

Delta-invariants of complete intersection log del Pezzo surfaces

In-Kyun Kim

Department of Mathematics, Yonsei University, Seoul, Korea [\(soulcraw@gmail.com\)](mailto:soulcraw@gmail.com)

Joonyeong Won

Department of Mathematics, Ewha Womans University, Seoul, Korea [\(leonwon@ewha.ac.kr\)](mailto:leonwon@ewha.ac.kr)

(Received 23 June 2021; accepted 18 April 2022)

We show that complete intersection log del Pezzo surfaces with amplitude one in weighted projective spaces are uniformly *K*-stable. As a result, they admit an orbifold Kähler–Einstein metric.

Keywords: K-stability; del Pezzo surface; complete intersection; delta invariant

1. Introduction

Throughout the article, the ground field is assumed to be the field of complex numbers. Let S be a codimension c complete intersection of type (d_1, \ldots, d_c) in a weighted projective space $\mathbb{P}(a_0, \ldots, a_n)$ that is quasi-smooth, well-formed and $a_0 \leq a_1 \leq \cdots \leq a_n < d_1 \leq \cdots \leq d_c$. Suppose that S is a log del Pezzo surface. Then we have exactly two possibilities:

(A) Either $n = 3$ and $S \subset \mathbb{P}(a_0, a_1, a_2, a_3)$ is a hypersurface of degree

$$
d < a_0 + a_1 + a_2 + a_3
$$

with amplitude $I = a_0 + a_1 + a_2 + a_3 - d$

(B) Or $n = 4$ and $S \subset \mathbb{P}(a_0, a_1, a_2, a_3, a_4)$ is a complete intersection of two hypersurfaces of degrees d_1 and d_2 such that

$$
d_1 + d_2 < a_0 + a_1 + a_2 + a_3 + a_4
$$

with amplitude $I = a_0 + a_1 + a_2 + a_3 + a_4 - d_1 - d_2$.

In the case (A) , Johnson and Kollár $[9]$ $[9]$ $[9]$ found the complete list of all possibilities for the quintuple (a_0, a_1, a_2, a_3, d) in the case when the amplitude I is one. Moreover, they computed the α -invariants and proved the existence of the orbifold Kähler–Einstein metrics in the case when the quintuple (a_0, a_1, a_2, a_3, d) is not

> ○c The Author(s), 2022. Published by Cambridge University Press on behalf of The Royal Society of Edinburgh

> > 1021

one of the following four quintuples

 $(1, 2, 3, 5, 10), (1, 3, 5, 7, 15), (1, 3, 5, 8, 16), (2, 3, 5, 9, 18).$

To prove the above statement they used the criterion that a log del Pezzo surface S admits an orbifold Kähler–Einstein metric whenever the α -invariant of S is bigger than $\frac{2}{3}$. Later, Araujo [[1](#page-15-1)] computed the α -invariants for two of these four cases to show the existence of an orbifold Kähler–Einstein metric when $(a_0, a_1, a_2, a_3, d) = (1, 2, 3, 5, 10)$ or $(a_0, a_1, a_2, a_3, d) = (1, 3, 5, 7, 15)$ and the defining equation contains the monomial yzt where x, y, z and t are coordinates with weights $wt(x) = a_0$, $wt(y) = a_1$, $wt(z) = a_2$ and $wt(t) = a_3$. Finally, Cheltsov, Park and Shramov [[2](#page-15-2)] computed the α -invariants for the remaining families.

For the case (A) every log del Pezzo surface S admits an orbifold Kähler–Einstein metric except possibly the case when $(a_0, a_1, a_2, a_3, d) = (1, 3, 5, 7, 15)$ and the defining equation does not contain the monomial yzt whose α -invariant is $\frac{8}{15} \left(\langle \frac{2}{3} \rangle \right)$.

Recently Fujita and Odaka introduced δ -invariant which gives a strong criterion showing the uniform K-stability of \mathbb{Q} -Fano varieties (see [[8](#page-15-3)]).

Theorem 1.1. *Let* X *be a* Q*-Fano variety. Then X is uniformly* K*-stable if and only if* $\delta(X) > 1$ *.*

The estimation of the δ -invariant has been investigated on several log del Pezzo surfaces in [**[4](#page-15-4)**–**[7](#page-15-5)**, **[14](#page-15-6)**, **[15](#page-15-7)**]. Moreover Li, Tian and Wang generalized in [**[13](#page-15-8)**] the result of Chen, Donaldson, Sun and Tian for the K-polystability and the existence of the K¨ahler–Einstein metric to some singular Fano varieties. In virtue of the δ-invariant method and the result [**[13](#page-15-8)**], the paper [**[3](#page-15-9)**] completes the problem of the existence of the (orbifold) Kähler–Einstein metric on del Pezzo hypersurfaces with $I = 1$, case (A) :

THEOREM 1.2 [[3](#page-15-9)]. Let S be a quasi-smooth hypersurface in $\mathbb{P}(1, 3, 5, 7)$ of degree 15 *such that its defining equation does not contain* yzt*. Then the surface* S *admits an orbifold K¨ahler–Einstein metric.*

COROLLARY 1.3. *Every quasi-smooth hypersurface with* $I = 1$ *admits an orbifold K¨ahler-Einstein metric.*

In $[10]$ $[10]$ $[10]$ and $[11]$ $[11]$ $[11]$, we classified the log del Pezzo surfaces S for the case (B) when $S \subset \mathbb{P}(a_0, a_1, a_2, a_3, a_4)$ are quasi-smooth and well-formed complete intersection log del Pezzo surfaces given by two quasi-homogeneous polynomials of degrees d_1 and d_2 with amplitude 1, and not being the intersection of a linear cone with another hypersurface. Then there are 42 families. We denote family No. i as the number i in the first column Γ of the table which is represented in [[11](#page-15-11), section 5].

Suppose that the log del Pezzo surface S is not one of the following:

• No. 3 : a complete intersection of two hypersurfaces of degrees 6 and 8 embedded in $\mathbb{P}(1, 2, 3, 4, 5)$ such that the defining equation of the hypersurface of degree 6 does not contain the monomial yt , where y is the coordinate function of weight 2 and t is the coordinate function of weight 4.

• No. 40 : a complete intersection of two hypersurfaces of degree $2n$ embedded in $\mathbb{P}(1, 1, n, n, 2n-1)$ where n is a positive integer.

Then the α -invariant of S is bigger than $\frac{2}{3}$, in fact they are bigger or equal to one, so that it admits an orbifold Kähler–Einstein metric (see [[10](#page-15-10), theorem 1.9] and [**[11](#page-15-11)**, theorem 1.2]).

