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Abstract

We show that a genus 2 curve over a number field whose jacobian has complex

multiplication will usually have stable bad reduction at some prime. We prove this

by computing the Faltings height of the jacobian in two different ways. First, we use a

known case of the Colmez conjecture, due to Colmez and Obus, that is valid when the

CM field is an abelian extension of the rationals. It links the height and the logarithmic

derivatives of an L-function. The second formula involves a decomposition of the height

into local terms based on a hyperelliptic model. We use the reduction theory of genus

2 curves as developed by Igusa, Liu, Saito, and Ueno to relate the contribution at the

finite places with the stable bad reduction of the curve. The subconvexity bounds by

Michel and Venkatesh together with an equidistribution result of Zhang are used to

bound the infinite places.
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Bad reduction and CM jacobians

1. Introduction

By a curve we mean a smooth, geometrically connected, projective curve C defined over a field
k. Its jacobian variety Jac(C) is a principally polarised abelian variety defined over k. For any
abelian variety A defined over k, we write End(A) for the ring of geometric endomorphisms of
A, i.e., the ring of endomorphisms of the base change of A to a given algebraic closure of k.
For brevity we say that A has CM if its base change to an algebraic closure of k has complex
multiplication and if k has characteristic 0. We also say that C has CM if Jac(C) does. A curve
defined over Q is said to have good reduction everywhere if it has potentially good reduction at
all finite places of a number field over which it is defined.

By the work of Serre and Tate [ST68], an abelian variety defined over a number field with CM
has potentially good reduction at all finite places. If a curve of positive genus which is defined
over a number field has good reduction at a given finite place, then so does its jacobian variety.
However, the converse statement is false in the genus 2 case; cf. entry [I0-I0-m] in Namikawa and
Ueno’s classification table [NU73] in equicharacteristic 0. The main result of our paper, which
we discuss in greater detail below, states that this phenomenon prevails for certain families of
CM curves of genus 2.

Theorem 1.1. Let F be a real quadratic number field. Up to isomorphism there are only
finitely many curves C of genus 2 defined over Q with good reduction everywhere and such
that End(Jac(C)) is the maximal order of a quartic, cyclic, totally imaginary number field
containing F .

This finiteness result is of a familiar type for objects in arithmetic geometry. A number field
has only finitely many unramified extensions of given degree due to the theorem of Hermite–
Minkowski. The Shafarevich conjecture, proved by Faltings [Fal83], ensures that again there are
only finitely many curves defined over a fixed number field, of fixed positive genus, with good
reduction outside a fixed finite set of places. Fontaine [Fon85, p. 517] proved that there is no
non-zero abelian variety of any dimension with good reduction at all finite places if one fixes the
field of definition to be Q, Q(i), Q(i

√
3), or Q(

√
5). In particular, there exists no curve over Q

of positive genus that has good reduction at all primes. Schoof obtained finiteness results along
these lines for certain additional cyclotomic fields [Sch03].

Let us stress here that there are infinitely many curves of genus 2 defined over Q with good
reduction everywhere. One can deduce this fact from Moret-Bailly [MB01, Exemple 0.9].

Our result does not seem to be a direct consequence of the theorems mentioned above. Instead
of working over a fixed number field our finiteness result concerns curves over the algebraically
closed field Q. Indeed, it is not possible to uniformly bound the degree over Q of a curve of genus
2 whose jacobian variety has complex multiplication.

Example 1.2. Let us exhibit an infinite family of genus 2 curves with CM such that the
endomorphism ring is the ring of algebraic integers in a cyclic extension of Q that contains
Q(
√

5).
Suppose that p ≡ 1 mod 12 is a prime; then

f = x4 + 10px2 + 5p2

has roots

±
√
−p(5± 2

√
5). (1.1)
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So, the splitting field K = Kp of f over Q is a CM field with maximal totally real subfield Q(
√

5).
The product of two roots lies in Q(

√
5), so K/Q is a Galois extension. But such a product does

not lie in Q, so the Galois group of K/Q is not isomorphic to (Z/2Z)2. This means that K/Q is
a cyclic extension.

By (1.1), K is ramified above p, so we obtain infinitely many fields K as infinitely many
primes p satisfy p ≡ 1 mod 12.

There exists a principally polarised abelian surface whose endomorphism ring is the ring
of algebraic integers in K; see for example the paragraph after the proof of Theorem 4 of van
Wamelen [vWa99a].

In our situation this abelian surface is necessarily simple; cf. Lemma 3.10 below.
A principally polarised abelian surface that is not a product of elliptic curves with the product

polarisation is the jacobian of a curve of genus 2 by [BL04, Corollary 11.8.2]. Therefore, there
is a curve C = Cp defined over a number field such that Jac(C) has complex multiplication by
the ring of algebraic integers in K. According to Theorem 1.1, the curve C has potentially good
reduction everywhere for at most finitely many p.

We set m = (p− 1)/12 ∈ Z and observe that

2−4f(2x+ 1) = x4 + 2x3 + (30m+ 4)x2 + (30m+ 3)x+ 45m2 + 15m+ 1

is irreducible modulo 2 and modulo 3. This implies that K/Q is unramified above these primes
and even that they are inert in K. We may apply Goren [Gor97, Theorem 1] to see that the
semi-stable reduction of Jac(C) at all places above 2 and 3 is isogenous but not isomorphic to
a product of supersingular elliptic curves. By the paragraph before Proposition 2 of Liu [Liu93],
the curve C has potentially good reduction at places above 2 and 3. So, bad reduction is not
a consequence of the obstruction described by Ibukiyama et al. [IKO86, Theorem 3.3(III)]; cf.
Goren and Lauter’s comment of [GL07, p. 477].

The proof of Theorem 1.1 relies heavily on various aspects of the stable Faltings height
h(A) of an abelian variety A defined over a number field. Indeed, it follows by computing the
said height of Jac(C) in two different ways if C is a genus 2 curve defined over Q. We will be
able to bound one of these expressions from below and the other one from above. The resulting
inequality will yield Theorem 1.4 below, a more precise version of our result above.

The first expression of the Faltings height of Jac(C) uses the additional hypothesis that C
has CM as in Theorem 1.1. We will use Colmez’s conjecture, a theorem in our case due to Colmez
[Col93] and Obus [Obu13], as the CM field K is an abelian extension of Q. Yang [Yan10] was
the first to prove the Colmez conjecture in some non-abelian quartic cases. Colmez’s conjecture
enables us to express h(Jac(C)) in terms of the logarithmic derivative of an L-function. Using
this presentation, Colmez [Col98] found a lower bound for the Faltings height of an elliptic curve
with CM when the endomorphism ring is a maximal order. The bound grows logarithmically in
the discriminant of the CM field. We recall that the discriminant ∆K of K is a positive integer as
K is a quartic CM field. In our case we obtain a lower bound which is linear in log ∆K . Let B be a
real number. So, by the theorem of Hermite–Minkowski, there are only finitely many possibilities
for K up to isomorphism if h(Jac(C)) 6 B. In the situation of Theorem 1.1, the endomorphism
ring of Jac(C) is the maximal order of K. So, there are only finitely many possibilities for Jac(C)
up to isomorphism for fixed B. Torelli’s theorem will imply that there are at most finitely many
possibilities for C up to isomorphism.

Our theorem would follow if we could establish a uniform height upper bound B as before. We
were not able to do this directly. Instead, we will show that for any ε > 0 there is a constant c(ε, F )
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with

h(Jac(C)) 6 ε log ∆K + c(ε, F ), (1.2)

with F the maximal totally real subfield of K. For small ε this upper bound is strong enough to

compete with the logarithmic lower bound coming from Colmez’s conjecture because F is fixed

in our Theorem 1.1. It would be interesting to know if this inequality could be made uniform

in F .

The upper bound requires the second expression for the Faltings height of Jac(C) alluded

to above. We still work with a curve C of genus 2 defined over Q, but now do not require that

Jac(C) has CM. Suppose that C is the base change to Q of a curve Ck defined over a number

field k ⊆ Q. If Ck has good reduction at all places above 2, then Ueno [Uen88] decomposed

h(Jac(C)) into a sum over all places of k.1 We present another expression for the Faltings height

in Theorem 4.5 by decomposing it into local terms. In contrast to Ueno’s formula and with our

application in mind, we require that Jac(Ck) has good reduction at all finite places but in turn

allow Ck to have bad reduction above 2. Our proof of Theorem 4.5 makes use of the reduction

theory of genus 2 curves as developed by Igusa [Igu60] and later by Liu [Liu93, Liu94] as well

as Saito’s generalisation [Sai88] of Ogg’s formula for the conductor of an elliptic curve. In our

decomposition of h(Jac(C)) into local terms a non-zero contribution at a finite place indicates

that the curve Ck has bad stable reduction at the said place. In other words, if C has good

reduction everywhere, as in Theorem 1.1, then the finite places do not contribute to h(Jac(C)).

We will also express the local contribution in h(Jac(C)) at the finite places in terms of the

classical Igusa invariants attached to C.

The terms at the archimedean places in Theorem 4.5 are expressed using a Siegel modular

cusp form of degree 2 and weight 10. We must bound these infinite places from above in order to

arrive at (1.2). One issue is that the archimedean local term has a logarithmic singularity along

the divisor where the cusp form vanishes. This vanishing locus corresponds to the principally

polarised abelian surfaces that are isomorphic to a product of elliptic curves with the product

polarisation. The jacobian variety of a genus 2 curve defined over C is never such a product. So,

in our application, we are never on the logarithmic singularity.

To obtain the upper bound for h(Jac(C)) we must ensure first that not too many period

matrices coming from the conjugates of Jac(C) are close to the logarithmic singularity. Second,

we must show that no period matrix is excessively close to the said singularity.

To achieve the first goal we require Zhang’s equidistribution theorem [Zha05] for Galois orbits

of CM points on Hilbert modular surfaces. Zhang’s result relies on the powerful subconvexity

estimate due to Michel and Venkatesh [MV10]; Cohen [Coh05] and Clozel and Ullmo [CU05]

have related equidistribution results. Roughly speaking, equidistribution guarantees that only

a small proportion of period matrices coming from the Galois orbit of Jac(C) lie close to the

problematic divisor.

However, equidistribution does not rule out the possibility that some period matrix is

excessively close to the singular locus. To handle this contingency we use the following simple but

crucial observation. Inside Siegel’s fundamental domain, the divisor consists of diagonal period

matrices (
∗ 0
0 ∗

)
.

1 For other explicit formulas, the reader may consult Autissier [Aut06, Theorem 5.1, p. 1457] or the second-named
author [Paz12b, Theorems 1.3 and 1.4].
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A period matrix lying close to this divisor has small off-diagonal entries. It is a classical fact
that the period matrix of a CM abelian variety is algebraic. Moreover, the degree over Q of
each entry is bounded from above in terms of the dimension of the abelian variety. We will use
Liouville’s inequality to bound the modulus of the off-diagonal entries from below. This enables
us to handle the contribution coming from the vanishing locus of the cusp form.

The archimedean contribution to the Faltings height of Jac(C) is also unbounded near the
cusp in the Siegel upper half-space. We will again use the subconvexity estimates to control this
contribution on average.

Our efforts at the archimedean places can be reduced to obtaining an upper bound for the
archimedean contribution to the Faltings height of Jac(C). We state this bound separately.

Theorem 1.3. For any ε > 0 and any real quadratic field F , there exists a constant
c = c(ε, F ) > 0 with the following property. Let C be a curve of genus 2 defined over a number
field k such that its jacobian Jac(C) has complex multiplication by the ring of integers of a CM
field K containing F that is quartic and cyclic over Q. For an embedding σ : k → C, let Zσ
denote a period matrix of Jac(C)⊗σ C. Then χ10(Zσ) 6= 0 and

− 1

[k : Q]

∑
σ:k→C

log(|χ10(Zσ)|det Im(Zσ)5) 6 ε(log ∆K) + c, (1.3)

where ∆K > 0 is the discriminant of K and χ10 is the Siegel cusp mentioned above. (The value
of |χ10(Zσ)|det Im(Zσ)5 does not depend on the choice of period matrix.)

These various estimates combine to give (1.2). The quantitative nature of our approach
allows for the following quantitative estimate, which implies Theorem 1.1, as we will see. We will
measure the amount of bad stable reduction of a curve Ck of genus 2 defined over a number field
k using the minimal discriminant ∆0

min(C) in the sense of Definition 4.4. It is a non-zero ideal
in the ring of integers of k and N(∆0

min(C)) denotes its norm below.

Theorem 1.4. Let F be a real quadratic number field. There exists a constant c(F ) > 0 with
the following property. Let C be a curve of genus 2 defined over Q such that End(Jac(C)) is the
maximal order of an imaginary quadratic extension K of F with K/Q cyclic. Then C is the base
change to Q of a curve Ck defined over a number field k ⊆ Q with

log ∆K 6 c(F )

(
1 +

1

[k : Q]
log N(∆0

min(Ck))

)
, (1.4)

where the normalised norm on the right is invariant under finite field extensions of k.

The choice of k will be made during the proof.
In Theorem 4.5(ii), we will be able to express the normalised norm in terms of the Igusa

invariants of the curve C.
Theorem 1.4 implies finiteness results for more general families than curves with potentially

good reduction everywhere. Indeed, an analog of Theorem 1.1 is obtained for any collection
where the normalised norm of ∆0

min(Ck) is uniformly bounded from above.
Let K be a quartic CM field that is not bi-quadratic. Goren and Lauter [GL06] called a

rational prime p evil for K if there is a principally polarised abelian variety with CM by the
maximal order of K whose reduction over a place above p is a product of two supersingular elliptic
curves with the product polarisation. This corresponds to a genus 2 curve whose semi-stable
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reduction is bad at a place above p and whose jacobian variety has CM by the maximal order
of K. Goren and Lauter proved that evilness prevails by showing that a given prime is evil for
infinitely many K containing a fixed real quadratic field with trivial narrow-class group. In our
Theorem 1.1, the prime p varies; using Goren and Lauter’s terminology we can restate our result
as follows. For all but finitely many quartic and cyclic CM number fields containing a given real
quadratic field, there is an evil prime.

