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Abstract

Complicated option pricing models attract much attention in financial industries, as
they produce relatively better accurate values by taking into account more realistic
assumptions such as market liquidity, uncertain volatility and so forth. We propose a
new hybrid method to accurately explore the behaviour of the nonlinear pricing model in
illiquid markets, which is important in financial risk management. Our method is based
on the Newton iteration technique and the Fréchet derivative to linearize the model. The
linearized equation is then discretized by a differential quadrature method in space and
a quadratic trapezoid rule in time. It is observed through computations that the accurate
solutions for the model emerge using very few grid points and time elements, compared
with the finite difference method in the literature. Furthermore, this method also helps
to avoid consideration of the convergence issues of the Newton approach applied to the
nonlinear algebraic system containing many unknowns at each time step if an implicit
method is used in time discretization. It is important to note that the Fréchet derivative
supports to enhance the convergence order of the proposed iterative scheme.

2020 Mathematics subject classification: primary 91G20; secondary 35G31, 93B18,
65M06.

Keywords and phrases: nonlinear Black–Scholes equation, illiquid markets, Fréchet
derivative, linearization, differential quadrature method.

1. Introduction

In financial markets, the well-known Black–Scholes model has been widely accepted,
but the assumption of the ideal conditions in this model, such as liquidity, less
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friction and completeness, is clearly unrealistic. Therefore, in recent years, the linear
Black–Scholes model has been replaced by a nonlinear Black–Scholes equation with
a nonlinear volatility function, where transaction costs, market liquidity or volatility
uncertainty are not neglected. The market liquidity studied in this paper is an issue of
very high concern in financial risk management. Therefore, illiquid markets and large
trader effects have been modelled by various researchers. Among them, Backstein and
Howison [6] developed a parametrized model for liquidity effects arising from the
trading in assets. Bank and Baum [7] introduced a general continuous-time model for
an illiquid financial market. In the study [12], the authors used families of explicit
solutions to test numerical schemes solving a nonlinear Black–Scholes equation. Cetin
et al. [14] extended the classical approach by formulating a new model that considered
illiquidities. A general nonlinear model of illiquid markets with feedback effects was
considered in the study by Federov and Dyshaev [28]. Another remarkable study was
presented by Frey [29]. In that study, standard derivative pricing theory, which is the
assumption of agents acting as price takers on the market for the underlying asset,
was investigated. They characterized the solution to the hedge problem in terms of
a nonlinear partial differential equation, and presented results on the existence and
uniqueness of this equation. Gulen and Sari [33] defined a nonclassical numerical
method to capture the behaviour of the nonlinear option pricing model in illiquid
markets where the implementation of a dynamic hedging strategy affects the price of
the underlying asset. Jarrow [36] analysed market manipulation trading strategies by
large traders in a securities market. Platen and Schweizer [44] developed a diffusion
model for stock prices explicitly incorporating the technical demand induced by
hedging strategies starting from a microeconomic equilibrium approach. Another work
by Schönbucher and Wilmott [45] analysed the influence of dynamic trading strategies
on the prices in financial markets. Sircar and Papanicolaou [49] studied the nonlinear
partial differential equation for the price of the derivative by perturbation methods, by
numerical methods which are easy to use and can be implemented efficiently and by
analytical methods.

How the hedging strategy affects the price of the underlying security was examined
in the studies of Frey [30] and Frey and Patie [31]. Liu and Yong [41] also discussed
the problem of the replication of a European contingent claim with maturity T and
payoff f (S) for the stock price nonlinear Black–Scholes equation

∂V
∂t
+

σ2S2

2
(
1 − λ(S, t)S ∂2V

∂S2

) ∂
2V
∂S2 + rS

∂V
∂S
+ rS
∂V
∂S
− rV = 0, (S, t) ∈ (0,∞) × (0, T],

(1.1)

V(S, T) = f (S), S ∈ Ω := (0,+∞), (1.2)

where V, S, T, σ > 0 and r ≥ 0 stand for the price of the option, the stock price, the
maturity date, the asset volatility and the interest rate, respectively. Here, f (S) and
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[3] An investigation on nonlinear option pricing behaviours 3

λ(S, t) describe a continuous piecewise linear payoff function and the price impact
factor, respectively. The existence and uniqueness of classical solution to the problem
is studied in the work of Liu and Yong [41] where the conditions ensured are:

(i) f (ex) is Lipschitz continuous;
(ii) e−β

√
1+x2 f (ex) is bounded for some β ≥ 0.