The present article completes the existence of the orbifold Kähler–Einstein metric of the remaining two cases.

THEOREM 1.4. Let S be a quasi-smooth member of family No. i with $i \in \{3, 40\}$. *Then the log del Pezzo surface* S *is uniformly* K*-stable so that it admits an orbifold K¨ahler–Einstein metric.*

COROLLARY 1.5. *Every quasi-smooth weighted complete intersection with* $I = 1$ *admits an orbifold K¨ahler–Einstein metric.*

2. Preliminary

2.1. Notation

Throughout the paper we use the following notations:

- For positive integers a_0 , a_1 , a_2 , a_3 and a_4 , $\mathbb{P}(a_0, a_1, a_2, a_3, a_4)$ is the weighted projective space. We assume that $a_0 \leq a_1 \leq a_2 \leq a_3 \leq a_4$.
- We usually write x, y, z, t and w for the weighted homogeneous coordinates of $\mathbb{P}(a_0, a_1, a_2, a_3, a_4)$ with weights $wt(x) = a_0, wt(y) = a_1, wt(z) = a_2$, $wt(t) = a_3$ and $wt(w) = a_4$.
- $S \subset \mathbb{P}(a_0, a_1, a_2, a_3, a_4)$ denotes a quasi-smooth complete intersection log del Pezzo surface given by quasi-homogeneous polynomials of degrees d_1 and d_2 .
- The integer $I = a_0 + a_1 + a_2 + a_3 + a_4 d_1 d_2$ is called the amplitude of S.
- H_* is the hyperplane section on the log del Pezzo surface S cut out by the equation $* = 0$.
- p_x denotes the point on S given by $y = z = t = w = 0$. The points p_y , p_z , p_t and p_w are defined in a similar way.
- $-K_S$ denotes the anti-canonical divisor of S.

2.2. Foundation

X is \mathbb{Q} -Fano variety, i.e., a normal projective \mathbb{Q} -factorial variety with at most terminal singularities such that $-K_X$ is ample.

Definition 2.1. *Let* (X, D) *be a pair, that is,* D *is an effective* Q*-divisor, and let* p ∈ X *be a point. We define the log canonical threshold (LCT, for short) of* (X, D) 1024 *I.-K. Kim and J. Won*

and the log canonical threshold of (X, D) *at* p *to be the numbers*

 $\mathrm{lct}(X, D) = \mathrm{sup} \{ c \mid (X, cD) \text{ is log canonical} \},$

 $\lbrack ct_{\mathsf{D}}(X,D)=\sup\{c \mid (X,cD) \text{ is log canonical at } \mathsf{p} \},$

respectively. We define

$$
lct_{p}(X) = \inf\{lct_{p}(X, D) | D \text{ is an effective } \mathbb{Q}\text{-divisor}, D \equiv -K_{X}\},
$$

and for a subset $\Sigma \subset X$ *, we define*

$$
lct_{\Sigma}(X) = \inf \{lct_{p}(X) \mid p \in \Sigma \}.
$$

The number $\alpha(X) := \text{lct}_X(X)$ *is called the global log canonical threshold (GLCT, for short) or the* α*-invariant of* X

Let S be a surface with at most cyclic quotient singularities, and let D be an effective Q-divisor on X.

Lemma 2.2 [**[12](#page-15-12)**]. *Let* p *be a smooth point of* S*. Suppose that the log pair* (S, D) *is not log canonical at the point* **p***. Then* $mult_n(D) > 1$ *.*

Suppose that S has a cyclic quotient singular point q of type $\frac{1}{r}(a, b)$. Then there is an orbifold chart $\pi: \bar{U} \to U$ for some open set $\mathsf{q} \in U$ on S such that \bar{U} is smooth and π is a cyclic cover of degree r branched over q.

LEMMA 2.3 [[12](#page-15-12)]. Let $\bar{\mathfrak{q}} \in \bar{U}$ be the point such that $\pi(\bar{\mathfrak{q}}) = \mathfrak{q}$. Then the log pair $(U, D|_U)$ *is log canonical at the point* **q** *if and only if the log pair* $(\bar{U}, \bar{D}|_{\bar{U}})$ *is log canonical at the point* $\bar{\mathsf{q}}$ *where* $\bar{D} = \pi^*(D|_U)$ *.*

DEFINITION 2.4 [[8](#page-15-3)]. *Let* k *be a positive integer. We set* $h = h^0(S, -kK_S)$ *. Given any basis*

$$
s_1,\ldots,s_h
$$

of $H^0(S, -kK_S)$, taking the corresponding divisors D_1, \ldots, D_h with $D_i \sim -kK_S$, *we get an anti-canonical* Q*-divisor*

$$
D:=\frac{D_1+\ldots+D_h}{kh}.
$$

We call this kind of anti-canonical Q*-divisor an anti-canonical* Q*-divisor of* k*-basis type.*

Then we can define the δ -invariant of S using an anti-canonical $\mathbb{O}-$ divisor of k-basis type. The definition of the δ -invariant of a Fano variety is the following.

DEFINITION 2.5 $[8]$ $[8]$ $[8]$. *For* $k \in \mathbb{Z}_{>0}$, set

$$
\delta_k(S) := \inf \{ \ \operatorname{lct}(S, D) \mid D \ \text{is of } k \ \text{-basis type } \}.
$$

Moreover, we define

$$
\delta(S) := \limsup_{k \to \infty} \delta_k(S).
$$

It is called the δ*-invariant of* S*.*

<https://doi.org/10.1017/prm.2022.30> Published online by Cambridge University Press

Definition 2.6. *Let* X *be an irreducible projective variety of dimension* n*, and let* D *be a Cartier divisor on X. The volume of* D *is defined to be the non-negative real number*

$$
vol(D) = volX(D) = lim supm \to \infty \frac{h0(X, OX(mD))}{mn/n!}.
$$

For a $\mathbb Q$ -divisor D on the surface S we can define its volume using the identity

$$
vol(D) = \frac{vol(\lambda D)}{\lambda^2}
$$

for an appropriate positive rational number λ .

Let D be an anti-canonical Q-divisor of k-basis type with $k \gg 1$, and let C be an irreducible reduced curve on S. We write

$$
D = aC + \Delta
$$

where a is non-negative real number and Δ is an effective Q-divisor such that $C \not\subset \text{Supp}(\Delta)$. Let

$$
\tau = \sup \{ x \in \mathbb{R}_{>0} \mid D - xC \text{ is pseudoeffective } \}.
$$

In the case that D is an ample \mathbb{Q} -divisor of k-basis type with $k \gg 1$ we can find a better bound for a. One such estimate is given by the following very special case of [**[8](#page-15-3)**, lemma 2.2].