Let us now recall the fundamental result of Deligne and Mumford of [DM69, Theorem 2.4,
p. 89].

Theorem 1.5 (Deligne–Mumford). Let k be a field with a discrete valuation and with
algebraically closed residue field. Let C be a curve over k of genus at least 2. Then the jacobian
variety Jac(C) has semi-stable reduction if and only if C has semi-stable reduction.

The reader should keep in mind that even though a curve and its jacobian variety have
semi-stable reduction simultaneously, it does not mean that the type of reduction (good or bad)
is the same.

We conclude this introduction by posing some questions related to our results and to Ag,
the coarse moduli space of principally polarised abelian varieties of dimension g > 1.

The authors conjecture that there are only finitely many curves C of genus 2 defined over Q
which have good reduction everywhere and for which Jac(C) has complex multiplication by an
order containing the ring of integers of F .

Our restriction in Theorem 1.1 that K/Q is abelian reflects the current status of Colmez’s
conjecture. This conjecture is open for general quartic extensions of Q. However, Yang [Yan10]
has proved some non-abelian cases for quartic CM fields. Recently, Andreatta–Goren–Howard–
Madapusi Pera and independently Yuan–Zhang announced a version of Colmez’s conjecture when
averaging over all CM types of a CM field. An averaged version is not strong enough for our
purposes. It is, however, if all members in the average have the same Faltings height (which is
the case in our paper). We hope that this will allow us to extend our theorems above to quartic
CM fields that are not normal over Q.

Nakkajima and Taguchi [NT91] computed the Faltings height of an elliptic curve with
complex multiplication by a general order. They reduced the computation to the case of
a maximal order which is covered by the Chowla–Selberg formula. Very recently, Mocz has
announced a variant of Nakkajima–Taguchi’s result for abelian varieties in higher dimension.

Our approach relies heavily on equidistribution of Galois orbits on Hilbert modular surfaces.
For this reason we must fix the maximal total real subfield in our theorem. However, it is natural
to ask if the finiteness statement in Theorem 1.1 holds without fixing F . For example, is the set
of points in A2 consisting of jacobians of curves defined over Q with CM and with good reduction
everywhere Zariski non-dense in A2? One could even speculate whether this set is finite.

In genus g = 3 the image of the Torelli morphism again dominates A3. Here too this image
contains infinitely many jacobian varieties with CM. So, we ask whether the set of CM points
that come from genus 3 curves with good reduction everywhere is Zariski non-dense in A3 or
perhaps even finite. A simplified variant of this question would ask for non-denseness or finiteness
under the restriction that the CM field contains a fixed totally real cubic subfield. Hyperelliptic
curves of genus 3 do not lie Zariski dense in the moduli space of genus 3 curves. Thus, a statement
like Theorem 4.5 for non-hyperelliptic curves would be necessary. This would be interesting in
its own right.

Starting from genus g = 4 it is no longer true that the Torelli morphism dominates A4.
The André–Oort conjecture, which is known unconditionally in this case by work of Pila and
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Tsimerman [PT14], yields an additional obstruction for a curve of genus 4 to have CM. Coleman

conjectured that there are only finitely many curves of fixed genus g > 4 with CM. However,

this conjecture is known to be false for g = 4 and g = 6 by work of de Jong and Noot [dJN91].

In any case, a version of Theorem 1.1 for higher genus curves is entangled with other problems

in arithmetic geometry.

In genus g = 1 no finiteness result such as Theorem 1.1 can hold true, as an elliptic curve

with complex multiplication has potentially good reduction at all finite places. However, the

first-named author proved [Hab15] the following finiteness result, which is reminiscent of

the current work. Up to Q-isomorphism there are only finitely many elliptic curves with complex

multiplication whose j-invariants are algebraic units. This connection reinforces the heuristics

that CM points behave similarly to integral points on a curve in the context of Siegel’s theorem.

Indeed, the jacobian variety of a curve of genus 2 defined over Q and with good reduction

everywhere corresponds to an algebraic point on A2 that is integral with respect to the divisor

given by products of elliptic curves with their product polarisation. Theorem 1.1 is a finiteness

result on the set of certain CM points of A2 that are integral with respect to the said divisor.

It would be interesting to know if, e.g., Vojta’s Theorem 0.4 on integral points on semi-abelian

varieties [Voj99] has an analog for Ag and other Shimura varieties.

Finally, one can ask if the questions posed above remain valid in an S-integer setting. In

other words, are there only finitely many curves C of genus 2 or 3 which have good reduction

above the complement of a finite set of primes, where Jac(C) has CM, and where possibly further

conditions are met?

The paper is structured as follows. In the next section we introduce some basic notation.

In § 3 we cover some properties of abelian varieties with complex multiplication, and recall

Shimura’s theorem on the Galois orbit for the cases we are interested in. In § 4 we recall first

the Faltings height of an abelian variety. Then in § 4.2 we use a case of Colmez’s conjecture

to express the Faltings height of certain abelian varieties with CM. Section 4.4 contains the

local decomposition of the Faltings height of a jacobian surface with good reduction at all finite

places. The archimedean places in this decomposition are bounded from above in § 5. Finally, the

proof of both our theorems is completed in § 6. In the appendix we both express, using Colmez’s

conjecture, and approximate numerically, using the result in § 4.4, the Faltings height of three

jacobian varieties of genus 2 curves. Each pair of heights are equal up to the prescribed precision.

The computations and statements made in the appendix are not necessary for the proof of our

theorems.

2. Notation

In this paper it will be convenient to take Q as the algebraic closure of Q in C and all number

fields to be subfields of Q.

The letter i stands for an element of Q such that i2 = −1.

We let K× denote the multiplicative group of any field K. If K is a number field, then ∆K is

its discriminant and ClK is the class group of K. We use the symbol OK for the ring of integers

of K and OK× is the group of units of OK . If A is a fractional ideal of K, then [A] denotes

its class in ClK . If K/F is an extension of number fields, then DK/F is its different and dK/F
is its relative discriminant. The norm of A is N(A), so N(A) = [OK : A] if A ⊆ OK . For the

norm of A relative to K/F , a fractional ideal of F , we use the symbol NK/F (A). If α ∈ K, then

NK/F (α) ∈ F and TrK/F (α) ∈ F are norm and trace, respectively, of α relative to K/F .
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A place ν of K is an absolute value on K whose restriction to Q is the standard absolute value
on Q or a p-adic absolute value for some prime number p. The former places are called infinite
or archimedean and we write ν | ∞ whereas the latter are called finite or non-archimedean and
we write ν -∞ or ν | p. The set of finite places is M0

K . Any ν ∈ M0
K corresponds to a maximal

ideal of OK and we write ordν(A) ∈ Z for the power with which this ideal appears in the
factorisation of A. If α ∈ K×, then ordν(α) = ordν(αOK). We write Kν for the completion of K
with respect to ν and dν = [Kν : Qν′ ], where ν ′ is the restriction of ν to Q.

We will often use K to denote a CM field and F its totally real subfield. Complex conjugation
on K will be denoted by α 7→ α. If a CM type Φ of K is given, then we write K∗ for the associated
reflex field.

For the field of definition of an algebraic variety we use lower case letters, k for instance.
Let g > 1 be an integer and Hg the Siegel upper half-space, i.e., g × g symmetric matrices

with entries in C and positive-definite imaginary parts. For brevity, H = H1 denotes the upper
half-plane. The symplectic group Sp2g(Z) acts on Hg by

γZ = (αZ + β)(λZ + µ)−1 if γ =

(
α β
λ µ

)
∈ Sp2g(Z).

We recall that Z = (zlm)16l,m6g ∈ Hg is called Siegel reduced and lies in Siegel’s fundamental
domain Fg if and only if the following properties are met; cf. [Kli90, §§ 2 and 3].

(i) For every γ ∈ Sp2g(Z), one has det Im(γZ) 6 det Im(Z), where Im(·) denotes the imaginary
part.

(ii) The real part is bounded by

|Re(zlm)| 6 1
2 for all (l,m) ∈ {1, . . . , g}2.

(iii)a For all l ∈ {1, . . . , g} and all ξ = (ξ1, . . . , ξg) ∈ Zg with gcd(ξl, . . . , ξg) = 1, we have
tξ Im(Z)ξ > Im(zll).

(iii)b For all l ∈ {1, . . . , g − 1}, we have Im(zl,l+1) > 0.

The properties (iii)a and (iii)b state that Im(Z) is Minkowski reduced.
We write diag(α1, . . . , αg) for the diagonal matrix with diagonal elements α1, . . . , αg which

are contained in some field.

3. Abelian varieties

In the next sections we collect some statements on Hilbert modular varieties and abelian varieties
that we require later on.

3.1 Hilbert modular varieties
Theorem 1.1 concerns jacobian varieties whose endomorphism algebras contain a fixed real
quadratic number field. So, Hilbert modular surfaces arise naturally. In this section we discuss
some properties of a fundamental set of the action of Hilbert modular groups on Hg =
H× · · · ×H, the g-fold product of the complex upper half-plane H ⊆ C. Our main reference
for this section is Chapter I of van der Geer’s book [vdG88]. However, we will work in a slightly
modified setting and therefore provide some additional details.
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Let F be a totally real number field of degree g with distinct real embeddings ϕ1, . . . ,
ϕg : F → R. Throughout this section a is a fractional ideal of OF . Later on we will be mainly
interested in the case a = D−1

F/Q, the inverse of the different of F/Q.

Let O×,+F be the group of totally positive units in OF and

GL+(OF ⊕ a) =

{(
a b
c d

)
∈ GL2(F ) : a, d ∈ OF , b ∈ a−1, c ∈ a, and ad− bc ∈ O×,+F

}
. (3.1)

The group GL2(F ) acts on P1(F ). Its subgroup GL+
2 (F ) of matrices with totally positive

determinant acts on Hg by fractional linear transformations through the g embeddings ϕ1, . . . , ϕg.
We are interested in the restriction of this action to the subgroup GL+(OF ⊕ a). As this

group’s center acts trivially on Hg, let us consider also

Γ̂(a) = GL+(OF ⊕ a)

/{(
u

u

)
: u ∈ O×F

}
. (3.2)

The group Γ̂(a) also acts on P1(F ).
The Γ̂(a)-action on P1(F ) consists of h = # ClF < +∞ orbits which represent the cusps of

Γ̂(a)\Hg. For η = [α : β] ∈ P1(F ) with α, β ∈ F and τ = (τ1, . . . , τg) ∈ Hg, we define

µ(η, τ) = N(αOF + βa−1)2
g∏
l=1

Im(τl)

|ϕl(α)− ϕl(β)τl|2
> 0.

The quantity µ(η, τ)−1/2 measures the distance of the point in Γ̂(a)\Hg represented by τ to the
cusp represented by η.

If γ =
(
a b
c d

)
∈ GL+

2 (F ), then

µ(γη, γτ) =
µ(η, τ)

NF/Q(det γ)2

N(α′OF + β′a−1)2

N(αOF + βa−1)2
, (3.3)

where α′ = aα+ bβ and β′ = cα+ dβ.
Let us study two important special cases. First, if γ ∈ GL+(OF ⊕ a), then det γ ∈ O×,+F and

the ideals appearing on the right of (3.3) coincide. So, the equality simplifies to µ(γη, γτ) =
µ(η, τ). Second, let us suppose that γ ∈ SL2(F ) and fix a positive integer λ with λa, λd ∈ OF ,
λb ∈ a−1, and λc ∈ a. Then λα′OF +λβ′a−1 ⊆ αOF +βa−1 and so the norm of the ideal on the left
is at least the norm of the ideal on the right. Equality (3.3) implies that µ(γη, γτ) > λ−2gµ(η, τ).

On applying the same argument to γ−1, we find

c−1 6
µ(γη, γτ)

µ(η, τ)
6 c, (3.4)

where c > 0 depends only on γ and not on η ∈ P1(F ) or on τ ∈ Hg.
A fundamental set for the action of Γ̂(a) on Hg is a subset of Hg that meets all Γ̂(a)-orbits.

We do not require a fundamental set to be connected and we do not exclude that two distinct
points are in the same orbit. In the following we will describe a fundamental set much as van
der Geer’s construction of a fundamental domain for the action of SL2(OF ) on Hg in [vdG88,
ch. I.3].

First, let us fix a set of representatives η1 = [α1 : β1], . . . , ηh = [αh : βh] ∈ P1(F ) of the cusps.
We may assume that α1 = 1 and β1 = 0, i.e., [α1 : β1] = ∞. Only a slight variation in the
argument of [vdG88, Lemma I.2.2] is required to obtain

max{µ(η1, τ), . . . , µ(ηh, τ)} � 1; (3.5)

the constants implicit in � and � here and below depend only on a and the αm, βm.
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Proposition 3.1. There is a closed fundamental set F(a) for the action of Γ̂(a) on Hg with the
following property. If τ = (τ1, . . . , τg) ∈ F(a), then |Re(τl)| � 1 and(

max
16m6h

µ(ηm, τ)
)−2/g

� Im(τl)�
(

max
16m6h

µ(ηm, τ)
)1/g

(3.6)

for all 1 6 l 6 g.