These conditions are valid when the payoff function of the European contingent
claim is a continuous piecewise linear function [17, 18]. Note that λ(S, t) is the price
impact factor influence of the trader involved in the hedging strategies; some regularity
conditions given in the work of Liu and Yong [41] are valid for this parameter [17, 18].
The price impact function of the trader λ(S, t) demonstrates the hedging strategies: as
a trader buys, the stock price goes up and vice versa. This is defined as follows:

λ(S, t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
γ

S
(1 − e−β(T−t)) S ≤ S ≤ S,

0 otherwise,

where the constant price impact coefficient γ > 0 measures the price impact per traded
share, and S and S respectively represent the lower and upper limit of the stock price
within which there is a price impact. More details about the topic can be found in the
work of Liu and Yong [41].

Using the change τ = T − t, u(S, τ) = V(S, t), equations (1.1)–(1.2) transform to

∂u
∂τ
− σ2S2

2
(
1 − λ(S, T − τ)S ∂2u

∂S2

)2
∂2u
∂S2 − rS

∂u
∂S
+ ru = 0, (S, τ) ∈ (0,+∞) ∈ (0, T],

u(S, 0) = f (S), 0 < S < +∞.

Studies on analytical solutions of the nonlinear Black–Scholes equation were
executed for some special cases by various researchers [10–13]. Later, some authors
continued to be interested in analytical solutions of the nonlinear Black–Scholes
equation [23, 24, 27, 32, 53]. However, since there is no exact solution for the case
of a call or put terminal payoff, efficient numerical techniques have been needed to
solve the nonlinear Black–Scholes equation.

In the following years, many researchers focused on the studies of nonlinear option
pricing models in illiquid markets, which is an important issue in financial risk
management. In this context, while some authors [2, 3, 17, 18, 25, 34, 35, 39] were
interested in capturing the behaviour of the model by a numerical scheme, some others
[20, 38, 45] took into account the implications of certain terms and approaches to
possible financial outcomes. In addition, many authors [2, 22, 23] successfully applied
linearization techniques with various numerical schemes due to coping with analysing
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the nonlinear terms. To tackle the nonlinearity, Bordag and Chmakova [12] reduced
equation (1.1) to an ordinary differential equation in some special cases using Lie
group theory. Also, Frey and Patie [31] solved a smooth version instead of the model
in equations (1.1)–(1.2) due to strong nonlinearity. In the studies [17–19], the nonlinear
option pricing model was analysed by a finite difference scheme and its stability
properties were investigated. Yet, the applicability of implicit numerical schemes to
various nonlinear Black–Scholes models including transaction cost, market liquidity
and volatility uncertainty was discussed by Heider [35]. At the same time, Guo and
Wang [34] focused on the numerical solution of the nonlinear Black–Scholes equation,
which models illiquid markets, based on locally one-dimensional (LOD) methods. In
addition to all this, Koleva and Vulkov [39] presented a wide class of nonlinear option
models in the illiquid markets. Arenas et al. [3] put a nonstandard finite difference
scheme on the agenda in solving the nonlinear Black–Scholes equation in illiquid
markets. Ehrhardt and Valkov [25] investigated numerical solutions of two nonlinear
Black–Scholes equations in illiquid markets. Although the nonlinear models of interest
were analysed in the above studies with some success, since an exact solution does not
exist for these problems, there is still a need to develop an effective approach to get
more accurate solutions.