Theorem 2.7 [**[3](#page-15-9)**, theorem 2.9]. *Suppose that* D *is a big* Q*-divisor of* k*-basis type for* $k \gg 1$ *. Then*

$$
a \leqslant \int_0^{\tau} \text{vol}(D - xC) dx + \epsilon_k
$$

where ϵ_k *is a small constant depending on* k *such that* $\epsilon_k \to 0$ *as* $k \to \infty$ *.*

Corollary 2.8 [**[3](#page-15-9)**, corollary 2.10]. *Suppose that* D *is a big* Q*-divisor of* k*-basis type for* $k \gg 0$ *, and*

$$
C \sim_{\mathbb{Q}} \mu D
$$

for some positive rational number μ*. Then*

$$
a \leqslant \frac{1}{3\mu} + \epsilon_k,
$$

where ϵ_k *is a small constant depending on* k *such that* $\epsilon_k \to 0$ *as* $k \to \infty$ *.*

3. Family No. 3

In this section we prove the following theorem:

THEOREM 3.1. Let S be a quasi-smooth member of family No. 3. Then $\delta(S) \geq \frac{5}{4}$. *Moreover*, S *admits an orbifold K¨ahler–Einstein metric.*

Proof. Let D be an anti-canonical Q-divisor of k-basis type on S with $k \geq 0$. By lemmas [3.2](#page-5-0)[–3.4](#page-6-0) the log pair $(S, \frac{5}{4}D)$ is log canonical. Therefore $\delta(S) \geq \frac{5}{4}$.

We divide the proof of the above theorem into a sequence of lemmas. Let $S \subset$ $\mathbb{P}(1, 2, 3, 4, 5)$ be a quasi-smooth complete intersection log del Pezzo surface given by two quasi-homogeneous polynomials of degrees 6 and 8. By suitable coordinate change we may assume that S is given by

$$
wx + \xi ty + z^2 + y^3 = 0,
$$

$$
wz + t^2 + g(x, y) = 0,
$$

where ξ is a constant and $g(x, y)$ is a quasi-homogeneous polynomial of degree 8. Then S is singular only at the point p_w , which is a cyclic quotient singularity of type $\frac{1}{5}(4, 3)$. Since the defining equation of degree 6 of a member of family No. 3 does not contain the monomial $ty, \xi = 0$. Thus S is given by

$$
F = wx + z2 + y3 = 0,
$$

\n
$$
G = wz + t2 + g(x, y) = 0.
$$

Let H_x be the hyperplane section given by $x = 0$. Then it is isomorphic to the variety embedded in $\mathbb{P}(2, 3, 4, 5)$ given by

$$
z^{2} + y^{3} = 0,
$$

$$
wz + t^{2} + \zeta y^{4} = 0,
$$

where $\zeta = g(0, 1)$. We consider the open set $U = S \setminus H_w$ where H_w is the hyperplane section given by $w = 0$. $H_x|_U$ is isomorphic to the \mathbb{Z}_5 -quotient of the affine curve given by

$$
(t2 + \zeta y4)2 + y3 = 0
$$
 (3.1)

in \mathbb{A}^2 . From the equation [\(3.1\)](#page-5-1), we can see that H_x is irreducibly reduced and singular at the point p_w . Also, we have $\text{lct}(S, H_x) = \frac{7}{12}$.

Let D be an anti-canonical Q-divisor of k-basis type on S with $k \gg 0$. We put $\lambda = \frac{5}{4}.$

LEMMA 3.2. *The log pair* $(S, \lambda D)$ *is log canonical along* $H_x \setminus \{p_w\}$.

Proof. Suppose that the log pair $(S, \lambda D)$ is not log canonical at some point $p \in$ $H_x \setminus \{\mathsf{p}_w\}$. We write

$$
D = aH_x + \Delta
$$

where a is non-negative rational number and Δ is an effective divisor such that $H_x \not\subset \text{Supp}(\Delta)$. By corollary [2.8](#page-4-0) we have $a \leq \frac{1}{3} + \epsilon_k < \frac{9}{25}$ for $k \gg 0$. Since $\lambda a \leq 1$ the log pair $(S, H_x + \lambda \Delta)$ is not log canonical at the point **p**. By the inversion of adjunction formula the log pair $(H_x, \lambda \Delta |_{H_x})$ is not log canonical at point p. We have the inequalities

$$
\frac{1}{\lambda} < \text{mult}_{\mathbf{p}}(\Delta|_{H_x}) \leq \Delta \cdot H_x = (D - aH_x) \cdot H_x = \frac{2}{5} - \frac{2}{5}a,
$$

which imply that $a < -1$. This is impossible. Therefore the log pair $(S, \lambda D)$ is log canonical along $H_x \setminus {\rho_w}$.

LEMMA 3.3. *The log pair* $(S, \lambda D)$ *is log canonical long* $S \setminus H_x$.

Proof. Suppose that the log pair $(S, \lambda D)$ is not log canonical at some point $p \in S \setminus H_x$. By suitable coordinate change we can assume that $p = p_x$.

Let C be the curve on S cut out by the equation $y = 0$. Then C passes through the point **p**. Since the curve C is smooth at p_w and $C \cdot H_x = \frac{4}{5}$, it is irreducible and reduced. Let L be the pencil cut out by the equations $\alpha xy + \beta z = 0$ where $[\alpha : \beta] \in \mathbb{P}^1$. The base locus of $\mathcal L$ is given by $z = yx = 0$. Since $S \cap H_x \cap H_z = \{p_y\}$ and $S \cap H_y \cap H_z = \{p_x, p_w\}$ we have $BS(\mathcal{L}) = \{p_x, p_y, p_w\}$. Thus there is a general member $M \in \mathcal{L}$ such that $p \in M$ and $C \not\subset \text{Supp}(M)$. We have

$$
\operatorname{mult}_{\mathsf{p}}(M)\operatorname{mult}_{\mathsf{p}}(C) \leqslant M \cdot C = \frac{12}{5}.
$$

It implies that $\text{mult}_{p}(C)$ is either 1 or 2. We write

$$
D=bC+\Sigma
$$

where b is non-negative rational number and Σ is an effective Q-divisor such that $C \not\subset \text{Supp}(\Sigma)$. By Corollary [2.8,](#page-4-0) we have $b \leq \frac{1}{6} + \epsilon_k < \frac{1}{3}$ for $k \gg 0$.