Proof. A given τ ∈ Hg is in

S = {τ ′ ∈ Hg : µ(ηm, τ
′) = max{µ(η1, τ

′), . . . , µ(ηh, τ
′)}} for some m,

the sphere of influence of the cusp ηm. We abbreviate η = ηm, α = αm, and β = βm. Thus,

µ(η, τ)� 1 (3.7)

by (3.5). Let us define the fractional ideal b = αOF + βa−1 of OF . Next we choose γ ∈ SL2(F )
with

γ−1 =

(
α α∗

β β∗

)
,

where α∗ ∈ (ab)−1 and β∗ ∈ b−1. So, γη = ∞ and we observe that an application of (3.4) and
(3.7) yields

µ(∞, γτ) = µ(γη, γτ)� µ(η, τ)� 1.

The left-hand side is Im(τ ′1) · · · Im(τ ′g)� 1, where γτ = (τ ′1, . . . , τ
′
g).

We observe that

γΓ̂(a)γ−1 = γGL+(OF ⊕ a)γ−1 = GL+(OF ⊕ ab2) (3.8)

and use GL+(OF ⊕ ab2) to act on γτ . In fact, we will use only elements in the stabiliser of ∞,
i.e., the subgroup of upper triangular matrices in GL+(OF ⊕ ab2). As in [vdG88, ch. I.3], we find
γ′ in the said group such that if γ′γτ = (τ ′′1 , . . . , τ

′′
g ) = τ ′′, then

|Re(τ ′′l )| � 1 and Im(τ ′′l )� Im(τ ′′l′ ) for all 1 6 l, l′ 6 g. (3.9)

We note that Im(τ ′′1 ) · · · Im(τ ′′g ) = Im(τ ′1) · · · Im(τ ′g)� 1 and thus

Im(τ ′′l )� 1 for all 1 6 l 6 g. (3.10)

The point γ−1γ′γτ = γ−1τ ′′ lies in the Γ̂(a)-orbit of τ by (3.8). We define D as the set of
τ ′′ that satisfy (3.9) and (3.10). We take γ−1D as a part of the fundamental set whose entirety
F(a) is obtained by taking the union of the sets coming from all h cusps. Observe that γ−1D is
closed in Hg and so F(a) is closed too.

It remains to prove that the various bounds in the assertion hold for γ−1τ ′′ ∈ γ−1D.
To simplify notation we write τ = γ−1τ ′′ and recall that γη =∞ still holds. We use the second
set of inequalities in (3.9) to bound Im(τ ′′l ) � (Im(τ ′′1 ) · · · Im(τ ′′g ))1/g = µ(∞, τ ′′)1/g = µ(γη,

τ ′′)1/g � µ(η, γ−1τ ′′)1/g. So, Im(τ ′′l ) � µ(η, τ)1/g and in particular µ(η, τ) � 1 by (3.10).
We find that |τ ′′l | � µ(η, τ)1/g as the real part of τ ′′l is bounded by (3.9). Now

Im(τl) = Im(γ−1
l τ ′′l ) =

Im(τ ′′l )

|βlτ ′′l + β∗l |2
>

Im(τ ′′l )

(|βlτ ′′l |+ |β∗l |)2
� 1

µ(η, τ)2/g
,

where the subscript l in βl, β
∗
l , and γl indicates that ϕl was applied. This yields the lower bound

in (3.6).
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To deduce the upper bound, we split up into two cases. If βl 6= 0, then Im(γ−1
l τ ′′l ) 6

Im(τ ′′l )/(|βl|2 Im(τ ′′l )2)� 1 and in particular Im(γ−1τ ′′l )� µ(η, τ)1/g. So, the upper bound holds
in this case. What if βl = 0? Then Im(γ−1

l τ ′′l ) = Im(τ ′′l )/|β∗l |2. Further up we have seen that

Im(τ ′′l )� µ(η, τ)1/g and the upper bound follows from this.
To bound the real part, we use

|Re(τl)| = |Re(γ−1
l τ ′′l )| = |αlβl|τ

′′
l |2 + α∗l β

∗
l + (αlβ

∗
l + α∗l βl) Re(τ ′′l )|

|βlτ ′′l + β∗l |2
.

The denominator is at least |βl|2 Im(τ ′′l )2 � 1 if βl 6= 0 and it equals |β∗l |2 � 1 if βl = 0. Using
elementary estimates we conclude that |Re(τl)| � 1 by treating separately the cases |βlτ ′′l |> 2|β∗l |
and |βlτ ′′l | 6 2|β∗l |. 2

3.2 Abelian varieties with complex multiplication
In this section we recall some basic facts on a certain class of abelian varieties with CM.
Furthermore, we prove several estimates that will play important roles in sections to come.

Let K be a CM field with [K : Q] = 2g and F the maximal, totally real subfield of K.
We suppose that A is an abelian variety of dimension g defined over C such that there is a

ring homomorphism from an order O of K into End(A) which maps 1 to the identity map on A.
In addition, we suppose that A is principally polarised.

As [K : Q] = 2 dimA, the natural action of K on the tangent space of A at 0 ∈ A(C)
is equivalent to a direct sum of embeddings ϕ1, . . . , ϕg : K → C, which are distinct modulo
complex conjugation. In this way, A gives rise to a CM type Φ = {ϕ1, . . . , ϕg} of K. To keep
notation elementary we fix a basis of the said tangent space and identify it with Cg such that
the action of K is given by

α(z1, . . . , zg) = (ϕ1(α)z1, . . . , ϕg(α)zg)

for (z1, . . . , zg) ∈ Cg.
By abuse of notation, we write Φ(α) = (ϕ1(α), . . . , ϕg(α)) if α ∈ K.
The period lattice of A is a discrete subgroup Π ⊆ Cg of rank 2g. After scaling coordinates

we may suppose that (1, . . . , 1) ∈ Π.
The set

M = {α ∈ K : Φ(α) ∈ Π}
is an OF -module since OF acts on the period lattice via Φ. It is finitely generated as such and
it contains an order of K. Moreover, M is torsion-free and OF is a Dedekind ring; thus, M is a
projective OF -module. It is of rank 2 making it isomorphic to OF ⊕ a, where a is a fractional
ideal of OF . Now a is uniquely determined by its ideal class and later on we will show that a lies
in the class of D−1

F/Q. Let us fix ω1, ω2 ∈ K r {0} with

M = ω1OF + ω2a. (3.11)

We note that ω1ω2−ω1ω2 6= 0, where as usual · denotes complex conjugation on K, and define

t0 = (ω1ω2 − ω1ω2)−1. (3.12)

Observe that if the order O equals OK , then M is a fractional ideal of OK . In this case we will
use the symbol A to denote M.

2544

https://doi.org/10.1112/S0010437X17007424 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X17007424


Bad reduction and CM jacobians

As A is principally polarised, it comes with an R-bilinear form E : Cg × Cg → R which
restricts to an integral symplectic form of determinant 1 on Π×Π. We note that

H(z, w) = E(iz, w) + iE(z, w)

is a positive-definite hermitian form whose imaginary part is integral on Π×Π.
Our form E satisfies the condition of Theorem 4, ch. II in Shimura’s book [Shi97]. So, there

is t ∈ K with t = −t and Im(ϕm(t)) > 0 for all m such that

E(z, w) =

g∑
j=1

ϕj(t)(zjwj − zjwj) (3.13)

for all z = (z1, . . . , zg) and w = (w1, . . . , wg) in Cg. Then

E(Φ(α),Φ(β)) = TrK/Q(tαβ) (3.14)

for all α, β ∈ K.

Lemma 3.2. Let us keep the notation from above and also set u = t/t0.

(i) We have u ∈ F and

E(Φ(µω1 + λω2),Φ(µ′ω1 + λ′ω2)) = TrF/Q(u(µ′λ− µλ′))

for all µ, µ, λ, λ′ ∈ F .

(ii) We have ua = D−1
F/Q.

Proof. As t0 = −t0, we find that u = u and thus u ∈ F . We find that TrK/Q(tµµ′ω1ω1) = 0 as
µµ′ω1ω1 ∈ F and similarly TrK/Q(tλλ′ω2ω2) = 0. Therefore, by (3.14),

E(Φ(µω1 + λω2),Φ(µ′ω1 + λ′ω2)) = TrK/Q(t(µω1 + λω2)(µ′ω1 + λ′ω2))

= TrK/Q(t(λµ′ω1ω2 + µλ′ω1ω2))

=

g∑
j=1

ϕj(t(λµ
′ω1ω2 + µλ′ω1ω2 − λµ′ω1ω2 − µλ′ω1ω2))

= TrF/Q(u(λµ′ − µλ′)),

where the final equality used t = ut0 and (3.12). Part (i) follows.
The symplectic form E has determinant 1 as it corresponds to a principal polarisation of

A. So, there exist a Z-basis (µ1, . . . , µg) of OF and a Z-basis of (λ1, . . . , λg) of a such that
E(Φ(λlω2),Φ(µmω1)) = 0 except if l = m when the value is 1. Part (i) yields

E(Φ(λlω2),Φ(µmω1)) = TrF/Q(uµmλl).

So, if we arrange the g column vectors Φ(µm) to a square matrix U and do the same
with Φ(λl) to obtain Λ, then tU diag(ϕ1(u), . . . , ϕg(u))Λ is the g× g unit matrix. Thus,
det(U)NF/Q(u) det(Λ) = 1. Now |det Λ| = N(a)|∆F |1/2 and |detU | = |∆F |1/2 and thus

|NF/Q(u)|N(a) = |∆F |−1. We conclude that N(ua) = N(D−1
F/Q).

If λ ∈ a is arbitrary, then TrF/Q(uλ) = E(Φ(λω2, ω1)) by part (i). This is an integer and so

ua ⊆ D−1
F/Q. But we proved above that these two fractional ideals have equal norm; thus, part

(ii) follows. 2
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Part (ii) of the lemma above establishes our claim that a and D−1
F/Q are in the same ideal

class. So, we can take a = D−1
F/Q to start out with. Part (ii) of the previous lemma implies that

u ∈ O×F . We now replace ω1 and ω2 with ω1 and u−1ω2, respectively. With these new periods,

M = ω1OF + ω2D
−1
F/Q (3.15)

remains true but now

t = (ω1ω2 − ω1ω2)−1. (3.16)

Moreover, the formula in Lemma 3.2(i) simplifies to

E(Φ(µω1 + λω2),Φ(µ′ω1 + λ′ω2)) = TrF/Q(µ′λ− µλ′). (3.17)

Next let us consider τ = ω2/ω1. We compute

ϕl(t)
−1 = |ϕl(ω1)|2(ϕl(τ)− ϕl(τ)) = −2i|ϕl(ω1)|2 Im(ϕl(τ))

for all 16 l6 g. Our t satisfies Re(ϕl(t)) = 0 and Im(ϕl(t))> 0. We conclude that Im(ϕl(τ))> 0 for
all 1 6 l 6 g. In particular, Φ(τ) ∈ Hg.

Recall that the group Γ̂(D−1
F/Q), defined in (3.2), acts on Hg and that we described a

fundamental set for this action in Proposition 3.1. In the proposition below we use this group to
transform ω2/ω1 to the said fundamental set.

Let V ⊆ O×,+F be a set of representatives of O×,+F /(O×F )2. Note that V is finite.

Proposition 3.3. There exist ω1, ω2 ∈ K× as in (3.15), Φ(ω2/ω1) ∈ F(D−1
F/Q), and such that

there is v ∈ V with

E(Φ(µω1 + λω2),Φ(µ′ω1 + λ′ω2)) = TrF/Q(v(λµ′ − λ′µ)) (3.18)

for all µ, µ′, λ, λ′ ∈ F .

Proof. According to Proposition 3.1, there is

γ =

(
a b
c d

)
∈ GL+(OF ⊕D−1

F/Q)

with γΦ(τ) ∈ F(D−1
F/Q). Multiplying γ by a scalar matrix with diagonal entry u ∈ O×F does

not affect γΦ(τ) and replaces det γ by u2 det γ. So, we may assume that det γ ∈ V . We set
ω′1 = dω1 + cω2, ω

′
2 = bω1 + aω2 and find, using the definition (3.1), that (3.15) again remains

true. Using (3.17), we obtain

E(Φ(µω′1 + λω′2, µ
′ω′1 + λ′ω′2)) = TrF/Q((det γ)(µ′λ− µλ′))

for all µ, µ′, λ, λ′ ∈ F . The proposition follows on replacing ω1 and ω2 by ω′1 and ω′2,
respectively. 2

Let (µ1, . . . , µg) be any Z-basis of OF . We may find a Z-basis (λ1, . . . , λg) of D−1
F/Q such

that (Φ(µ1)ω1, . . . ,Φ(λg)ω2) is a symplectic basis for E. We note that the λl may depend on
the symplectic form E and thus on M, whereas the µm depend only on F . Let us see how to
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retrieve the λ1, . . . , λg from the other data. We define Λ, U ∈ Matg(R) as the square matrices
with columns Φ(λ1), . . . ,Φ(λg) and Φ(µ1), . . . ,Φ(µg), respectively. Relation (3.18) yields

TrF/Q(vλlµm) =

{
1 for l = m,

0 for l 6= m.
(3.19)

So, tΛ diag(ϕ1(v), . . . , ϕg(v))U is the g × g unit matrix. The period matrix with respect to the
symplectic basis is

Z = U−1 diag(ϕ1(τ), . . . , ϕg(τ))Λ = U−1 diag(ϕ1(vτ), . . . , ϕg(vτ))tU−1

= tΛ diag(ϕ1(vτ), . . . , ϕg(vτ))Λ. (3.20)

It is well known that Z lies in the Siegel upper half-space Hg.