At this point, in this study, an effective alternative approach has been developed
based on linearizing the option pricing model, followed by discretizing it with a
numerical scheme. In this context, the Fréchet derivative is applied to the vanilla
call option for an illiquid market and then the Newton iteration technique has been
considered to produce the results. At the same time, the linearization technique helps
to avoid considering the convergence issues of the Newton iteration applied to the
nonlinear algebraic system containing many unknowns at each time step if an implicit
method is used in time discretization [26]. Thus, the technique allows us to use a
large time step size when using an implicit time discretization scheme. The Fréchet
derivative helps to enhance the convergence order of the proposed iterative scheme.
After the original equation is linearized, the differential quadrature method (DQM),
where approximations of the spatial derivatives are based on a polynomial of high
degree in space and the second-order accurate trapezoidal rule in time, has been
combined to obtain highly accurate solutions of the equation. The DQM, which is
a discretization method using a considerably small number of grid points to solve
various problems accurately, was introduced in the early 1970s by Bellman et al. [8].
The hybrid method has been seen to provide very accurate solutions with relatively
little computational effort and very little storage requirement. To the best the authors’
knowledge, there is no study on the proposed linearization technique combined with
DQM applied to the nonlinear European option problems.

2. Differential quadrature method

The DQM was proposed for the first time by Bellman et al. [8] as an efficient
discretization technique to solve nonlinear partial differential equations. Later, the
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technique was successfully developed to investigate the solutions of many problems
in various fields of science [9, 16, 43, 46, 48, 52, 54]. In the study [46], numerical
techniques based on differential quadrature were developed for the solution of partial
differential and integral equations, and incompressible viscous flows were simu-
lated using these techniques. Shu and Richards [48] applied generalized differential
quadrature to solve the two-dimensional incompressible Navier–Stokes equations in
the vorticity-stream-function formulation. Bert and Malik [9] presented a review of
the differential quadrature method, which should be of general interest to the computa-
tional mechanics community. A combined method with the differential quadrature and
Taylor series was applied to the two-dimensional inverse heat conduction problem by
O’Mahoney [43]. Chen et al. [16] presented a method of state-space-based differential
quadrature for free vibration of generally laminated beams. The polynomial-based
differential quadrature (PDQ) and the Fourier expansion-based differential quadrature
(FDQ) methods were applied to obtain eigenvalues of the Sturm–Liouville problem by
Yucel [54]. In addition to these, Xionghua and Zhihong [52] applied the differential
quadrature method to solve American option problem and used it to overcome the
difficulty in determining the optimal exercise boundary of American options.

In this technique, the partial derivative of a function with respect to a variable
can be expressed by the sum of weighted function values at all grid points in that
direction. The weighting coefficients do not change to any special problem and depend
on choosing the grid selection that affects an important role in the accuracy of
the solution. The point selection may or may not be evenly spaced. Equally spaced
grid points can be considered to be easy and convenient to work with. However, to
obtain a more accurate solution, the frequently used Chebyshev–Gauss–Lobatto points
are preferred [54]. For a domain specified by a ≤ x ≤ b and discretized by a set of
unequally spaced points, the coordinate of any point i can be determined by

xi = a +
1
2

(
1 − cos

( i − 1
N − 1

π
))

(b − a).

The values of the function u(x, t) at any time on the above grid points are given by
u(xi, t), i = 1, 2, . . . , N. Here, N is the number of grid points. The differential quadra-
ture discretizations of the first- and second-order spatial derivatives are respectively
given by

∂u
∂x

∣∣∣∣∣
x=xi

=

N∑
j=1

aiju(xj, t), i = 1, 2, . . . , N,

∂2u
∂x2

∣∣∣∣∣
x=xi

=

N∑
j=1

biju(xj, t), i = 1, 2, . . . , N,

where aij and bij are the weighting coefficients of the first- and second-order deriva-
tives, respectively [47]. The weighting coefficients are determined by using many kinds
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of test functions such as the polynomials, the sine and cosine functions [51], the spline
function [37] and various orthogonal polynomials [15, 42]. The Lagrange interpolation
function [48] is widely used, because it has no restriction on the choice of the points
to avoid the ill-conditioning Vandermonde matrix in the calculation of the weighting
coefficients,

aij =
1

xj − xi

N∏
k=1,k�i,j

xi − xk

xj − xi
, i � j,

aii = −
N∑

j=1,j�i

aij.