We assume that $\text{mult}_{p}(C) = 1$. Since $\lambda b \leq 1$ the log pair $(S, C + \lambda \Sigma)$ is not log canonical at the point p. By the inversion of adjunction formula the log pair $(C, \lambda \Sigma |_{C})$ is not log canonical at the point p. We have the inequalities

$$
\frac{1}{\lambda} < \text{mult}_{\mathsf{p}}(\Sigma|_{C}) \leqslant \Sigma \cdot C = (D - bC) \cdot C = \frac{4}{5} - \frac{8}{5}b.
$$

They imply that $b < 0$. It is impossible. Thus mult_p $(C) = 2$. From lemma [2.2](#page-3-0) we have the following inequalities

$$
2\left(\frac{1}{\lambda} - 2b\right) < \mathrm{mult}_{\mathsf{p}}(C) \mathrm{mult}_{\mathsf{p}}(D - bC) \leqslant C \cdot (D - bC) = \frac{4}{5} - \frac{8}{5}b.
$$

Then we have $\frac{1}{3} < b$. It is impossible. Thus the log pair $(S, \lambda D)$ is log canonical along $S \setminus H_x$.

LEMMA 3.4. *The log pair* $(S, \lambda D)$ *is log canonical at* p_w .

Proof. Suppose that the log pair $(S, \lambda D)$ is not log canonical at p_w . We consider the open set U given by $w \neq 0$. Then we may regard y and t are local coordinates with weights $wt(y) = 4$ and $wt(t) = 3$ in U. Let $\pi: \overline{S} \to S$ be the weighted blow-up at p_w with weights wt $(y) = 4$ and wt $(t) = 3$. Then \overline{S} has the singular points q_1 and q_2 of types $\frac{1}{4}(1, 1)$ and $\frac{1}{3}(1, 1)$, respectively. We have

$$
K_{\bar{S}} \sim_{\mathbb{Q}} \pi^*(K_S) + \frac{2}{5}E
$$
, $\bar{H}_x \sim_{\mathbb{Q}} \pi^*(H_x) - \frac{12}{5}E$

where \bar{H}_x is the strict transform of H_x and E is the exceptional divisor of π . We write

$$
D = aH_x + \Delta
$$

where a is a non-negative rational number and Δ is an effective Q-divisor such that $H_x \not\subset \text{Supp}(\Delta)$. By corollary [2.8,](#page-4-0) we have

$$
a \leqslant \frac{9}{25} \tag{3.2}
$$

for $k \gg 0$. We also have

 $\bar{\Delta} \sim_{\mathbb{Q}} \pi^*(\Delta) - mE$

where $\bar{\Delta}$ is the strict transform of Δ and m is a non-negative rational number. To obtain a bound of m we consider the inequality

$$
0 \leqslant \bar{\Delta} \cdot \bar{H}_x = (\pi^*(\Delta) - mE) \cdot \left(\pi^*(H_x) - \frac{12}{5}E\right) = \Delta \cdot H_x + \frac{12}{5}mE^2.
$$

Since $\Delta \cdot H_x = (D - aH_x) \cdot H_x = \frac{2}{5} - \frac{2}{5}a$ and $E^2 = -\frac{5}{12}$, we have

$$
m \leqslant \frac{2}{5} - \frac{2}{5}a.\tag{3.3}
$$

Meanwhile, we have

$$
K_{\bar{S}} + \lambda(a\bar{H}_x + \bar{\Delta}) + \mu E \sim_{\mathbb{Q}} \pi^*(K_S + \lambda D)
$$

where

$$
\mu = \lambda \left(\frac{12}{5}a + m\right) - \frac{2}{5}.
$$

It implies that the log pair $(\bar{S}, \lambda(a\bar{H_x} + \bar{\Delta}) + \mu E)$ is not log canonical at some point $\mathsf{q} \in E$. From the inequalities [\(3.2\)](#page-7-0) and [\(3.3\)](#page-7-1) we have $\mu \leq 1$. It implies that the log pair $(\bar{S}, \lambda(a\bar{H}_x + \bar{\Delta}) + E)$ is not log canonical at the point q. We consider the case that E is smooth at the point q . By the inversion of adjunction formula the log pair $(E, \lambda(a\bar{H}_x + \bar{\Delta})|_E)$ is not log canonical at q. If $q \notin \bar{H}_x$ then the log pair $(E, \lambda \overline{\Delta}|_E)$ is not log canonical at q. From this we have the inequalities

$$
\frac{1}{\lambda} < \text{mult}_{\mathsf{q}}(\bar{\Delta}|_{E}) \leq \bar{\Delta} \cdot E = -mE^{2} = \frac{5}{12}m.
$$

They imply that $\frac{48}{25} < m$. From the inequality [\(3.3\)](#page-7-1), it is impossible. Thus $\mathsf{q} \in \bar{H}_x$. From lemma [2.2](#page-3-0) and the inequality [\(3.3\)](#page-7-1) we have the inequalities

$$
\frac{1}{\lambda} < \text{mult}_{\mathsf{q}}((a\bar{H_x} + \bar{\Delta})|_E) \leqslant (a\bar{H_x} + \bar{\Delta}) \cdot E = a + \frac{5}{12}m \leqslant \frac{1+5a}{6}.
$$

They imply that $\frac{19}{25} < a$. From the inequality [\(3.2\)](#page-7-0), it is impossible. Thus E is singular at the point q. Also, the point q is either q_1 or q_2 .

Suppose that $q = q_1$. Then there is a cyclic cover $\varphi: \tilde{U} \to \bar{U}$ of degree 4 branched over q for some open set $q \in U$ on S such that U is smooth. From lemma [2.3,](#page-3-1) the log pair $(U, \lambda \Delta + E)$ is not log canonical at some point \tilde{q} where $\Delta = \varphi^*(\Delta|_U)$,

 $\hat{E} = \varphi^*(E|_U)$ and $\varphi(\tilde{\mathfrak{q}}) = \mathfrak{q}$. By the inversion of adjunction formula the log pair $(\tilde{E}, \lambda \tilde{\Delta}|_{\tilde{E}})$ is not log canonical at the point \tilde{q} . From this we have the inequalities

$$
\frac{1}{\lambda} < \mathrm{mult}_{\tilde{\mathbf{q}}}(\tilde{\Delta}|_{\tilde{E}}) \leqslant 4\bar{\Delta} \cdot E = -4mE^2 = \frac{5}{3}m.
$$

They imply that $\frac{12}{25} < m$. From the inequality [\(3.3\)](#page-7-1), it is impossible. Thus $q = q_2$. Similarly, we can see that this case is impossible. Therefore the log pair $(S, \lambda D)$ is \log canonical at the point p_w .