Remark 3.4. Let us assume that g = 2 and O×,+F = (O×F )2. So, F is a real quadratic field of
discriminant ∆ > 0, say, and we may take V as above Proposition 3.3 to contain only 1. Thus,
OF = Z + θZ with θ = (∆ +

√
∆)/2. The conjugate of θ over Q is θ′ = (∆ −

√
∆)/2 and we

consider θ, θ′ as real numbers. So, (
θ 1
θ′ 1

)
becomes an admissible choice for U as above. Say ω1, ω2 are as in Proposition 3.3 with τ1 =
ϕ1(ω2/ω1) and τ2 = ϕ2(ω2/ω1) ∈ C. A brief calculation using detU = θ − θ′ =

√
∆ yields the

period matrix

Z = U−1

(
τ1

τ2

)
tU−1 =

1

∆

(
τ1 + τ2 −τ1θ

′ − τ2θ
−τ1θ

′ − τ2θ τ1θ
′2 + τ2θ

2

)
.

For the remainder of this section we suppose that O = OK and thus that M = A is a
fractional ideal of OK .

Next we will bound how close the point represented by Z lies to the boundary of the coarse
moduli space of principally polarised abelian varieties of dimension g. We will do the same for
the point in Γ̂(D−1

F/Q)\Hg represented by τ from Proposition 3.3.

We define the norm of any ideal class [A] ∈ ClK as the least norm of an ideal representing
the said class, i.e.,

N([A]) = min{N(B) : B is an ideal of OK in [A]}.
Recall that Fg denotes Siegel’s fundamental domain; see § 2.

Lemma 3.5. Let ω1 and ω2 be as in Proposition 3.3. Then

2gNK/Q(ω1)

g∏
l=1

Im(ϕl(ω2/ω1)) = N(A)|∆K |1/2 = |NK/Q(t)|−1/2.

Proof. We let U,Λ ∈ Matg(R) denote matrices as in (3.20). Let Ωj = diag(ϕ1(ωj), . . . , ϕg(ωj))
for 1 6 j 6 2. Then the columns of (

Ω1 Ω2

Ω1 Ω2

)(
U

Λ

)

2547

https://doi.org/10.1112/S0010437X17007424 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X17007424


P. Habegger and F. Pazuki

constitute a Z-basis of Φ× Φ(A) ⊆ C2g. The determinant of this product has modulus

N(A)|∆K |1/2 = |det(Ω1Ω2 − Ω1Ω2)||detU ||det Λ|.

The first equality follows since |detU | = |∆F |1/2 and |det Λ| = N(D−1
F/Q)|∆F |1/2 = |∆F |−1/2.

To prove the second equality, let (α1, . . . , α2g) be a Z-basis of A. The entries of the matrix
(E(Φ(αl),Φ(αm)))16l,m62g can be expressed using the trace by (3.14). We find that

|det(E(Φ(αl),Φ(αm)))16l,m62g| = |det(TrK/Q(tαlαm))16l,m62g| = |NK/Q(t)|N(A)2|∆K |.

The absolute value on the left is 1 as the polarisation on A is principal. Our claim follows
after taking the square root and rearranging terms. 2

For the next lemma we fix representatives ηm ∈ P1(F ) of the # ClF cusps of Γ̂(D−1
F/Q)\Hg as

in § 3.1.

Lemma 3.6. Let Z be the period matrix (3.20), let ω1, ω2 be as in Proposition 3.3, and set
τ = ω2/ω1.

(i) There exists a constant c = c(g) > 0 which depends only on g with the following property.
If γ ∈ Sp2g(Z) with γZ ∈ Fg, then

Tr(Im(γZ)) 6 c

( |∆K |1/2
N([A−1])

)1/g

.

(ii) There exists a constant c > 0 which depends only on F and the ηm such that

µ(ηm,Φ(τ)) 6 c
|∆K |1/2
N([A−1])

for all m.

Proof. Let ω ∈ Ar {0} witness the injectivity diameter

ρ = min{H(ω′, ω′)1/2 : ω′ ∈ Π r {0}} > 0

of A with its polarisation, i.e., ρ2 = H(Φ(ω),Φ(ω)). Then

ρ2 = E(iΦ(ω),Φ(ω)) = 2

g∑
l=1

|ϕl(t)||ϕl(ω)|2

by (3.13). The inequality between the arithmetic mean and the geometric mean implies that

ρ2 > 2g

( n∏
l=1

|ϕl(t)||ϕl(ω)|2
)1/g

= 2g(|NK/Q(t)|1/2|NK/Q(ω)|)1/g.

By the second equality in Lemma 3.5, we deduce that

ρ2 > 2g

( |NK/Q(ω)|
N(A)|∆K |1/2

)1/g

.
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Since ω ∈ A is non-zero, there is an ideal B of OK with AB = ωOK . Thus,

ρ2 > 2g(N(B)/|∆K |1/2)1/g

since N(A)N(B) = |NK/Q(ω)|. So,

ρ−2 6 (2g)−1

( |∆K |1/2
N([A−1])

)1/g

(3.21)

since B is in the class [A−1].
Next we write Zred = γZ with γ as in (i). As Zred lies in Siegel’s fundamental domain,

its imaginary part is Minkowski reduced. The matrix Im(Zred)−1 represents the hermitian
form H with respect to the standard basis on Cg. If y′1, . . . , y

′
g are the diagonal elements of

Im(Zred)−1, then we find that ρ2 6 min{y′1, . . . , y′g} on testing with standard basis vectors. The
diagonal entries y1, . . . , yg of Im(Zred) are positive and satisfy det Im(Zred) > cy1 · · · yg by [Kli90,
Proposition 1(iii), § 2], where c > 0 depends only on g. Part (ii) of the same proposition provides
a bound for the off-diagonal entries of Im(Zred) in terms of the yl. This allows us to bound the
cofactors of Im(Zred) using the triangle inequality. The lower bound for deg Im(Zred) then leads
to y′l 6 c/yl after possibly increasing c.

So,

ρ−2 > max{y1, . . . , yg}/c > Tr(Im(Y ))/(cg).

We combine this inequality with (3.21) to deduce part (i).
For the proof of (ii), we abbreviate η = ηm and fix α ∈ OF , β ∈ D−1

F/Q with η = [α : β]. Then

µ(η,Φ(τ)) = N(αOF + βDF/Q)2|NK/Q(ω1)|
g∏
l=1

Im(ϕl(τ))

|ϕl(ω1α− ω2β)|2

and so

µ(η,Φ(τ)) = 2−gN(αOF + βDF/Q)2 N(A)|∆K |1/2
|NK/Q(ω1α− ω2β)|

by the first equality of Lemma 3.5. We observe that ω1α − ω2β ∈ A is non-zero. As above,
(ω1α− ω2β) = AB for some ideal B ∈ [A−1]. We conclude that

µ(η,Φ(τ)) = 2−gN(αOF + βDF/Q)2 |∆K |1/2
N(B)

.

With this, part (ii) follows since N(B) > N([A−1]) and because α, β depend only on F and the
ηm. 2

The fact that the exponent 1/g in (i) is strictly less than one for the jacobian of a genus
g = 2 curve will prove crucial later on.

The period matrix Z we constructed above may not lie in Siegel’s fundamental domain
Fg ⊆ Hg defined in § 2. We rectify this in the next lemma by using Minkowski and Siegel’s
reduction theory.

Lemma 3.7. Let ω1, ω2 be as in Proposition 3.3 and set τ = ω2/ω1. For given M > 0, there is a
finite set Σ ⊆ Sp2g(Z) such that if maxm µ(ηm,Φ(τ)) 6M , then there exists γ ∈ Σ with γZ ∈ Fg.

2549

https://doi.org/10.1112/S0010437X17007424 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X17007424


P. Habegger and F. Pazuki

Proof. In this proof, all constants implicit in � and � depend on F, the set V , the matrix U ,
the choice of cusp representatives ηm, and M . So, µ(ηm,Φ(τ)) � 1 for all cusp representatives
ηm. Recall that Φ(τ) lies in the fundamental set F(D−1

F/Q) coming from Proposition 3.1. If Φ(τ)

is equal to (τ1, . . . , τg), then |Re(τl)| � 1 and Im(τl)� 1 for all 1 6 l 6 g.
There are at most finitely many possible Λ as in (3.20). Let us write zlm for the entries of Z.

The entries of Λ are ϕl(λm). So,

zlm =

g∑
j=1

ϕj(vλlλm)τj and in particular zll =

g∑
j=1

ϕj(vλ
2
l )τj

for some v ∈ V . We observe that ϕj(v) > 0 as V ⊆ O×,+F and ϕj(λl) ∈ Rr {0}. So,

|Im(zlm)| 6
g∑
j=1

|ϕj(vλlλm)| Im(τj)�
g∑
j=1

ϕj(vλ
2
l ) Im(τj) = Im(zll)

for all 1 6 l,m 6 g. Taking the determinant of the imaginary part of (3.20) yields

1�
g∏
j=1

Im(τj) = (det Λ)−2 det Im(Z)� det Im(Z).

So, Im(Z) lies in the set Qg(t) from [Kli90, Definition 2, § 2] for all sufficiently large t.
On considering the real part, we obtain |Re(zlm)| � 1 from (3.20) and |Re(τl)| � 1. Moreover,

Im(z11)� Im(τ1)� 1.
Hence, Z lies in Lg(t) as in [Kli90, Definition 2, § 3] for all large t. The existence of the finite

set Σ now follows from [Kli90, Theorem 1]. 2

By our relation (3.20), the entries of Z are contained in the normal closure of K/Q. In
particular, the entries of Z are contained in a number field whose degree over Q is bounded by
a constant depending only on g.

We use a recent result of Pila and Tsimerman to bound the height of a reduced period matrix.

Lemma 3.8. Let us suppose that A is simple. If γ ∈ Sp2g(Z) with γZ ∈ Fg, then H(γZ) 6 |∆K |c
for a constant c = c(g) > 0 that depends only on g.

Proof. This follows from Pila and Tsimerman [PT13, Theorem 3.1] as the endomorphism ring
of A equals OK under the simplicity assumption on A. 2

3.3 The Galois orbit
We keep the notation of the previous two sections.

Any field automorphism σ : C → C determines a new abelian variety Aσ with complex
multiplication. Let Aut(C/K∗) denote the group of automorphisms that restrict to the identity
on K∗, the reflex field of (K,Φ). Shimura [Shi97, Theorem 18.6] described how to recover a
period lattice of Aσ if σ ∈ Aut(C/K∗). We only state a special case of Shimura’s theorem and
avoid the language of idèles. Indeed, by the assumptions of this section A is a fractional ideal in
K and the ideal-theoretic formulation suffices.

To this extent let H∗ denote the Hilbert class field of K∗ and

art : ClK∗ → Gal(H∗/K∗)

the group isomorphism coming from class field theory.
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Let Φ∗ denote the CM type attached to the reflex of (K,Φ). The reflex norm NΦ : (K∗)× →

K× attached to (K,Φ) is

NΦ(a) =
∏
ϕ∈Φ∗

ϕ(a);

cf. [Shi97, § 8.3] for standard properties including the fact that the target is indeed K×. If B∗

is a fractional ideal of K∗, then
∏
ϕ∈Φ∗ ϕ(B∗) is a fractional ideal of K, which we denote with

NΦ(B∗). Observe that NΦ also induces a homomorphism of class groups ClK∗ → ClK , which we
also denote by NΦ.

Theorem 3.9 (Shimura). Let A,K,Φ,K∗,A, and t be as above and as in the last section.
Suppose that σ ∈ Aut(C/K∗); we consider Aσ as an abelian variety over C. Let B∗ be a

fractional ideal of K∗ with art([B∗]) = σ|H∗ . Then Aσ(C) ∼= Cg/Φ(Aσ), where Aσ = NΦ(B∗)−1A
and t transforms to N(B∗)t.

In particular, the set of period lattices in the Aut(C/K∗)-orbit are represented by

{[Aσ] : σ ∈ Aut(C/K∗)} = NΦ(ClK∗)[A] = {NΦ([B∗])−1[A] : [B∗] ∈ ClK∗}.

Proof. The first statement follows from [Shi97, Theorem 18.6 part (1)]. Observe that A is a
fractional ideal, so the action by the finite idèles factors through the maximal compact subgroup.
The second statement is a consequence of the fact that the Artin homomorphism is bijective. 2

IfG is an abelian group, thenG[2] denotes its subgroup of elements that have order dividing 2.
We now specialise to the case we are interested in. The following lemma is well known.

Lemma 3.10. Suppose that K/Q is cyclic of degree 4. Then (K,Φ) is primitive, A is a simple
abelian variety, K∗ = K, and

#NΦ(ClK∗) >
# ClK

# ClK [2] ·# ClF
. (3.22)

Proof. In this lemma we identify the embeddings in the CM type Φ = {σ1, σ2} with
automorphisms of K. By hypothesis, Gal(K/Q) ∼= Z/4Z. As σ2σ

−1
1 is neither the identity

nor complex conjugation, it must generate the Galois group. So, (K,Φ) is primitive by [Shi97,
Proposition 26, ch. II]. Therefore, A is simple.

Further down in [Shi97, Example 8.4], Shimura remarks that K∗ = K and Φ∗ = {σ−1
1 , σ−1

2 }
under the assumption that (K,Φ) is primitive and K/Q is abelian.

Observe that NΦ([B]) = σ−1
1 ([B])σ−1

2 ([B]) if [B] ∈ ClK∗ and recall that σ2σ
−1
1 generates

Gal(K/Q). To prove the final claim, it suffices to consider the case where σ1 is the identity and
σ2 generates the Galois group. We abbreviate θ = σ−1

2 . Let α ∈ ClK be arbitrary. As K is a
CM field with totally real subfield F , the class αα is represented by an ideal generated by an
ideal of OF . Thus, there are at most # ClF different possibilities for the class αα. On the other
hand, αθ(α)(θ(α)θ2(α))−1 = αθ2(α)−1 = αα−1 lies in NΦ(ClK∗). So, α2 = (αα)(αα−1) lies in
at most # ClF translates of NΦ(ClK∗). The bound (3.22) follows because ClK contains precisely
# ClK /# ClK [2] squares. 2

Lemma 3.11. Let ε > 0. There exists a constant c = c(ε, F ) > 0 depending only on ε and the
totally real field F with the following property. Suppose that K/Q is cyclic of degree 4; then

#NΦ(ClK∗) > c|∆K |1/2−ε.
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Proof. Zhang’s proposition [Zha05, Proposition 6.3(2)] implies that # ClK [2] 6 c|∆K |ε, where c
depends only on ε > 0.

