑l

i=1 ai, b =
∑l

i=1 bi,
c =

∑l
i=1 ci, d =

∑l
i=1 di and e =

∑l
i=1 ei.
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Lemma 5.4. For every basis {s1, . . . sl} of L, the Newton polygon of the power
series by applying the coordinate change z �→ z −

∑
j>0 αjt

j and t �→ t to the power

series
∏l

i=1 σ∗(si(x, y, z, t, 1)) contains the point corresponding to the monomial
zc+2atd+2b.

Proof. We set ξi = σ∗(xaiybizcitdiwei) for each i. Then the Zariski tangent term of
ξi is the monomial zci+2aitdi+2bi for each i. Let ζi be the power series by applying
the coordinate change z �→ z −

∑
j>0 αjt

j and t �→ t to ξi for each i. And let T be
the l × l matrix whose entry in row i and column j is the coefficient of the monomial
zcj+2aj tdj+2bj of ζi. Since the Zariski tangent terms of ζi are (z − α1t)ci+2aitdi+2bi ,
all monomials less than zci+2aitdi+2bi in the monomial ordering are not contained
in ζi for each i. Thus the matrix T is the upper triangular matrix whose every
diagonal entry is 1.

For any l × l invertible matrix M there is a permutation matrix P such that
PMT is the upper triangular matrix. Then the power series ηi with i = 1, . . . l
given by ⎡

⎢⎢⎢⎣
η1

η2

...
ηl

⎤
⎥⎥⎥⎦ = PM

⎡
⎢⎢⎢⎣

ζ1

ζ2

...
ζl

⎤
⎥⎥⎥⎦

contain the monomial zci+2aitdi+2bi . Thus the Newton polygon of
∏l

i=1 ηi contains
the point corresponding to the monomial zc+2atd+2b. �

Lemma 5.5. The inequalities 1
kl (c + 2a) � 1

3n + 2
3 + εk and 1

kl (d + 2b) � 1
3n + 2

3 +
εk hold where εk is a small constant depending on k such that εk → 0 as k → ∞.

Proof. We consider the monomials

xa1yb1zc1td1we1 , . . . , xalyblzcltdlwel

of the basis B. Let Bi be the effective Cartier divisor given by xaiybizcitdiwei = 0
for each i. Then

B:=
B1 + · · · + Bl

kl

is the anti-canonical Q-divisor of k-basis type. Moreover klB is given by
xaybzctdwe = 0 where a =

∑l
i=1 ai, b =

∑l
i=1 bi, c =

∑l
i=1 ci, d =

∑l
i=1 di and

e =
∑l

i=1 ei. By corollary 2.8 we have the following inequalities:

a

kl
� 1

3
+ εk,

b

kl
� 1

3
+ εk,

c

kl
� 1

3n
+ εk,

d

kl
� 1

3n
+ εk

where εk is a small constant depending on k such that εk → 0 as k → ∞. Thus we
have the inequalities 1

kl (c + 2a) � 1
3n + 2

3 + εk and 1
kl (d + 2b) � 1

3n + 2
3 + εk. �
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5.3. The proof of the theorem 5.1

By using lemmas 4.1 and 5.6 we prove that the log pair (Sn, λD) is log canonical,
that is, δ(Sn) � 1

λ > 1.

Lemma 5.6. Let D be an anti-canonical Q-divisor of k-basis type on Sn with k � 0.
The log pair (Sn, λD) is log canonical at the point pw.

Proof. Let D be an anti-canonical Q-divisor of k-basis type on Sn with k � 0. Then
there is a basis {s1, . . . , sl} of the space H0(Sn, OSn

(k)) such that

D =
D1 + · · · + Dl

kl

where Di is the effective divisor of the section si for each i. In the open set U , the
effective divisor

∑l
i=1 Di is given by the equation s:=

∏l
i=1 si(x, y, z, t, 1) = 0. We

consider the Newton polygon N of σ∗(s) in the coordinates (u, v) of R2. Let Λ be
the edge of the Newton polygon N that intersects the diagonal line given by u = v.
If the edge Λ is either vertical or horizontal then the log canonical threshold of the
log pair (Sn,

∑l
i=1 Di) at pw is determined by the edge Λ (see [14, step A]). By

lemma 5.4 the point corresponding to the monomial zc+2atd+2b is contained in the
Newton polygon N . Thus we have

lct0(C2, (σ∗(s)) � min
{

1
c + 2a

,
1

d + 2b

}
.

By lemma 5.5 we then have

lct0(C2, σ∗(s)) � λ

kl
.

Thus the log pair (Sn, λD) is log canonical at the point pw.
Suppose that the edge Λ is neither vertical nor horizontal. By [14, step C], we

can obtain a power series η applying a change of coordinates z �→ z −
∑

j>0 αjt
j

and t �→ t to σ∗(s) such that the edge Λ′ of the Newton polygon N ′ of the power
series η that intersects the diagonal line given by u = v determine the log canonical
threshold of the log pair (Sn,

∑l
i=1 Di) at pw. By lemma 5.4 the point corresponding

to the monomial zc+2atd+2b is contained in the Newton polygons N ′ of the power
series η, we have

lct0(C2, η) � min
{

1
c + 2a

,
1

d + 2b

}
.

By lemma 5.5 we then have

lct0(C2, η) � λ

kl
.

Therefore the log pair (Sn, λD) is log canonical at the point pw. �
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