By the above lemmas we prove that the log pair $(S, \lambda D)$ is log canonical.

4. On smooth points of family No. 40

Let $S_n \text{ }\subset \mathbb{P}(1, 1, n, n, 2n-1)$ be a quasi-smooth complete intersection log del Pezzo surface given by two quasi-homogeneous polynomials of degree $2n$, where n is a positive integer bigger than 1. By suitable coordinate change we may assume that S_n is given by

$$
wx + z2 + zfn(x, y) + t\hat{f}n(x, y) + f2n(x, y) = 0,wy + t2 + zgn(x, y) + t\hat{g}n(x, y) + g2n(x, y) = 0
$$

where f_i , f_i , g_i and \hat{g}_i are homogeneous polynomials of degree i. Then S_n is only singular at the point p_w of type $\frac{1}{2n-1}(1, 1)$. In the paper $[10]$ $[10]$ $[10]$, we have $\alpha(S_2)=7/10$. It implies that S_2 admits an orbifold Kähler–Einstein metric. Thus we only consider the cases that $n \geqslant 3$.

Let D be an anti-canonical Q-divisor of k-basis type on S_n with $k \gg 0$. We set $\lambda = \frac{6n}{4n+3}$. To prove that $\delta(S_n) > 1$ along the smooth points of S_n , we consider the following.

LEMMA 4.1. *The log pair* $(S_n, \lambda D)$ *is log canonical along* $S_n \setminus \{p_w\}$

Proof. For the convenience, we set $S = S_n$. Suppose that the log pair $(S, \lambda D)$ is not log canonical at some point $p \in S \setminus \{p_w\}$. Let $\mathcal{L} = |-K_S|$ be the pencil cut out on S by the equations $\alpha x + \beta y = 0$ where $[\alpha : \beta] \in \mathbb{P}^1$. Since the point p is not the point p_w , there is the unique curve $C \in \mathcal{L}$ passing through p. Without loss of generality we can assume that **p** is contained in the open set U_x given by $x = 1$. Then C is given by the equation $y = \xi x$ on S where ξ is a constant. On the open set U_x , the affine curve $C|_{U_x}$ is given by

$$
w + z2 + zfn(1, \xi) + t\hat{f}n(1, \xi) + f2n(1, xi) = 0,\xi w + t2 + zgn(1, \xi) + t\hat{g}n(1, \xi) + g2n(1, \xi) = 0
$$

Thus it is isomorphic to the variety given by

$$
\xi_1 z^2 + t^2 + \xi_2 z + \xi_3 t + \xi_4 = 0 \tag{4.1}
$$

where $\xi_1 \ldots, \xi_4$ are constants. Since S is quasi-smooth at least one ξ_i in $i \in$ $\{1, 2, 3, 4\}$ is non-zero. It implies that the rank of the quadratic equation (4.1) is either 1 or 2. We assume that C is irreducible. By the quadratic equation (4.1) , C is smooth at the point p. We write

$$
D = aC + \Delta
$$

where Δ is an effective Q-divisor such that $C \not\subset \text{Supp}(\Delta)$ and a is a non-negative constant. By corollary [2.8](#page-4-0) we have $\lambda a \leq 1$. By the inversion of adjunction formula, the log pair $(C, \lambda \Delta|_C)$ is not log canonical at **p**. Then we have the inequalities

$$
\frac{1}{\lambda} < \mathrm{mult}_{\mathbf{p}}(\Delta|_{C}) \leqslant \Delta \cdot C = \frac{4}{2n-1} - \frac{4a}{2n-1}.
$$

The above inequalities imply that a is negative. This is impossible. Thus C is reducible. We now turn to the case that C is the sum of two irreducible curves L_1 and L_2 , that is, we write

$$
C=L_1+L_2.
$$

Then L_1 and L_2 satisfy the following intersection numbers:

$$
L_1 \cdot (-K_S) = L_2 \cdot (-K_S) = \frac{2}{2n-1}, \quad L_1 \cdot L_2 = \frac{2n}{2n-1}, \quad L_1^2 = L_2^2 = -\frac{2n-2}{2n-1}.
$$

Without loss of generality we can assume that $p \in L_1$. We write

$$
D = bL_1 + \Sigma
$$

where Σ is an effective Q-divisor such that $L_1 \not\subset \text{Supp}(\Sigma)$ and b is a non-negative number. By theorem [2.7,](#page-4-1) we have

$$
b \leq \frac{1}{D^2} \int_0^{\tau(L_1)} \text{vol}(D - xL_1) dx + \epsilon_k
$$

where ϵ_k is a small constant depending on k such that $\epsilon_k \to 0$ as $k \to \infty$. Since

$$
D - xL_1 \sim_{\mathbb{Q}} (1-x)L_1 + L_2
$$

and $L_2^2 < 0$, we have $vol(D - xL_1) = 0$ for $x \ge 1$. It implies that $\tau(L_1) = 1$. Meanwhile, the equalities

$$
(D - xL_1) \cdot L_2 = ((1 - x)L_1 + L_2) \cdot L_2 = \frac{2}{2n - 1} - \frac{2n}{2n - 1}x
$$

imply that $(D - xL_1)$ is nef whenever $\frac{1}{n} \geqslant x$. Thus

$$
vol(D - xL_1) = (D - xL_1)^2 = \frac{4}{2n - 1} - \frac{4}{2n - 1}x - \frac{2n - 2}{2n - 1}x^2
$$

for $\frac{1}{n} \geqslant x$. We next consider the volume of $D - xL_1$ for $1 \geqslant x \geqslant \frac{1}{n}$. Let

$$
P = (1 - x)D + (1 - x)\frac{1}{n - 1}L_2
$$

be the nef divisor for $1 \geqslant x \geqslant \frac{1}{n}$. Then we write

$$
D - xL_1 = P + \left(\frac{n}{n-1}x - \frac{1}{n-1}\right)L_2.
$$

Since $P \cdot L_2 = 0$, the right-hand side of the above equation is the Zariski decomposition of $D - xL_1$. Thus

$$
vol(D - xL_1) = P^2 = \frac{2}{n-1}(1-x)^2
$$

for $1 \geqslant x \geqslant \frac{1}{n}$. Then we have

$$
\frac{1}{D^2} \int_0^{\tau(L_1)} \text{vol}(D - xL_1) dx
$$

= $\frac{2n-1}{4} \left(\int_0^{\frac{1}{n}} \frac{4}{2n-1} - \frac{4}{2n-1} x - \frac{2n-2}{2n-1} x^2 dx + \int_{\frac{1}{n}}^1 \frac{2}{n-1} (1-x)^2 dx \right)$
= $\frac{2n-1}{4} \left(\frac{12n^2 - 8n + 2}{3(2n-1)n^3} + \frac{2(n-1)^2}{3n^3} \right) = \frac{2n+1}{6n}.$