Next we bound the class number of K from below using the Brauer–Siegel theorem. For any
imaginary quadratic extension K of F that is Galois over Q, we have RK# ClK > c|∆K |1/2−ε
with a possibly smaller constant c > 0; here RK > 0 denotes the regulator of K. By [Was82,
Proposition 4.16], RK is at most twice the regulator of F . As we allow c to depend on F , our
lemma follows from Lemma 3.10 on decreasing this constant c if necessary. 2

4. Faltings height

We begin by recalling the definition of the Faltings height of an abelian variety. Then we apply a
known case of Colmez’s conjecture to compute the Faltings height of certain CM abelian varieties
in terms of the L-functions. Finally, we will give an alternative formula for the Faltings height for
an abelian variety that has good reduction everywhere and that is the jacobian of a hyperelliptic
curve in genus 2.

4.1 General abelian varieties
Let A be an abelian variety of dimension g > 1 defined over a number field k. After extending
k, we may suppose that A has semi-stable reduction at all finite places of k.

Put S = SpecOk, where Ok is the ring of integers of k. Let A −→ S be the Néron model
of A. We shall denote by ε : S → A the zero section.

We write Ωg
A/S for the gth exterior power of the sheaf of relative differentials of the smooth

morphism A → S. This is an invertible sheaf on A and its pull-back ε∗Ωg
A/S is an invertible

sheaf on SpecOk.
For any embedding σ of k in C, the base change Aσ = A ⊗σ C is an abelian variety over

SpecC. There is a canonical isomorphism

ε∗Ωg
A/S ⊗σ C ' H

0(Aσ,Ωg
Aσ)

as vector spaces over C. So, we can equip the first vector space with the L2-metric ‖ · ‖σ defined
by

‖α‖2σ =
ig

2

cg0

∫
Aσ(C)

α ∧ α

for a normalising universal constant c0 > 0.
The rank-one Ok-module ε∗Ωg

A/S , together with the hermitian norms ‖·‖σ at infinity, defines

a hermitian line bundle over S.
Recall that for any hermitian line bundle ω over S, the Arakelov degree of ω is defined as

d̂eg(ω) = log #(ω/Okη)−
∑

σ : k→C

log ‖η‖σ,

where η is any non-zero section of ω. The Arakelov degree is independent of the choice of η by
the product formula.

We now give the definition of the Faltings height, see [Fal83, p. 354], which is sometimes also
called the differential height.

Definition 4.1. The stable Faltings height of A is

h(A) :=
1

[k : Q]
d̂eg(ω) where ω = ε∗Ωg

A/S
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becomes a hermitian line bundle ω when equipped with the metrics mentioned above and c0 = 2π.

To see that it satisfies a Northcott theorem, see for instance Faltings’s Satz 1 [Fal83, pp. 356
and 357] or the theorem of Bost–David made available in [Paz12a].

For a discussion on some interesting values for c0, see [Paz12b]. Faltings uses c0 = 2. In this
paper, the choice will be c0 = 2π, following Deligne and Bost. This choice removes the π in the
expression derived from the Chowla–Selberg formula in the CM case. The choice c0 = (2π)2 leads
to a non-negative height hF+(A) due to a result of Bost. In any case, one has the easy relations

h(A) = hDeligne(A) = hBost(A) =
g

2
log 2π + hColmez(A)

=
g

2
log π + hFaltings(A) = −g

2
log 2π + hF+(A).

4.2 Colmez’s conjecture
Colmez’s conjecture [Col93] relates the Faltings height of an abelian variety with complex
multiplication and the logarithmic derivative of certain Artin L-functions at s = 0. In the same
paper Colmez proved his conjecture for CM fields that are abelian extensions of Q and satisfy
a ramification condition above 2. Obus [Obu13] then generalised the result by dropping the
ramification restriction. Yang [Yan10] verified the conjecture for certain abelian surfaces where
the CM field is not Galois over Q. Our work will rely only on the case when the CM field is a
cyclic, quartic extension of the rationals.

Let us briefly recall Colmez’s conjecture when the CM field K is an abelian extension of Q
of degree 2g.

Let Φ = {ϕ1, . . . , ϕg} be a CM type of K. If ϕ : K → Q is an embedding, Colmez sets

aK,ϕ,Φ(g0) =

{
1 if g0ϕ ∈ Φ,

0 otherwise

for all g0 ∈ Gal(Q/Q) and AK,Φ =
∑

ϕ∈Φ aK,ϕ,Φ. Then AK,Φ factors through Gal(K/Q) and by
abuse of notation we sometimes consider AK,Φ as a function on this Galois group. It is a C-linear
combination of the irreducible characters of Gal(K/Q). Moreover, the Artin L-series attached
to any character that contributes to this sum is holomorphic and non-zero at s = 0. If χ is any
character of Gal(K/Q), then fχ denotes the conductor of χ.

In the following result we use the normalisation of the Faltings height used in § 4.1.

Theorem 4.2 (Colmez, Obus). Let A be an abelian variety defined over a number field that is
a subfield of C. We suppose that A has complex multiplication by the ring of integers of a CM
field K of degree 2 dimA over Q. This data provides a CM type Φ of K. Suppose in addition
that K/Q is an abelian extension. We decompose AK,Φ =

∑
m cmχm, where the χm denote the

irreducible characters of Gal(K/Q). Then

h(A) =

(
−
∑
m

cm

(
L′(χm, s)

L(χm, s)
+

1

2
log fχm

)
+
g

2
log 2π

)∣∣∣∣
s=0

,

where the right-hand side is evaluated at s = 0.

Proof. We refer to Colmez [Col93, Théorèmes 0.3(ii) and III.2.9], from which the result
follows modulo a rational multiple of log 2. Subsequent work of Obus [Obu13] removed this
ambiguity. 2
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Let us consider what happens for an abelian surface when K/Q is cyclic.

Proposition 4.3. Suppose that K is a CM field with K/Q cyclic of degree 4 and let F be the
real quadratic subfield of K.

(i) Let Φ be any CM type of K. If g0 ∈ Gal(K/Q), then

AK,Φ(g0) =


2 if g0 = 1,

0 if g0 has order 2,

1 if g0 has order 4.

(ii) As a function on Gal(K/Q), we can decompose AK,Φ = χ0 + 1
2χ, where χ0 is the trivial

character and χ is induced by the non-trivial character of Gal(K/F ). Moreover, the
conductor fχ of χ is ∆K/∆F .

(iii) Let A be a simple abelian surface with endomorphism ring OK . Then

h(A) = −1

2

L′(0)

L(0)
− 1

4
log

∆K

∆F
=

1

2

L′(1)

L(1)
+

1

4
log

∆K

∆F
− log(2π)− γQ,

where L(s) = ζK(s)/ζF (s) is a quotient of the Dedekind ζ-functions ofK and F , respectively,
and γQ = 0.577215 . . . denotes Euler’s constant.

(iv) Let A be as in (iii). Then

h(A) > −c+

√
5

20
log ∆K ,

where c is a constant that depends only on F .

Proof. Let us write Gal(K/Q) = {1, h, h2, h3}. Then h has order 4 and h2 is complex conjugation
on K. By definition, we have aK,ϕ,Φ(1) = 1 for all ϕ ∈ Φ. So, AK,Φ(1) = 2. On the other
hand, no two elements of Φ are equal modulo complex conjugation. So, AK,Φ(h2) = 0. Finally,
AK,ϕ,Φ(h) ∈ {0, 1, 2}. If Φ = {ϕ1, ϕ2}, then simultaneous equalities hϕ1 = ϕ2 and hϕ2 = ϕ1

are impossible. This rules out 2. We can also rule out 0 since hϕ1 = h2ϕ2 and hϕ2 = h2ϕ1 are
impossible too. Thus, AK,ϕ,Φ(h) = 1 and by symmetry we also find that AK,ϕ,Φ(h3) = 1. This
completes the proof of part (i).

If χ is the character of Gal(K/Q) induced by the non-trivial irreducible representation of
Gal(K/F ), then

χ(hk) =


2 if k = 0,

0 if k = 1,

−2 if k = 2,

0 if k = 3.

We observe that AK,Φ = χ0 + 1
2χ and this yields the first part of (ii).

The conductor fχ equals ∆FN(dK/F ) by [Neu99, Proposition VII.11.7(iii)], where dK/F is
the relative discriminant of K/F . The final statement of part (ii) follows as ∆K = ∆2

FN(dK/F ).
To prove (iii), we first remark that L(s, χ0) is the Riemann ζ-function and that ζK(s) factors

as ζF (s)L(s, χ) with L(·, χ) the Artin L-function attached to the character χ.
The first equality in (iii) now follows from Theorem 4.2 applied to (ii) and since ζ ′(0)/ζ(0) =

log 2π. The second equality follows from the functional equation of the Dedekind ζ-function.
If M is any number field, then γM denotes the constant term in the Taylor expansion around

s = 1 of the logarithmic derivative of the Dedekind ζ-function of M . Then γM is called the
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Euler–Kronecker constant of M and generalises Euler’s constant γQ to number fields. Badzyan’s
theorem [Bad10, Theorem 1] yields the lower bound

γM > −1
2(1−

√
5

5 ) log |∆M |.
We have L′(1)/L(1) = γK − γF and so part (iv) follows from Badzyan’s bound together with
part (iii). 2

Colmez [Col98] also obtained a lower bound for the Faltings height related to (iv) above.
Part (i) together with Theorem 4.2 implies that the Faltings height does not depend on the

CM type of K. This was originally observed by Yang [Yan10] and is specific to degree 4.

4.3 Models of curves of genus 2
This section explains the choice of models used in the next section to give an explicit formula
for the Faltings height of abelian surfaces. We will use Weierstrass models of degree 5 and of
degree 6 for our curves of genus 2. To be able to choose models of degree 5 for a curve C, one
needs to have at least one rational Weierstrass point on C, which can be obtained by passing to
a finite field extension if needed. As plane models they are singular at infinity; one will recover
the curve C through desingularisation.

We work with hyperelliptic equations for a curve C of genus 2 defined over a field k of
characteristic 0.

Suppose that C(k) contains a Weierstrass point of C. By Lockhart [Loc94, Proposition 1.2],
there is a monic polynomial P ∈ k[x] of degree 5 such that an open, affine subset of C is
isomorphic to the affine curve determined by the equation E : y2 = P . We call E a restricted
Weierstrass equation for C. Lockhart defined the discriminant of E as 28 disc5(P ) ∈ k×.

Say k is a subfield of C. As on [Loc94, p. 740], we fix an ordering on the roots of P and
attach a rank-4 discrete subgroup Λ of C2 and a period matrix ZE ∈ H2 to E . We write VE > 0
for the covolume of Λ in C2.

Now we define a larger class of Weierstrass equations.

Definition 4.4. A Weierstrass equation E for C/k is an equation

E : y2 +Qy = P

that describes an open, affine subset of C, where P,Q ∈ k[x] with degP 6 6 and degQ 6 3. The
discriminant of E is defined as ∆E = 2−12 disc6(4P +Q2); it is a non-zero element of k.

Suppose that k is the field of fractions of a discrete valuation ring. We call E integral if
P and Q have integral coefficients. The minimal discriminant ∆0

min(C) of C is the ideal of the
ring of integers generated by a discriminant with minimal valuation among the discriminants of
the integral equations of C. In Liu’s terminology [Liu94], ∆0

min(C) is called the naive minimal
discriminant. If k is a number field, then by abuse of notation we let ∆0

min(C) denote the ideal
of Ok that is minimal at each finite place of k.

If E : y2 = P (x) is a restricted Weierstrass equation as in Lockhart’s work, then his notation
of discriminant coincides with the one used above, i.e., 28 disc5(P ) = ∆E follows from basic
properties of the discriminant.

Weierstrass equations are unique up to the following change of variables, see [Liu02, Corollary
4.33],

(∗∗) x =
ax′ + b

cx′ + d
and y =

H(x′) + ey′

(cx′ + d)3
,

where
(
a b
c d

)
∈ GL2(k), e ∈ k∗, H ∈ k[x′] with degH 6 3.
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4.4 Hyperelliptic jacobians in genus 2

In this section we state a formula for the Faltings height of the jacobian of a genus 2 curve

if the said jacobian has potentially good reduction at all finite places. Ueno [Uen88] had a

related expression for the Faltings height, but with a restriction on reduction type which is

incommensurable with ours. The second-named author proved [Paz12b] another formula for the

Faltings height of the jacobian of a hyperelliptic curve of arbitrary genus.
In order to formulate our result, we recall the definition of relevant theta functions and

the 10 non-trivial theta constants in dimension 2. The latter correspond precisely to the even
characteristics

Θ1 =


0

0
0
0

 ,
 0

0
0

1/2

 ,
 0

0
1/2
0

 ,
 0

0
1/2
1/2


 ,

Θ2 =


1/2

0
0
0

 ,
 0

1/2
0
0

 ,
1/2

1/2
0
0

 ,
 0

1/2
1/2
0

 ,
1/2

0
0

1/2

 ,
1/2

1/2
1/2
1/2


 .

We abbreviate Z2 = Θ1 ∪ Θ2, the union being disjoint. Say t(a, b) ∈ Z2 with a, b ∈ 1
2Z

2. We

denote

Qab(n) = t(n+ a)Z(n+ a) + 2 t(n+ a)b (4.1)

for n ∈ Z2 and thus get a theta function

θab(0, Z) =
∑
n∈Z2

eiπQab(n).