The weighting coefficients of the second-order derivative can be considered as B = A2,
where A = (aij) is the weighting coefficient matrix of the first derivative [52].

3. Linearization and discretization process

First, the Black–Scholes equations (1.1)–(1.2) have been linearized by using the
Newton iteration approach and the Fréchet derivative approximation. For this, as φ :
U → W at u ∈ U, the initial value problems in equations (1.1)–(1.2) can respectively
be written as follows:

φ(u) =
∂u
∂τ
− σ2S2

2
(
1 − λ(S, T − τ)S ∂2u

∂S2

) ∂
2u
∂S2 + rS

∂u
∂S
− ru = 0, (S, t) ∈ (0,∞) × (0, T],

u(S, T) = f (S), S ∈ Ω := (0,+∞).

The solution of the operator equation, φ(u) = 0, can be approximated by the Newton
method

uk+1 = uk + θk, (3.1)

where k is the iteration and θk is the refinement variable for correcting function uk. The
refinement variable θk is obtained by solving the following equation:

φ′(uk)θk = −φ(uk). (3.2)

This approach is an important issue in functional analysis framework. The
convergence criteria of the Newton iteration in a Banach space were studied by
Ambrosetti and Giovanni [1]. The convergence conditions of the Newton iteration
in infinite-dimensional Banach spaces were investigated in the work of Argvros [4].
In addition, the convergence analysis of the Newton method combining a Fréchet
derivative is studied by Korkut et al. [40]. As for this work, to the best knowledge of
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the authors, for the first time, the proposed linearization approach has been discussed
to cope with the nonlinearities in option pricing problems.

Solving this problem to obtain θk, equation (3.1) is used and iterated. The
Kantorovich theorem guarantees that the Newton method converges for sufficiently
suitable initial conditions [5, 21].

With the use of the Fréchet derivative [26],

φ′(uk)(θk) =
∂

∂ε
φ(uk + εθk)|ε=0, (3.3)

and the DQM for spatial discretization systems in equations (3.2)–(3.3) are then
respectively expressed as follows:

∂θk
∂τ
− 1

2
σ2S2

(1 − λ(S, T − τ)SBV)3 (1 + λ(S, T − t)SBV)Bθk − rSAθk + rθk

= −∂uk

∂τ
+

1
2

σ2S2

(1 − λ(S, T − τ)SBuk)2 Buk + rSAuk − ruk, (3.4)

θk(S, 0)= 0,

where φ : U → W is an operator at u ∈ U and V , W are Banach spaces, and U is an
open subset of V.

Next, the quadratic accurate trapezoidal rule for time discretization was imple-
mented. The stability properties of the method can be found in the reference [50].
The time coordinate is discretized with uniformly spread M grids. The step length in
the t-direction is denoted by dt = T/M, in which T is the maturity time of the contract.
After the linearization, and applying the DQM and time discretization, equation (3.4)
can be expressed as

θn+1 − θn
Δτ

− 1
2

σ2S2

(1 − λ(S, T − τ)SB(un+1 + un)/2)3

(
1 + λ(S, T − τ)SB

un+1 + un

2

)

× B
θn+1 + θn

2
− rSA

θn+1 + θn

2
+ r
θn+1 + θn

2

= −un+1 + un

Δτ
+

1
2

σ2S2

(1 − λ(S, T − τ)SB(un+1 + un)/2)2 B
un+1 + un

2

+ rSA
un+1 + un+1

2
− r

un+1 + un+1

2
.