Thus we obtain

$$
b\leqslant \frac{2n+1}{6n}+\epsilon_k.
$$

It implies that $\lambda b \leqslant 1$. By the inversion of adjunction formula we have

$$
\frac{1}{\lambda} < (D - bL_1) \cdot L_1 = \frac{2}{2n - 1} + \frac{2n - 2}{2n - 1}b.
$$

It implies that

$$
\frac{(2n-3)(4n+1)}{6n(2n-2)} = \left(\frac{1}{\lambda} - \frac{2}{2n-1}\right) \frac{2n-1}{2n-2} < b.
$$

This is impossible. Therefore the log pair $(S, \lambda D)$ is log canonical along $S \setminus \{\mathsf{p}_w\}.$ \Box

5. On the singular point of family No. 40

In this section we prove the following theorem.

THEOREM 5.1. Let $S_n \subset \mathbb{P}(1, 1, n, n, 2n-1)$ be a quasi-smooth member of family *No.* 40 where *n is a positive integer. Then* $\delta(S_n) > \frac{6n}{4n+3}$ *. Moreover,* S_n *admits an orbifold K¨ahler–Einstein metric.*

We divide the proof of the above theorem into a sequence of lemmas.

5.1. Basis

Let $\mathcal{L} = H^0(S_n, \mathcal{O}_{S_n}(k))$ be the vector space where k is a positive integer. In this subsection, we find a monomial basis of \mathcal{L} . We define a subset of \mathcal{L} as follows:

$$
\mathcal{B} = \left\{ f \in \mathbb{C}[x, y, z, t, w]_k \middle| \begin{array}{l} f \text{ is a monomial whose form is one of the following:} \\ w^e, z^c t^d w^e, x^a y^b t^d, x^a y^b z t^d \text{ or } x^a z^c t^d. \end{array} \right\}
$$

where $\mathbb{C}[x, y, z, t, w]_k$ is the set of quasi-homogeneous polynomials of degree k with weights $wt(x) = wt(y) = 1$, $wt(z) = wt(t) = n$ and $wt(w) = 2n - 1$. The equations

$$
-wx = z2 + zfn(x, y) + t\hat{f}n(x, y) + f2n(x, y)
$$
\n(5.1)

and

$$
- wy = t2 + zgn(x, y) + t\hat{g}n(x, y) + g2n(x, y)
$$
\n(5.2)

hold in S_n . From the equations [\(5.1\)](#page-11-0) and [\(5.2\)](#page-11-1), we can obtain

$$
yz^{2} = xt^{2} + zh_{n+1}(x, y) + t\hat{h}_{n+1}(x, y) + h_{2n+1}(x, y).
$$
 (5.3)

From the equations [\(5.1\)](#page-11-0), [\(5.2\)](#page-11-1) and [\(5.3\)](#page-11-2) we can see that $\mathcal L$ is generated by $\mathcal B$ on S_n .

Claim. The set β is the basis of \mathcal{L} .

In a neighbourhood U of S_n at p_w , we may regard z and t are local coordinates with weights $wt(z) = 1$ and $wt(t) = 1$. Then U is isomorphic to the quotient of \mathbb{C}^2 by the action $\zeta \cdot (z, t) \mapsto (\zeta z, \zeta t)$ where ζ is a primitive $(2n - 1)$ th root of unity. We have the isomorphism $\sigma: \mathbb{C}/\mathbb{Z}_{2n-1} \to U$ given by $(z, t) \mapsto$ $(z^2 + f_{\geq 2n}, t^2 + g_{\geq 2n}, z, t)$ where $f_{\geq 2n}$ and $g_{\geq 2n}$ are power series such that the orders are greater than 2n. Then for a section $s(x, y, z, t, w) \in \mathcal{L}$ the local equation in U is given by $\sigma^*(s(x, y, z, t, 1))$. We consider the following set:

$$
\mathcal{T} = \left\{ g \in \mathbb{C}[z, t] \mid \text{There is a monomial } \mathbf{x} \text{ in } \mathcal{B} \text{ such that } \right\}.
$$

the Zariski tangent term of $\sigma^*(\mathbf{x})$ is g .

Let $\mathbf{x} = x^a y^b z^c t^d w^e$ be a monomial in \mathcal{L} . Then $\sigma^*(\mathbf{x})$ is

$$
(z2 + f>2n)a(t2 + g>2n)bzctd = z2a+ct2b+d + h(z,t)
$$

where $h(z, t)$ is the power series such that the order of $h(z, t)$ is greater than $2a + 2b + c + d$. Thus the Zariski tangent term of $\sigma^*(\mathbf{x})$ is $z^{2a+c}t^{2b+d}$. It implies that every element of T is a monomial in $\mathbb{C}[z, t]$.

Lemma 5.2. *The number of elements of the set* T *is equal to the number of elements of the set* B*.*

Proof. Let $\mathbf{x}_1 = x^{a_1} y^{b_1} z^{c_1} t^{d_1}$ and $\mathbf{x}_2 = x^{a_2} y^{b_2} z^{c_2} t^{d_2}$ be monomials in the set \mathcal{B} such that the Zariski tangent terms of $\sigma^*(\mathbf{x}_1)$ and $\sigma^*(\mathbf{x}_2)$ are equal. Then we have

$$
c_1 + 2a_1 = c_2 + 2a_2, \qquad d_1 + 2b_1 = d_2 + 2b_2.
$$

Since the two monomials x_1 and x_2 have same degree, we have

$$
a_1 + b_1 + n(c_1 + d_1) = a_2 + b_2 + n(c_2 + d_2).
$$

From the above equations, we obtain the equations

$$
a_1 + b_1 = a_2 + b_2, \qquad c_1 + d_1 = c_2 + d_2.
$$

If $a_1 = a_2$ then we have $b_1 = b_2$, $c_1 = c_2$ and $d_1 = d_2$. Thus we can assume that $a_1 > a_2$. Then we have $b_1 < b_2$, $c_1 < c_2$ and $d_1 > d_2$. We can write the two monomials **x¹** and **x²** as

$$
x^{a_2}y^{b_1}z^{c_1}t^{d_2}x^{a_1-a_2}t^{d_1-d_2}, \qquad x^{a_2}y^{b_1}z^{c_1}t^{d_2}y^{b_2-b_1}z^{c_2-c_1}.
$$

They imply that $2(a_1 - a_2) = c_2 - c_1$ and $2(b_2 - b_1) = d_1 - d_2$. We also have $a_1 - a_2 = b_2 - b_1$ and $c_2 - c_1 = d_1 - d_2$. Thus the two monomials **x**₁ and **x**₂ are

$$
x^{a_2}y^{b_1}z^{c_1}t^{d_2}(xt^2)^{a_1-a_2}, \t x^{a_2}y^{b_1}z^{c_1}t^{d_2}(yz^2)^{a_1-a_2}.
$$

However monomials of the form $(yz^2)^\xi x^a y^b z^c t^d$ are not contained in the set $\mathcal B$ where ξ is a positive integer. Therefore the two monomials \mathbf{x}_1 and \mathbf{x}_2 are equal. \square

By lemma [5.2,](#page-11-3) we obtain the following.