We will use the classical Siegel cusp form

χ10(Z) =
∏
m∈Z2

θm(0, Z)2, where Z ∈ H2, (4.2)

of weight 10; cf. the second Remark after Proposition 2, [Kli90, § 9]. So,

Z 7→ |χ10(Z)|det Im(Z)5

is an Sp4(Z)-invariant, real analytic map H2 → R.

For a finite place ν of a number field, we write

ι(ν) =


4 if ν | 2,
3 if ν | 3,
1 otherwise.

(4.3)

We recall that dν denotes a local degree and is defined in § 2.

Theorem 4.5. Let C be a curve of genus 2 defined over a number field k such that C(k) contains

a Weierstrass point of C and such that Jac(C) has good reduction at all finite places of k. Let

J2, J6, J8, J10 ∈ k be Igusa’s invariants attached to C. The following properties hold true.
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(i) For any embedding σ : k → C, let Zσ be a period matrix coming from a restricted Weierstrass
model of C ⊗σ C as in § 4.3; then χ10(Zσ) 6= 0. Moreover, we have

h(Jac(C)) =
1

[k : Q]

(
1

60

∑
ν∈M0

k

dν
ι(ν)

log max{1, |J−ι(ν)
10 J5

2ι(ν)|ν}

− 1

10

∑
σ:k→C

log(28π10|χ10(Zσ)|det(ImZσ)5)

)
.

(ii) Let ν be a finite place of k; then

ordν ∆0
min(C) =

1

ι(ν)
max{0,−ordν(J−ι10 J

5
2ι)}.

We will prove this theorem after some preliminary work. But first we state an immediate
corollary.

Corollary 4.6. Let C, k, and the Zσ be as in Theorem 4.5; then

h(Jac(C)) =
1

[k : Q]

(
1

60
log N(∆0

min(C))− 1

10

∑
σ:k→C

log(28π10|χ10(Zσ)|det Im(Zσ)5)

)
.

Suppose that C is a curve of genus 2 defined over a number field k and presented by a
Weierstrass equation as in Definition 4.4. There exists a classical basis for H0(C,Ω1

C/k) given by

ω1 =
dx

2y +Q(x)
and ω2 =

x dx

2y +Q(x)
.

Consider the section ω1 ∧ω2 ∈ detH0(C,Ω1
C/k). A change of variables in the Weierstrass models

of C leaves
η = ∆2

E(ω1 ∧ ω2)⊗20 (4.4)

invariant; cf. [Liu94, § 1.3].
We now show how to use η, a differential form on the curve C, to compute the Faltings height

of the jacobian Jac(C).
Suppose that p : C→ S is a regular semi-stable model of C over S = SpecOk. We now prove

that

h(Jac(C)) =
1

[k : Q]
d̂eg(det p∗ωC/S), (4.5)

where ωC/S denotes the relative canonical bundle and where the hermitian metrics on det p∗ωC/S
are determined by

‖ω1 ∧ ω2‖2σ = det

(
i

2π

∫
(C⊗σC)(C)

ωl ∧ ωm
)

16l,m62

(4.6)

with σ : k → C an embedding. Indeed, suppose that ε is a section of C → S and let Pic0
C/S

be the relative Picard scheme of degree 0. Then Pic0
C/S is the identity component of the Néron

model A of the jacobian of C by [BLR90, Theorem 4, ch. 9.5]. This is an open subscheme of A
which contains the image of ε. Therefore, ε∗ΩPic0

C/S/S
= ε∗ΩA/S , which allows us to replace A

by Pic0
C/S in the computations below. Then

Lie(A) ' R1p∗OC .
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Moreover, by Grothendieck duality (see [Liu02, 6.4.3, p. 243]), we have

(R1p∗OC)∨ ' p∗ωC/S .
Then

ε∗Ω1
A/S ' Lie(A)∨ ' p∗ωC/S

and hence
ε∗Ω2

A/S ' det p∗ωC/S ,

which turns out to be an isometry by 4.15 of the second lecture of [Szp85]. We conclude (4.5)
by taking the Arakelov degree.

4.4.1 Archimedean places. We use Lockhart [Loc94] and Mumford [Mum84] as references
for these places. If T is a subset of {1, 2, 3, 4, 5}, one then defines mT =

∑
i∈T mi ∈ 1

2Z
4 with

m1 =

1/2
0
0
0

 , m2 =

1/2
0

1/2
0

 , m3 =

 0
1/2
1/2
0

 , m4 =

 0
1/2
1/2
1/2

 , m5 =

 0
0

1/2
1/2

 .
In the notation of Lockhart’s definition [Loc94, Definition 3.1], ϕ(Z) is the fourth power of

χ10(Z) =
∏

T⊆{1,2,3,4,5}
#T=3

θmT◦{1,3,5}(0, Z)2, (4.7)

where ◦ denotes the symmetric difference of sets and θm are theta functions from § 4.4.
The following result is from Lockhart [Loc94, Proposition 3.3]. In his notation, we have

r =
(

5
3

)
= 10 and n =

(
4
3

)
= 4.

Proposition 4.7. Let C be a curve of genus 2 defined over C and suppose that E is a restricted
Weierstrass equation for C. One has the uniformisation Jac(C)(C) ' C2/ΛE with the lattice
ΛE ⊆ C2, its period matrix ZE ∈ H2 and covolume V (ΛE), both as near the beginning of § 4.3.
Then |∆E |V (ΛE)

5 is independent of the equation E and

|∆E |V (ΛE)
5 = 28π20|χ10(ZE)|det Im(ZE)

5.

Next comes the archimedean contribution of the section η from (4.4).

Proposition 4.8. Let C be a curve of genus 2 defined over a number field k. Let σ : k → C
be an embedding and suppose that E is a restricted Weierstrass equation for C ⊗σ C. We write
ω1 = dx/(2y), ω2 = x dx/(2y), and η = ∆2

E(ω1 ∧ ω2)⊗20. Then χ10(ZE) 6= 0 and

log ‖η‖σ = 2 log(28π10|χ10(ZE)|det Im(ZE)
5).

Proof. We use Proposition 4.7 to compute

‖η‖2σ = |∆E |4σ(‖ω1 ∧ ω2‖2σ)20

= |∆E |4σ det

(
i

2π

∫
(C⊗σC)(C)

ωl ∧ ωm
)20

16l,m62

=
1

π40
|∆E |4σV (ΛE)

20

=
1

π40
232π80|χ10(ZE)|4 det(ImZE)

20;

here the second equality requires the definition (4.6), the next one is classical, cf. [GH78, ch. 2.2],
and the fourth one is Proposition 4.7.

Hence, ‖η‖σ = 216π20|χ10(ZE)|2 det(ImZ)10 and it follows in particular that χ10(ZE) 6= 0. 2
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4.4.2 Non-archimedean places.

Proposition 4.9. Let C be a curve of genus 2 defined over a number field k. Let ν be a finite
place of k at which Jac(C) has good reduction. If η is as in (4.4), then

ordν(η) =
1

3ι
max{0, ordν(J ι10J

−5
2ι )} =

1

3
ordν ∆0

min(C),

where ι = ι(ν) is as in (4.3) and where the J2, J6, J8, J10 are as in Theorem 4.5.

Proof. Let kunr
ν be the maximal unramified extension of kν inside a fixed algebraic closure of kν .

This is a strictly henselian field equipped with a discrete valuation whose ring of integers O has
an algebraically closed residue field. Thus, O satisfies the hypothesis needed for the references
below.

Recall that Jac(C ⊗k kunr
ν ) has good reduction by hypothesis; it has in particular semi-stable

reduction. So, the curve C⊗k kunr
ν has semi-stable reduction by Deligne and Mumford’s theorem

cited in the introduction. The minimal regular model f : Cmin → S of C ⊗k kunr
ν over S = SpecO is

semi-stable by [Liu02, Theorem 10.3.34(a)]. The canonical model Cst, obtained via a contraction
Cmin → Cst, is stable by part (b) of the same theorem [Liu02]. It is well known that exactly seven
geometric configurations can arise for the geometric special fibre of the stable model. They are
pictured in [Liu02, Example 10.3.6].

We infer from a theorem of Raynaud that the special fibre of Cst → S is either smooth or a
union of two elliptic curves meeting at a point; see the paragraph before [Liu93, Proposition 2].

Later on, we will consider these two cases separately. But first let us fix a Weierstrass equation
E : y2 +Qy = P for C ⊗k kunr

ν such that

ω1 =
dx

2y +Q
and ω2 =

x dx

2y +Q

constitute an O-basis of H0(Cmin, ωCmin/S); its existence is guaranteed by [Liu94, Proposition
2(a)].

Then
η = ∆2

E(ω1 ∧ ω2)⊗20 ∈ detH0(Cmin, ωCmin/S)⊗20

by the invariance under coordinate change mentioned after Theorem 4.5. The equation E is
minimal in Ueno’s sense [Liu94, Definition 1], and we use ordν(∆min) to denote the order of
Ueno’s minimal discriminant; cf. the same definition. Observe that this order is non-negative,
but may be less than the order of the minimal discriminant ∆0

min(C). By Proposition 3 and its
corollary, both in [Liu94], we find that

ord(η) = 2 ordν(∆min). (4.8)

First, let us suppose that the special fibre of the stable model is not smooth. Then we are
in [Liu93, case (V) of Théorème 1] and by [Liu93, Proposition 2] Cmin is of type [I0-I0-m] in
Namikawa and Ueno’s classification [NU73]. The value

m =
1

12ι
ordν(J ι10J

−5
2ι ) > 1, (4.9)

computed in part (v) of the proposition, is the thickness of the singular point in the special fibre
of Cst, see [Liu02, Definition 3.23]; here we used that I2 = J2/12, I6 = J6, and I8 = J8 as in Liu’s
paper [Liu93].
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The fibre of Cmin → Cst above the unique singular point is a chain of m − 1 copies of the

projective line. We shall use the Artin conductor of Cmin/S; see the introduction [Liu94] for a

definition. By [Liu94, Proposition 1],

−Art(Cmin/S) = m; (4.10)

indeed, the conductor mentioned in the reference has exponent 0 because Jac(C ⊗k kunr
ν ) has

good reduction at ν.

Saito proved in [Sai88, Theorem 1] that −Art(Cmin/S) equals the order of yet a further

discriminant attached to Cmin/S; its definition is given in [Sai88] and relies on unpublished work

of Deligne. Saito attributed this equality to Deligne in the semi-stable case, which covers our

application.

Proposition [Sai89] yields

ordν(∆min) = −Art(Cmin/S) +m = 2m; (4.11)

cf. also [Liu94, § 2.1]. Using this we can relate the section η to the Igusa invariants as follows:

ord(η) = 2 ordν(∆min) = 4m =
1

3ι
ordν(J ι10I

−5
2ι ), (4.12)

where the first equality used (4.8) and the last equality used (4.9). We obtain

ord(η) =
1

3ι
ordν(J ι10J

−5
2ι ) =

1

3ι
max{0, ordν(J ι10J

−5
2ι )} (4.13)

and hence the first equality of this proposition in the current case.

Next we apply a result of Liu to relate ord(η) to the order of the minimal discriminant

∆0
min(C). In Liu’s notation [Liu94], we have c(Cmin) = m. Théorème 2 of [Liu94] implies that

ordν(∆0
min(C)) = ordν(∆min) + 10m.

So, ordν(∆0
min(C)) = 12m by (4.11). The second equality in the assertion follows from (4.12).

Second, suppose that the special fibre of Cst is smooth. Using [Liu94], we find that the

Artin conductor of C/S vanishes. Just as near (4.11), we find that ordν(∆min) = 0 and thus

ordν(∆0
min(C)) = 0 as 0 6 ordν(∆0

min(C)) 6 ordν(∆min) holds in general by [Liu94, Proposition

2(d)]. Using (4.8), we conclude that ord(η) = 0. Théorème 1 of [Liu93], attributed to Igusa,

states that ordν(J−ι10 J
5
2ι) > 0 for all ι ∈ {1, 2, 3, 4, 5}. In particular, ordν(J ι10J

−5
2ι ) 6 0 and so the

proposition holds true in this case too. 2

4.4.3 Proof of Theorem 4.5. Since there is a k-rational Weierstrass point by hypothesis,

there is a restricted Weierstrass equation as in Proposition 4.8, with coefficients in k. Part (i)

of the theorem follows by studying the local contributions to the Faltings height. The infinite

places are handled by Proposition 4.8 and the finite places are dealt with by Proposition 4.9.

Observe that the Arakelov degree of η is 20 times the desired Faltings height of Jac(C).

Part (ii) is the second equality in Proposition 4.9.
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5. Archimedean estimates

5.1 Lower bounds for the Siegel modular form of weight 10 in degree 2
The contribution of the infinite places to the Faltings height in Theorem 4.5 involves the Siegel
modular form χ10 of weight 10 and degree 2 defined in (4.2). A lower bound for the modulus of
χ10 can be used to bound the height from below.

In this section the period matrix Z lies in Siegel’s fundamental domain F2 described in § 2.
The modular form χ10 vanishes at those elements

Z =

(
z1 z12

z12 z2

)
(5.1)

of F2 for which z12 vanishes and only at those; cf. [Kli90, the proof of Proposition 2, § 9]. They
correspond to abelian surfaces that are products of elliptic curves; thus, they are not jacobians
of genus 2 curves.

In the following lemmas we implicitly use techniques from the second-named author’s
work [Paz13] and obtain some minor numerical improvements. We will use a and b to denote
components of the even characteristic t(a, b) ∈ Z2 from § 4.4 and abbreviate

Tab =
{
n ∈ Z2 : ImQab(n) = min

m∈Z2
ImQab(m)

}
,

where Qab was defined in (4.1).

Lemma 5.1. For all n, n′ ∈ Tab, we have

eiπQab(n) = eiπQab(n
′).