The pseudo-code of the presented algorithm is given in Algorithm 1.
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Algorithm 1: The algorithm of the presented method

Let initial guess un+1, iteration number, tolerance value, initial condition
u(S, τ = 0)

for n=1:M
for k=1:iteration number
Solve [I + H(un, un+1)]θk+1 = g(un, un+1)
uk+1 = uk + θk+1

err = norm(uk+1 − uk, 2)
uk+1 = θk+1

if err < 1e − 10
break;

end
end
un+1 = uk+1

un = un+1

end

4. Results and analysis

In this section, in illiquid markets, the numerical solution of the Liu and Yong
model [41] with the combined method discussed in the previous sections is presented
and compared with the existing ones in the literature. All computations have been
performed in double precision using MATLAB�2019.

Consider the European vanilla call option for an illiquid market with E = 50,
r = 0.06,σ = 0.4, T = 1, S = 20, S = 80, β = 100, γ = 1 taken from the literature [18].
The initial boundary condition u(S, 0) = max{S − E, 0} is the suitable value for u0.
After the hybridization of the Newton iteration with the Fréchet derivative is applied,
the linearized model is discretized by the DQM in space and a quadratic trapezoid rule
in time. The obtained linear algebraic equations are solved numerically with iteration
in each time value for a tolerance of 1 × 10−10. In the Newton method, the derivatives
are represented by the Fréchet derivatives instead of using the usual Jacobian matrices.
The finite difference method (FDM) used by Company et al. [18] has been recalculated
here for the European vanilla call option prices as a reference solution.

The solutions obtained by the proposed method and the FDM, and relative errors ε
defined by

εi =

∣∣∣∣∣
uFDM

i − uprop
i

uFDM
i

∣∣∣∣∣,

are presented in the related tables and figures. Here, uFDM and uprop indicate the
solutions at the ith grid points obtained by the FDM and the proposed method,
respectively, and are given in Tables 1, 2 and 3 for δt = 0.01, 0.001, 0.0001 and
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TABLE 1. The results and relative errors for N = 16.

Si τ Proposed Relative error Proposed Relative error Proposed Relative error FDM
(Δt = 0.01) (Δt = 0.001) (Δt = 0.0001) N = 100

M = 7000

0.10 3.02162996 × 10−5 N.W. 4.64244852 × 10−8 N.W. 1.02346007 × 10−10 N.W. 0.000
S3 0.50 0.00101546 N.W. 0.00100205 N.W. 8.67491368 × 10−4 N.W. 0.000

1.00 0.00542195 N.W. 0.00540350 N.W. 0.00544269 N.W. 0.000

0.10 19.19777469 1.11789214 × 10−2 19.19789312 1.11728214 × 10−2 19.19028323 1.15647845 × 10−2 19.41481134
S7 0.50 21.09556103 1.85569526 × 10−2 21.09556409 1.85568102 × 10−2 21.04760270 2.07881504 × 10−2 21.49443219

1.00 23.82143068 1.46263215 × 10−2 23.82137550 1.46263215 × 10−2 23.75538584 1.73582669 × 10−2 24.17502233

0.10 131.11837560 6.28254309 × 10−4 131.11827911 6.28989747 × 10−4 131.11800061 6.31112447 × 10−4 131.20080307
S13 0.50 131.57972305 6.04110985 × 10−3 131.57970015 6.04110985 × 10−3 131.57944061 6.04324341 × 10−3 132.3794418

1.00 131.92934464 1.41065740 × 10−2 131.92933073 1.41065740 × 10−2 131.92906525 1.41086619 × 10−2 133.81704469
CPU time 0.0372 0.1634 0.7704
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TABLE 2. The results and relative errors for N = 32.