COROLLARY 5.3. The set β is the basis of \mathcal{L} .

Proof. We consider the following set:

$$
\mathcal{Z} = \left\{ g \in \mathbb{C}[z, t] \mid \text{There is a section } s \text{ in } \mathcal{L} \text{ such that } \text{the Zariski tangent term of } \sigma^*(s) \text{ is } g. \right\}.
$$

It is obvious that $\dim_{\mathbb{C}} \mathcal{Z} \leq \dim_{\mathbb{C}} \mathcal{L}$. Since $\mathcal{T} \subset \mathcal{Z}$, we have $|\mathcal{T}| \leq \dim_{\mathbb{C}} \mathcal{Z}$. We also have dim_C $\mathcal{L} \leq |\mathcal{B}|$. By lemma [5.2](#page-11-3) we have dim_C $\mathcal{L} = |\mathcal{B}|$. Consequently, \mathcal{B} is the basis of \mathcal{L} .

5.2. Monomial

We consider the ring $\mathbb{C}[z, t]$. The order of monomials in the ring $\mathbb{C}[z, t]$ is the graded lexicographic order with $z < t$. We set $l = h^0(S_n, \mathcal{O}_{S_n}(k))$. All elements of the basis β can be written

$$
x^{a_1}y^{b_1}z^{c_1}t^{d_1}w^{e_1}, \ldots, x^{a_l}y^{b_l}z^{c_l}t^{d_l}w^{e_l}
$$

in the order of their Zariski tangent terms. we set $a = \sum_{i=1}^{l} a_i$, $b = \sum_{i=1}^{l} b_i$, $c = \sum_{i=1}^{l} c_i, d = \sum_{i=1}^{l} d_i$ and $e = \sum_{i=1}^{l} e_i$.

LEMMA 5.4. For every basis $\{s_1, \ldots s_l\}$ of \mathcal{L} , the Newton polygon of the power *series by applying the coordinate change* $z \mapsto z - \sum_{i>0} \alpha_i t^j$ and $t \mapsto t$ to the power $i>0$ $\alpha_j t$ series $\prod_{i=1}^{l} \sigma^{*}(s_i(x, y, z, t, 1))$ *contains the point corresponding to the monomial* $z^{c+2a}t^{\overline{d+2b}}$.

Proof. We set $\xi_i = \sigma^*(x^{a_i}y^{b_i}z^{c_i}t^{d_i}w^{e_i})$ for each *i*. Then the Zariski tangent term of ξ_i is the monomial $z^{c_i+2a_i}t^{d_i+2b_i}$ for each i. Let ζ_i be the power series by applying the coordinate change $z \mapsto z - \sum_{j>0} \alpha_j t^j$ and $t \mapsto t$ to ξ_i for each i. And let T be the $l \times l$ matrix whose entry in row i and column j is the coefficient of the monomial $z^{c_j+2a_j}t^{d_j+2b_j}$ of ζ_i . Since the Zariski tangent terms of ζ_i are $(z-\alpha_1t)^{c_i+2a_i}t^{d_i+2b_i}$, all monomials less than $z^{c_i+2a_i}t^{d_i+2b_i}$ in the monomial ordering are not contained in ζ_i for each i. Thus the matrix T is the upper triangular matrix whose every diagonal entry is 1.

For any $l \times l$ invertible matrix M there is a permutation matrix P such that PMT is the upper triangular matrix. Then the power series η_i with $i = 1, \ldots l$ given by

$$
\begin{bmatrix} \eta_1 \\ \eta_2 \\ \vdots \\ \eta_l \end{bmatrix} = PM \begin{bmatrix} \zeta_1 \\ \zeta_2 \\ \vdots \\ \zeta_l \end{bmatrix}
$$

contain the monomial $z^{c_i+2a_i}t^{d_i+2b_i}$. Thus the Newton polygon of $\prod_{i=1}^l \eta_i$ contains the point corresponding to the monomial $z^{c+2a}t^{d+2b}$.

LEMMA 5.5. The inequalities $\frac{1}{kl}(c + 2a) \leq \frac{1}{3n} + \frac{2}{3} + \epsilon_k$ and $\frac{1}{kl}(d + 2b) \leq \frac{1}{3n} + \frac{2}{3} + \epsilon_k$ ϵ_k *hold where* ϵ_k *is a small constant depending on* k *such that* $\epsilon_k \to 0$ *as* $k \to \infty$ *.*

Proof. We consider the monomials

$$
x^{a_1}y^{b_1}z^{c_1}t^{d_1}w^{e_1}, \ldots, x^{a_l}y^{b_l}z^{c_l}t^{d_l}w^{e_l}
$$

of the basis B. Let B_i be the effective Cartier divisor given by $x^{a_i}y^{b_i}z^{c_i}t^{d_i}w^{e_i}=0$ for each i . Then

$$
B\mathpunct{:}=\frac{B_1+\cdots+B_l}{kl}
$$

is the anti-canonical Q-divisor of k -basis type. Moreover k/B is given by $x^a y^b z^c t^d w^e = 0$ where $a = \sum_{i=1}^l a_i$, $b = \sum_{i=1}^l b_i$, $c = \sum_{i=1}^l c_i$, $d = \sum_{i=1}^l d_i$ and $e = \sum_{i=1}^{l} e_i$. By corollary [2.8](#page-4-0) we have the following inequalities:

$$
\frac{a}{kl} \leqslant \frac{1}{3}+\epsilon_k, \quad \frac{b}{kl} \leqslant \frac{1}{3}+\epsilon_k, \quad \frac{c}{kl} \leqslant \frac{1}{3n}+\epsilon_k, \quad \frac{d}{kl} \leqslant \frac{1}{3n}+\epsilon_k
$$

where ϵ_k is a small constant depending on k such that $\epsilon_k \to 0$ as $k \to \infty$. Thus we have the inequalities $\frac{1}{kl}(c+2a) \leq \frac{1}{3n} + \frac{2}{3} + \epsilon_k$ and $\frac{1}{kl}(d+2b) \leq \frac{1}{3n} + \frac{2}{3} + \epsilon_k$.