Moreover, Tab is finite and

|θab(0, Z)| > 2#Tab · e−πminm∈Z2 ImQab(m) −
∑
n∈Z2

e−π ImQab(n).

Proof. This is [Paz13, Lemma 4.18]. 2

Lemma 5.2. If t(a, b) ∈ Θ1, i.e., a = 0, one has

|θab(0, Z)| > 0.44

for all Z ∈ F2.

Proof. This follows from [Paz13, Proposition 4.19]. 2

Lemma 5.3. If t(a, b) ∈ Θ2 with a 6= [0, 0] and a 6= [1/2, 1/2], one has

|θab(0, Z)| > 0.75e−π
ta ImZa.

Proof. This follows from [Paz13, Proposition 4.20]. 2

The crucial case is a= b= [1/2, 1/2] as the corresponding theta constant vanishes on diagonal
matrices in Siegel’s fundamental domain.
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Lemma 5.4. If t(a, b) = [1/2, 1/2, ν/2, ν/2] with ν ∈ {0, 1}, one has

|θab(0, Z)| > 1.12|1 + (−1)νeπiz12 |e−π(ta ImZa−Im z12).

Proof. This follows from [Paz13, Proposition 4.22] and from

2

(
2−

(∑
m>0

e−(π
√

3/4)m(m+1)(2m+ 1)

)2)
> 1.12. 2

Lemma 5.5. Let z be a complex number with |Re(z)| 6 π. Then

|eiz/2 + 1| > 1 and |eiz − 1| > (1− e−1) min{1, |z|}.

Proof. The first inequality follows from Re(eiz/2) > 0. For the second inequality, we note that

z 7→ (eiz − 1)/z is entire and does not vanish if |Re(z)| 6 π and z 7→ eiz − 1 does not vanish

if |Re(z)| 6 π and |z| > 1. By the maximum modulus principle applied to the reciprocals, we

deduce that the minimum of |eiz − 1|/min{1, |z|} subject to |Re(z)| 6 π is attained on |z| = 1 or

|Re(z)| = π. In the latter case the quotient is |e−Im(z) + 1| > 1, which is better than the claim.

Let us now suppose that |z| = 1. We assume that |t| < 1− e−1 with t = eiz − 1; this will lead to

a contradiction and will thus complete this proof. The logarithm log(1 + t) =
∑

n>1(−1)n+1tn/n

converges and satisfies elog(1+t) = 1 + t = eiz. So, log(1 + t) = iz + 2πik for an integer k. We

bound the modulus of log(1 + t) from above using the triangle inequality and obtain

|z + 2πk| = |iz + 2πik| 6
∑
n>1

|t|n
n

= −log(1− |t|) < −log(1− (1− e−1)) = 1.

This is impossible since |z| = 1. 2

The next proposition combines the previous lemmas.

Proposition 5.6. For any Z ∈ F2 as in (5.1), one has

|χ10(Z)| > c0 min{1, π|z12|}2e−2π(Tr(ImZ)−Im z12) > c0 min{1, π|z12|}2e−2πTr ImZ

with c0 = 8× 10−5.

Proof. We use Lemmas 5.2–5.4 in connection with the definition (4.2) to obtain

|χ10(Z)| > 0.448 · 0.758 · 1.124|eiπz12 + 1|2|eiπz12 − 1|2e4π Im z12
∏

t(a,b)∈Θ2

e−2πta ImZa.

Observe that |Re(z12)| 6 1/2. The first inequality in the assertion follows from this, Lemma 5.5

applied to 2πz12 and πz12, and since the product over Θ2 equals e−2π(Tr ImZ+Im z12). The second

inequality follows as Z ∈ F2 entails Im z12 > 0. 2
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5.2 Subconvexity

Let K be a number field. Say χ : ClK → C× is a character of the class group. We may also think

of χ as a Hecke character of conductor OK . The L-series attached to the character χ is

L(s, χ) =
∑
A

χ([A])

N(A)s
,

where here and below we sum over non-zero ideals A of OK .

It is well known that this Dirichlet series determines a meromorphic function on C with at

most a simple pole at s = 1 if χ is the trivial character.

The following subconvexity estimate follows from Michel and Venkatesh’s deep Theorem 1.1

[MV10].

Theorem 5.7. Let F be a totally real number field. There exist constants c1 > 0, N > 0, and

δ ∈ (0, 1/4) depending on F with the following property. If K/F is an imaginary quadratic

extension and χ : ClK → C× is a character, then

|L(1
2 + it, χ)| 6 c1(1 + |t|)N |∆K |1/4−δ.

The following lemma involves a well-known trick in analytic number theory; cf. work of Duke

et al. [ID02, p. 574]. We shift a contour integral into the critical strip and apply the subconvexity

result cited above.

Lemma 5.8. Let F be a totally real number field and let δ be from Theorem 5.7. There is a

constant c2 > 0 depending only on F with the following property. Say K is a totally imaginary

quadratic extension of F and let H be a coset of a subgroup of ClK . If ε ∈ (0, 1] and x = ε|∆K |1/2,

then

1

#H

∑
A

N(A)6x,[A]∈H

(
x

N(A)

)1/2

6 c2ε
1/2 max

{
1,
|∆K |1/2−δ/2

#H

}
. (5.2)

Proof. We fix a smooth test function f : (0,∞) → [0,∞) that satisfies

f(y) =

{
y−1/2 if y ∈ (0, 1],

0 if y > 2.
(5.3)

Its Mellin transform

f̃(s) =

∫ ∞
0

f(y)ys−1 dy

exists if Re(s) > 1/2 and the Mellin inversion formula holds; cf. [Coh07, Proposition 9.7.7].

Using in addition [Coh07, Theorem 9.7.5(4)], we see that f̃ decays rapidly; here this means that

if σ > 1/2 is fixed and N > 1, then |f̃(σ + it)|(1 + |t|)N is a bounded function in t ∈ R.

For a real number x > 0 and a character χ : ClK → C×, we define

S(x, χ) =
∑
A

χ([A])f

(
N(A)

x

)
. (5.4)

2563

https://doi.org/10.1112/S0010437X17007424 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X17007424


P. Habegger and F. Pazuki

The sum is finite since f vanishes at large arguments. If σ ∈ R, then
∫

(σ) signifies the integral

along the vertical line Re(s) = σ. The Mellin inversion formula leads to

S(x, χ) =
1

2πi

∑
A

χ([A])

∫
(2)
f̃(s)

(
x

N(A)

)s
ds =

1

2πi

∫
(2)
f̃(s)

(∑
A

χ([A])

N(A)s

)
xs ds;

the sum and the integral commute by the dominant convergence theorem. The inner sum is the
L-function L(s, χ) and hence

S(x, χ) =
1

2πi

∫
(2)
f̃(s)L(s, χ)xs ds.

LetH0 denote the translate ofH containing the unit element; it is a subgroup of ClK . Suppose
that χ is any character with χ|H0 = 1. The function |L(σ+ it, χ)| has at most polynomial growth
in the imaginary part t if σ ∈ (1/2, 1) is fixed. By a contour shift and by the decay property of
f̃ , we arrive at

S(x, χ) =
1

2πi

∫
(σ)
f̃(s)L(s, χ)xs ds+ ξ(χ)f̃(1)(Ress=1 ζK(s))x,

where ξ(χ0) = 1 for χ0 the trivial character and ξ(χ) = 0 if χ 6= χ0.
Here and below c3, c4, c5, c6, and c7 denote positive constants that depend only on F, f, δ,

and σ but not on K,χ, ε, or H.
Let hK denote the class number of K, RK the regulator of K, and ωK the number of roots

of unity in K. The residue of ζK at s = 1 is positive and at most c3hKRK/|∆K |1/2 by the
analytic class number formula. The unit groups of K and F have equal rank. As in the proof of
Lemma 3.11, we have RK 6 c4, where c4 may depend on F . Hence,

|S(x, χ)| 6 1

2π

∫
(σ)
|f̃(s)L(s, χ)|xσ ds+ c5ξ(χ)

hK

|∆K |1/2
x (5.5)

with c5 = c3c4|f̃(1)|.
Soon we will apply the Phragmén–Lindelöf principle, cf. [IK04, Theorem 5.53], to bound

|L(s, χ)| from above in terms of |L(1/2 + it, χ)| and |L(2 + it, χ)|; here s = σ + it. Indeed, the
bound |L(2+ it, χ)| 6 ζ(2)[K:Q] is elementary but to bound |L(1/2+ it, χ)| we need Theorem 5.7.
We abbreviate

l(σ) = 2
3(2− σ) (5.6)

whose graph linearly interpolates l(1/2) = 1 and l(2) = 0.
We suppose first that χ 6= χ0. Then L(·, χ) is an entire function and we may apply the

Phragmén–Lindelöf principle directly. So,

|L(σ + it, χ)| 6 c
l(σ)
1 ζ(2)[K:Q](1−l(σ))(1 + |t|)Nl(σ)|∆K |(1/4−δ)l(σ)

for all t ∈ R, where we may assume that c1 > 1. To treat the trivial character, we work with the
entire function L(s, χ)(s− 1). As |σ + it− 1| > 1− σ > 0, we obtain

|L(σ + it, χ0)| 6 1

1− σc
l(σ)
1 ζ(2)[K:Q](1−l(σ))(1 + |t|)Nl(σ)+1|∆K |(1/4−δ)l(σ),

where the additional 1 + |t| appears since |s− 1| 6 1 + |Im(s)| if Re(s) ∈ {1/2, 2}.
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In any case, we have |L(σ + it, χ)| 6 c6(1 − σ)−1(1 + |t|)Nl(σ)+1|∆K |(1/4−δ)l(σ) with c6 =
c1ζ(2)[K:Q]. Together with (5.5) and the decay property of f̃ , we obtain

|S(x, χ)| 6 c7

(
|∆K |(1/4−δ)l(σ)xσ + ξ(χ)

hK

|∆K |1/2
x

)
.

We substitute x = ε|∆K |1/2 to find

|S(x, χ)| 6 c7(|∆K |(1/4−δ)l(σ)+σ/2εσ + ξ(χ)hKε)

6 c7ε
1/2(|∆K |(1/4−δ)l(σ)+σ/2 + ξ(χ)hK), (5.7)

where we used ε 6 εσ 6 ε1/2 as σ ∈ (1/2, 1) and ε ∈ (0, 1].
We consider the mean

S(x) =
1

[ClK : H0]

∑
χ|H0

=1

χ(H)S(x, χ) (5.8)

over all characters χ of ClK that are constant on H. Since χ takes values on the unit circle, we
may bound

|S(x)| 6 [ClK : H0]− 1

[ClK : H0]
max{|S(x, χ)| : χ|H0 = 1 and χ 6= χ0}+

|S(x, χ0)|
[ClK : H0]

.

We observe that [ClK : H0] = hK/#H0. The bound (5.7) yields

|S(x)| 6 c7ε
1/2(|∆K |(1/4−δ)l(σ)+σ/2 + #H0). (5.9)

We insert the finite sum (5.4) into (5.8) and rearrange the order of summation to obtain

S(x) =
1

[ClK : H0]

∑
A

( ∑
χ|H0

=1

χ(H)χ([A])

)
f

(
N(A)

x

)
.

For χ from the inner sum, we have χ(H)χ([A]) = χ([B]) for a fractional ideal B with [AB−1] ∈H.
But

∑
χ|H0

=1 χ([B]) equals [ClK : H0] if [B] ∈ H0 and 0 otherwise. Hence,

S(x) =
∑
A

[A]∈H

f

(
N(A)

x

)
>

∑
A

N(A)6x,[A]∈H

f

(
N(A)

x

)
=

∑
A

N(A)6x,[A]∈H

(
x

N(A)

)1/2

as f is non-negative and by (5.3). We divide by #H = #H0 and use (5.9) to obtain

1

#H

∑
A

N(A)6x,[A]∈H

(
x

N(A)

)1/2

6 c7ε
1/2

( |∆K |(1/4−δ)l(σ)+σ/2

#H
+ 1

)
.

The lemma follows as we may fix σ ∈ (1/2, 1) with (1/4− δ)l(σ) + σ/2 6 1/2− δ/2. 2

Next we state two simple consequences of the previous proposition that we need for our
main result. Recall that the norm N([A]) of an ideal class in [A] ∈ ClK is the smallest norm of a
representative.
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Proposition 5.9. Let F and δ be as in Lemma 5.8. There is a constant c8 > 0 depending only

on F with the following property. Say K is a totally imaginary quadratic extension of F and let

H be a coset of a subgroup of ClK ; then the following two properties hold.

(i) We have

1

#H

∑
[A]∈H

( |∆K |1/2
N([A−1])

)1/2

6 c8 max

{
1,
|∆K |1/2−δ/2

#H

}
.

(ii) Let ε ∈ (0, 1]; then

1

#H
#{[A] ∈ H : N([A−1]) 6 ε|∆K |1/2} 6 c2ε

1/2 max

{
1,
|∆K |1/2−δ/2

#H

}
.

Proof. Let d = [K : Q]. By a theorem of Minkowski, any ideal class of K is represented by an

ideal whose norm is at most ε|∆K |1/2, where ε = (d!/dd)(4/π)r2 and 2r2 is the number of non-real

embeddings K → C. It is well known that ε 6 1. Part (i) follows from Lemma 5.8 applied to

x = ε|∆K |1/2 and to the coset H−1 since ε depends only on F .

Part (ii) follows from Lemma 5.8 applied to H−1 since the terms in the sum on the left of

(5.2) are at least 1. 2

In our application, the coset H will generally have more than |∆K |1/2−δ/2 elements. In this

case, the upper bound in part (i) simplifies to c8, which depends only on F . Also, if ε is sufficiently

small in part (ii), then we find that only a small proportion of elements of H−1 will have norm

less than ε|∆K |1/2. Geometrically speaking, these ideal classes correspond to Galois conjugates

of a CM abelian variety that lie close to the cusp in the moduli space. So, only a small proportion

of said conjugates are near the cusp.