Si τ Proposed Relative error Proposed Relative error Proposed Relative error FDM
(Δt = 0.01) (Δt = 0.001) (Δt = 0.0001) N = 100

M = 7000

0.10 1.53707755 × 10−5 N.W. 1.05838828 × 10−5 N.W. 2.85677016 × 10−6 N.W. 4.26944159 × 10−15

S6 0.50 8.02151412 × 10−4 N.W. 7.86205641 × 10−4 N.W. 8.31694021 × 10−4 N.W. 6.72130131 × 10−6

1.00 0.00261347 4.18067477 × 10−1 0.00258662 403498681 × 10−1 0.00255035 3.83818598 × 10−1 0.00184298

0.10 25.23526360 3.59432503 × 10−5 25.23520696 3.81876479 × 10−5 25.23469611 5.84304179 × 10−5 25.23617067
S14 0.50 26.94911766 6.92676156 × 10−4 26.94912338 6.92888555 × 10−4 26.93011994 1.30549553 × 10−5 26.93046357

1.00 29.38930199 2.53559862 × 10−3 29.38924698 2.53372210 × 10−3 29.35358617 1.31725117 × 10−3 29.31497099

0.10 132.29858078 1.76256760 × 10−4 132.29849901 1.76874722 × 10−4 132.29848776 1.76959742 × 10−4 132.32190341
S26 0.50 132.72256116 5.85091907 × 10−3 132.72254796 5.85101794 × 10−3 132.72254791 5.85101832 × 10−3 133.50368039

1.00 133.05024381 1.36466061 × 10−2 133.05023673 1.36466585 × 10−2 133.05009818 136476857 × 10−2 134.89104882
CPU time 0.0685 0.2686 1.2221
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TABLE 3. The results and relative errors for N = 64.

Si τ Proposed Relative error Proposed Relative error Proposed Relative error FDM
(Δt = 0.01) (Δt = 0.001) (Δt = 0.0001) N = 100

M = 7000

0.10 3.61664869 × 10−4 N.W. 2.03843899 × 10−4 N.W. 2.48229165 × 10−4 N.W. 2.24340092 × 10−13

S12 0.50 4.39191629 × 10−4 N.W 2.37919889 × 10−4 N.W 2.74716867 × 10−4 N.W 5.73715608 × 10−5

1.00 0.00692975 3.79956826 × 10−2 0.00666211 7.51501016 × 10−2 0.00621744 1.36880244 × 10−1 0.00720345

0.10 28.04761594 9.02635415 × 10−6 28.04755755 1.11081522 × 10−5 28.04741672 1.61292110 × 10−5 28.04786911
S28 0.50 29.61008328 2.21863684 × 10−4 29.60973874 2.33497003 × 10−4 29.58923448 9.25818962 × 10−4 29.61665414

1.00 31.93715856 4.87797839 × 10−4 31.93645501 5.09816292 × 10−4 31.89849966 1.69767511 × 10−3 31.95274504

0.10 132.84219612 6.07922994 × 10−4 132.84218708 6.07991003 × 10−4 132.84218506 6.08006200 × 10−4 132.92300307
S52 0.50 133.25382415 6.32218793 × 10−3 133.25381190 6.32227928 × 10−3 133.25381035 6.32229084 × 10−3 134.10163992

1.00 133.57111543 1.45176648 × 10−2 133.57110540 1.45177388 × 10−2 133.57091227 1.45191637 × 10−2 135.53882263
CPU time 0.1866 0.7698 5.6316
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FIGURE 1. Hedge cost for the European vanilla call option for N = 16, Δt = 0.01, 0.001, 0.0001 at maturity
time T = 1.

N = 16, 32, 64, respectively. In addition, the spline interpolation is applied to the FDM
solutions for obtaining the values on the related grid points. As seen from the results,
the proposed method can generate highly accurate solutions even for relatively large
spatial and time elements. Figures 1–3 illustrate the results in Tables 1–3, respectively.
The figures show that the behaviours of the model with the proposed method and FDM
are in very good agreement. Moreover, Figure 4 displays the response of the model for
different spatial elements.