5.3. The proof of the theorem [5.1](#page-10-0)

By using lemmas [4.1](#page-8-1) and [5.6](#page-14-0) we prove that the log pair $(S_n, \lambda D)$ is log canonical, that is, $\delta(S_n) \geqslant \frac{1}{\lambda} > 1$.

LEMMA 5.6. Let D be an anti-canonical Q-divisor of k-basis type on S_n with $k \gg 0$. *The log pair* $(S_n, \lambda D)$ *is log canonical at the point* p_w *.*

Proof. Let D be an anti-canonical Q-divisor of k-basis type on S_n with $k \gg 0$. Then there is a basis $\{s_1, \ldots, s_l\}$ of the space $H^0(S_n, \mathcal{O}_{S_n}(k))$ such that

$$
D = \frac{D_1 + \dots + D_l}{kl}
$$

where D_i is the effective divisor of the section s_i for each i. In the open set U, the effective divisor $\sum_{i=1}^{l} D_i$ is given by the equation $s = \prod_{i=1}^{l} s_i(x, y, z, t, 1) = 0$. We consider the Newton polygon N of $\sigma^*(s)$ in the coordinates (u, v) of \mathbb{R}^2 . Let Λ be the edge of the Newton polygon N that intersects the diagonal line given by $u = v$. If the edge Λ is either vertical or horizontal then the log canonical threshold of the log pair $(S_n, \sum_{i=1}^l D_i)$ at p_w is determined by the edge Λ (see [[14](#page-15-6), step A]). By lemma [5.4](#page-12-0) the point corresponding to the monomial $z^{c+2a}t^{d+2b}$ is contained in the Newton polygon N . Thus we have

$$
lct_0(\mathbb{C}^2, (\sigma^*(s)) \geqslant \min\left\{\frac{1}{c+2a}, \frac{1}{d+2b}\right\}.
$$

By lemma [5.5](#page-13-0) we then have

$$
lct_0(\mathbb{C}^2, \sigma^*(s)) \geqslant \frac{\lambda}{kl}.
$$

Thus the log pair $(S_n, \lambda D)$ is log canonical at the point p_w .

Suppose that the edge Λ is neither vertical nor horizontal. By [[14](#page-15-6), step C], we can obtain a power series η applying a change of coordinates $z \mapsto z - \sum_{j>0} \alpha_j t^j$ and $t \mapsto t$ to $\sigma^*(s)$ such that the edge Λ' of the Newton polygon N' of the power series η that intersects the diagonal line given by $u = v$ determine the log canonical threshold of the log pair $(S_n, \sum_{i=1}^l D_i)$ at p_w . By lemma [5.4](#page-12-0) the point corresponding to the monomial $z^{c+2a}t^{\dot{d}+2\dot{b}}$ is contained in the Newton polygons N' of the power series η , we have

$$
lct_0(\mathbb{C}^2, \eta) \geqslant \min\left\{\frac{1}{c+2a}, \frac{1}{d+2b}\right\}.
$$

By lemma [5.5](#page-13-0) we then have

$$
lct_0(\mathbb{C}^2, \eta) \geq \frac{\lambda}{kl}.
$$

Therefore the log pair $(S_n, \lambda D)$ is log canonical at the point p_w .

Acknowledgments

The authors are very grateful to the referee for valuable suggestions and comments. I.-K. Kim and J. Won were supported by NRF grant funded by the Korea government (MSIT) (I.-K. Kim: NRF-2020R1A2C4002510, J. Won: NRF-2020R1A2C1A01008018). J. Won was supported by the Ewha Womans University Research Grant of 2022.

References

- 1 C. Araujo. K¨ahler-Einstein metrics for some quasi-smooth log del Pezzo surfaces. *Trans. Amer. Math. Soc*. **354** (2002), 4303–3312.
- 2 I. Cheltsov, J. Park and C. Shramov. Exceptional del Pezzo hypersurfaces. *J. Geom. Anal*. **20** (2010), 787–816.
- 3 I. Cheltsov, J. Park and C. Shramov. *Delta invariants of singular del Pezzo surfaces*, preprint <arXiv:1809.09221> (2018).
- 4 I. Cheltsov, Y. Rubinstein and K. Zhang. Basis log canonical thresholds, local intersection estimates, and asymptotically log del Pezzo surfaces. *Selecta Math. (N.S.)* **25** (2019), 25–34.
- 5 I. Cheltsov and K. Zhang. Delta invariants of smooth cubic surfaces. *Eur. J. Math*. **5** (2019), 729–762.
- 6 K. Fujita. *On the uniform K-stability for some asymptotically log del Pezzo surfaces*, preprint <arXiv:1907.04998> (2019).
- 7 K. Fujita, Y. Liu, H. S¨uß, K. Zhang and Z. Zhuang. *On the Cheltsov–Rubinstein conjecture*, preprint <arXiv:1907.02727> (2019).
- 8 K. Fujita and Y. Odaka. On the *K*-stability of Fano varieties and anticanonical divisors. *Tohoku Math. J. (2)* **70** (2018), 511–521.
- 9 J. Johnson and J. Kollár. Kähler-Einstein metrics on log del Pezzo surfaces in weighted projective 3-spaces. *Ann. de l'Institut Fourier* **51** (2001), 69–79.
- 10 I. Kim and J. Park. Log canonical thresholds of complete intersection log del Pezzo surfaces. *Proc. Edinb. Math. Soc. (2)* **58** (2015), 445–483.
- 11 I. Kim and J. Won. Weakly exceptional singularities of log del Pezzo surfaces. *Internat. J. Math*. **30** (2019), 1950010.
- 12 J. Kollár. Singularities of pairs. *Proc. Symposia Pure Math.* **62** (1997), 221-287.
- 13 C. Li, G. Tian and F. Wang. *On Yau–Tian–Donaldson conjecture for singular Fano varieties*, preprint <arXiv:1711.09530> (2017).
- 14 J. Park and J. Won. *K*-stability of smooth del Pezzo surfaces. *Math. Ann*. **372** (2018), 1239–1276.
- 15 J. Park and J. Won. *Simply connected Sasaki-Einstein rational homology 5-spheres*, e-print <arXiv:1905.13304> (2019).