Table 4 displays the solutions generated by the proposed method and the FDM for
different spatial and time elements. As seen from the values, the proposed method
allows us to use relatively large spatial and time step sizes compared with the
FDM. However, even when a few iterations are used, the technique reaches high
accurate solutions. In addition, for Δt = 7.0671 × 10−4, while the FDM has spurious
oscillations, the proposed method works very well.

Figure 5 illustrates the variation of the option price with different values of the
parameter γ simulating the illiquidity influence in the price of the option. As seen,
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FIGURE 2. Hedge cost for the European vanilla call option for N = 32, Δt = 0.01, 0.001, 0.0001 at
maturity time T = 1.

as the value of the parameter γ grows, the price grows to S = E and for S > E, for
different γ values, the prices are close to each other.

Due to the effect on the nonlinearity of the problem as seen in equation (1.1),
the numerical behaviours of the Delta ∂V/∂S and Gamma ∂2V/∂S2 of the option
for different γ values are exhibited in Figures 6 and 7. From Figure 6, it can be
concluded that the hedge ratio is increasing in δ for S < E, and decreasing in δ for
S > E. Additionally, Figure 7 illustrates the effect of γ on the variation of the Gamma
and it is seen that the Gamma flattens out as illiquidity increases moving its peak more
to smaller values of S.

5. Conclusions and recommendation

Since an exact solution for the illiquid European option does not exist, the need
for capturing the behaviour of the model leads researchers to obtain effective methods.
In this paper, an effective hybrid numerical approach has been introduced to determine
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FIGURE 3. Hedge cost for the European vanilla call option for N = 64, Δt = 0.01, 0.001, 0.0001 at
maturity time T = 1.

the behaviours represented by the nonlinear Black–Scholes equation resulting from
the nonlinear property of volatility known as the illiquid European option model. For
this purpose, first, the derivative in the Newton iteration formula has been evaluated
by the Fréchet derivative in capturing the numerical behaviour of the model. In the
investigation of the behaviour of the problem with nonlinear volatility, called the
illiquid European option model, the proposed approach based on both the temporal
variability and the spatial variability has been found to be very easy to apply and
computationally inexpensive. When compared with the literature, the hybrid method
has been found to be very accurate and efficient. We believe that this study can
be adapted to deal with the real-life problems representing economic behaviour and
financial problems with volatility.
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FIGURE 4. Hedge cost for the European vanilla call option for M = 19 at maturity time T = 1.

FIGURE 5. Hedge costs with the parameter γ for N = 64 and Δt = 0.0001.
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TABLE 4. The results for different spatial and time elements.

Proposed FDM

N = 15 N = 100, M = 7000
Si/M 9 11 13 15 17 19
S3 0.00452702 0.00473081 0.00465935 0.00451777 0.00463156 0.00458924 2.03867927 × 10−4

S6 14.18396269 14.18306964 14.18253418 14.18217762 14.18196555 14.18180922 14.02312435
S12 129.33866661 129.33827304 129.33804874 129.33790027 129.33779325 129.33771989 131.09921488

N = 30
Si/M 9 11 13 15 17 19

S7 0.09499488 0.09848567 0.09873126 0.09926261 0.09951360 0.09961573 0.09647411
S14 37.60005061 37.62318505 37.62358684 37.62396462 37.62419401 37.62433813 37.63314359
S28 147.80352548 147.802888 147.802455 147.80216340 147.80196661 147.80183625 150.57398650

N = 60
Si/M 9 11 13 15 17 19
S15 0.51904106 0.52135333 0.53504717 0.53528273 0.53545924 0.53557833 0.53504717
S30 50.58254685 50.58488139 50.59919451 50.59919451 50.59937782 50.59949309 50.59889362
S58 149.46853522 149.46835781 149.46824193 149.46815209 149.46808352 149.46802946 149.46824193
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FIGURE 6. Variation of the Delta.

FIGURE 7. Variation of the Gamma.
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