6. Proof of the theorems

We begin this section by proving Theorems 1.3 and 1.4.

Let F be a real quadratic field. We fix representatives ηm ∈ P1(F ) of cusps of Γ̂(D−1
F/Q)\H2

as in § 3.1. In particular, η1 =∞. We will work with a parameter ε ∈ (0, 1] that depends only on

F and a second parameter κ ∈ (0, 1] that depends only on F and ε. We regard κ as small with

respect to ε. We will see how to fix these parameters in due course.

Let C be as in Theorem 1.4 and suppose that k ⊆ C is a number field over which C is defined

which we will increase at will. Let K be the CM field of Jac(C). We may suppose that k ⊇ K.

As discussed in greater detail in the introduction, the basic strategy is to let the lower

bound coming from Proposition 4.3 compete with an upper bound of the Faltings height. To

estimate the Faltings height from above we need its expression in Corollary 4.6. Observe that

this corollary is applicable as, after possibly increasing k, the classical theorem of Serre and Tate

[ST68] states that the CM abelian variety Jac(C) has good reduction everywhere. We will show

that the archimedean contribution to the Faltings height is negligible when compared to the

non-archimedean contribution. We use notation introduced in Theorem 4.5 and Corollary 4.6.

Observe that k satisfies the hypothesis of the theorem after passing to a finite field extension. By

part (ii) of the theorem, the normalised norm in (1.4) does not change after passing to a further

finite extension of k. This settles the last statement of Theorem 1.4.
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We thus decompose h(Jac(C)) = h0 + h∞1 + h∞2 + h∞3 + h∞4 − 4
5 log 2− log π, where

h0 =
1

[k : Q]

∑
ν∈M0

k

1

60
log N(∆0

min(C))

is the finite part and

h∞1 + h∞2 + h∞3 + h∞4 = − 1

[k : Q]

∑
σ:k→C

1

10
log(|χ10(Zσ)|det(ImZν)5); (6.1)

here the single h∞m for m ∈ {1, 2, 3, 4} are determined as follows.
Shimura’s theorem 3.9 describes the period matrices coming from a Galois orbit that fixes

the reflex field K∗. Observe that K∗ = K by Lemma 3.10 because K/Q is cyclic. So, (6.1) holds,
where each

h∞m = − 1

10#NΦm(ClK)

∑
[A]∈NΦm (ClK)[Bm]

log(|χ10(ZA)|det(ImZA)5) (6.2)

corresponds to one of the four cosets of Aut(C/K) in Aut(C/Q); here Φm is a CM type of K and
Bm ⊆ OK is a fractional ideal. Observe that the terms on the right of (6.2) do not depend on
the choice of a representative A ∈ [A]. Indeed, we already observed that Z 7→ |χ10(Z)|det(ImZ)5

is Sp4(Z)-invariant in § 4.4.
For any A as in the sum (6.2), Proposition 3.3 provides τA with Φm(τA) in the fundamental

set F(D−1
F/Q) from § 3.1. The period matrices ZA are as described in (3.20).

Later on we will show that there exists c(ε, F ) > 0 depending only on ε and F such that

h∞m 6 ε1/2 log ∆K + c(ε, F ) for each 1 6 m 6 4. (6.3)

Our Theorem 1.4 follows from this inequality and from Proposition 4.3.
But also Theorem 1.3 follows from (6.3) after adjusting ε. Indeed, the archimedean

contribution to the Faltings height of Jac(C) is invariant under replacing the field of definition
by a finite extension; so the extensions of k made before are harmless.

Of course, all m can be treated in a similar manner. So, we simplify notation by abbreviating
h∞ = h∞m , writing H for NΦm(ClK)[Bm] and Φ for the CM type Φm. Observe that H is a coset
in the class group ClK .

In this new notation, we have

h∞ = − 1

10#H

∑
[A]∈H

log(|χ10(ZA,red)|det(ImZA,red)5),

where ZA,red ∈ F2 is in the Sp4(Z)-orbit of ZA.
Below, c1, c2, . . . , c8 denote positive constants that depend only on the real quadratic field F .
Taking the sign in h∞ into account, we would like to bound each logarithm in h∞ from below

using Proposition 5.6. If zA,12 is the off-diagonal entry of the Siegel reduced matrix ZA,red, then
zA,12 6= 0. Indeed, otherwise ZA,red is diagonal. But this is impossible because Jac(C) is not a
product of elliptic curves due to the fact that K/Q is cyclic; see [BL04, Corollary 11.8.2] and
Lemma 3.10. Another way to see that zA,12 6= 0 is by noting that χ10 restricted to F2 vanishes
only on diagonal matrices and by using the proof of Proposition 4.8. By Proposition 5.6, we
obtain

h∞ 6 c1 +
1

10#H

∑
[A]∈H

(log max{1, |zA,12|−2}+ 2πTr(ImZA,red)− 5 log det(ImZA,red)).
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Since ZA,red is Siegel reduced, we have det(ImZA,red) > c2. So, the average value of the quantity
−log det(ImZA,red) is bounded from above uniformly. After possibly increasing c1, we find

h∞ 6 c1 +
1

10#H

∑
[A]∈H

(log max{1, |zA,12|−2}+ 2πTr(ImZA,red)).

Next we use Lemma 3.6(i) to bound each Tr(ImZA,red) from above to get

h∞ 6 c1 + c3
1

#H

∑
[A]∈H

(
log max{1, |zA,12|−1}+

(
∆

1/2
K

N([A−1])

)1/2)
.

We continue by tackling the terms ∆
1/2
K /N([A−1]). The trivial bound that follows from

N([A−1]) > 1 is of little use here as it leads to an upper bound for h∞ of the magnitude ∆
1/4
K .

When compared with the logarithmic lower bound coming from Proposition 4.3, this is not good
enough to conclude (6.3). We need the subconvexity bound. Proposition 5.9(i) combined with the

lower bound for #H from Lemma 3.11 implies that the average contribution of (∆
1/2
K /N(A))1/2

is bounded from above. Thus,

h∞ 6 c4 + c3
1

#H

∑
[A]∈H

log max{1, |zA,12|−1}. (6.4)

Recall that zA,12 is a non-zero algebraic number of absolute logarithmic Weil height at most
H(ZA,red). As K/Q is Galois, we conclude that [Q(zA,12) : Q] 6 4 using the expression (3.20).
The fundamental inequality of Liouville found in [BG06, 1.5.19] thus implies that |zA,12| >
H(ZA,red)−4. The height of this reduced period matrix is bounded from above polynomially in
∆K by Lemma 3.8. Therefore, taking the logarithm yields

log |zA,12| > −c5 log ∆K . (6.5)

We use this inequality to bound from above the terms in (6.4) for which τA is close to one of the
cusps, i.e., maxm µ(ηm,Φ(τA)) > c6ε

−1 with c6 = c the constant from Lemma 3.6(ii). We have

h∞ 6 c4 + c5

(
1

#H

∑
maxm µ(ηm,Φ(τA))>c6ε−1

1

)
log ∆K + c5

1

#H

∑
(∗)

log max{1, |zA,12|−1},

where (∗) abbreviates the condition maxm µ(ηm,Φ(τ)) 6 c6ε
−1 here and in the sums below.

Observe that being close to a cusp entails N([A−1]) < ε∆
1/2
K by Lemma 3.6(ii). Part (ii) of

Proposition 5.9 tells us that not too many τA are close to a cusp. We obtain

h∞ 6 c4 + c7ε
1/2 max

{
1,

∆
1/2−δ/2
K

#H

}
log ∆K + c5

1

#H

∑
(∗)

log max{1, |zA,12|−1}.

We apply Lemma 3.11 again to bound ∆
1/2−δ/2
K /#H from above. Thus,

h∞ 6 c4 + c7ε
1/2 log ∆K + c5

1

#H

∑
(∗)

log max{1, |zA,12|−1}.

It remains to bound the sum on the right. If some |zA,12| is small, then the corresponding
conjugate of Jac(C) is close to a product of elliptic curves in the appropriate coarse moduli
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space. To measure this proximity we require the second parameter κ ∈ (0, 1]. We split the upper

bound for h∞ up into a subsum where |zA,12| > κ holds and one where it does not. The first

subsum is at most |log κ| and so

h∞ 6 c4 + c7ε
1/2 log ∆K + c5|log κ|+ c5

#H

∑
(∗)

|zA,12|6κ

(−log |zA,12|).

We use (6.5) again to obtain

h∞ 6 c8(1 + |log κ|) + c8

(
ε1/2 +

1

#H

∑
(∗)

|zA,12|6κ

1

)
log ∆K . (6.6)

To conclude, we must bound the remaining sum in (6.6). So, say [A] corresponds to one of

its terms. The property (∗) implies that Φ(τA) is bounded away from all cusps. So, Φ(τA) lies in

a compact subset K of H2, cf. Proposition 3.1, which depends only on ε. Being bounded away

from the cusps entails that reducing ZA to ZA,red requires only a finite subset of Sp4(Z). Indeed,

we apply Lemma 3.7 to M = c6ε
−1 to obtain a finite set Σ ⊆ Sp4(Z), which depends only on c6

and ε, such that ZA,red = γZA for some γ ∈ Σ. Therefore,

ZA ∈
⋃
γ∈Σ

γ−1A(κ),

where

A(κ) =

{(
z1 z12

z12 z2

)
∈ F2 : |z12| 6 κ

}
.

Each A(κ) is closed in Mat2(C) and
⋂
κ>0A(κ) contains only diagonal elements.

We can reconstruct Φ(τA) from ZA as follows. The expression (3.20) determines #O×F,+/(O×F )2

holomorphic mappings H2
→ H2. So, Φ(τA) lies in the pre-image of

⋃
γ∈Σ γ

−1A(κ) under one

of them. Recall that Φ(τA) lies in the compact set K. As κ → 0, the hyperbolic measure of the

intersection of the said pre-image and K tends to 0.

Galois orbits are equidistributed by Zhang’s Corollary 3.3 [Zha05] and [MV10, Theorem 1.2]

by Michel and Venkatesh. In particular,

lim sup
∆K→+∞

1

#H
#
{
τA : [A] ∈ H and max

m
µ(ηm,Φ(τA)) 6 c6ε

−1 and |zA,12| 6 κ
}

is bounded above by an expression that tends to 0 as κ → 0. We fix κ sufficiently small in terms

of ε such that this limit superior is at most ε1/2.

We can now continue bounding (6.6) from above. If ∆K is sufficiently large with respect to

ε, then the number of terms in the sum is at most 2ε1/2#H by the last paragraph. Therefore,

h∞ 6 c8(1 + |log κ|+ 3ε1/2 log ∆K).

If ∆K is not large enough, we have a similar bound with a possibly larger c8. We have thus

verified the inequality (6.3) and therefore Theorem 1.4. 2
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Proof of Theorem 1.1. We have seen essentially the same argument in the introduction; let us

repeat it here again. Let F and C be as in the theorem. Then we take C as defined over a

sufficiently large number field k with ∆0
min(C) = Ok. If K is the CM field of Jac(C), then its

discriminant ∆K is bounded from above by a constant depending only on F by Theorem 1.4.

By the theorem of Hermite–Minkowski, there are only finitely many possibilities for K. As there

are only finitely many abelian surfaces over Q with CM by the maximal order of K, this leaves

at most finitely many possibilities for Jac(C) as an abelian variety. But each abelian variety,

such as Jac(C), carries only finitely many principal polarisations up to equivalence; this follows

from the general Narasimhan–Nori theorem, or from more elementary considerations as Jac(C)

is simple, or in a direct way using the arguments in § 3.2. Thus, up to Q-isomorphism, there are

only finitely many possibilities for Jac(C) as a principally polarised abelian variety. By Torelli’s

theorem this leaves only finitely many Q-isomorphism classes for the curve C. 2
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Appendix A. Numerical examples

In this section we provide some numerical examples for our expression of the Faltings height in

Theorem 4.5. We will approximate |χ10(Zν)|det Im(Zv)
5 numerically and compare the resulting

sum with the conclusion of Colmez’s conjecture, Proposition 4.3(iii).

Let K be a CM field that is a quartic, cyclic extension of Q and has maximal totally real

subfield F . Let A be an abelian surface defined over a number field whose endomorphism ring

is OK .

First we describe how to compute L′(0)/L(0), where L is as in Proposition 4.3. For this,

let fK > 1 be the finite part of the conductor of K/Q. In other words, fK is the least positive

integer such that K is a subfield of the cyclotomic field generated by a root of unity of order fK .

Recall that ∆K > 0, as K/Q is a CM field of degree 4, and ∆F > 0, since F/Q is real quadratic.

By [Neu99, Propositions 11.9 and 11.10, ch. VII], we have

∆K = f2
K∆F . (A 1)

The L-function L(s) = ζK(s)/ζF (s) is a product L(s, χ)L(s, χ) of Dirichlet L-functions for

some character χ : (Z/fKZ)× → C of order 4. If (Z/fKZ)× is cyclic, e.g., if fK is a prime, then

χ is uniquely determined up to complex conjugation.

We use (A 1) and Proposition 4.3(iii) to compute

h(A) = −1

2
log fK − Re

L′(0, χ)

L(0, χ)
.
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Observe that χ is an odd character. Corollary 10.3.2 and Proposition 10.3.5(1) of Cohen
[Coh07] allow us to compute L(0, χ) and L′(0, χ), respectively. We find

h(A) =
1

2
log fK + fK Re

(∑fK−1
m=1 χ(m) log Γ(m/fK)∑fK−1

m=1 χ(m)m

)
, (A 2)

where Γ(·) is the gamma function.
To compute the Igusa invariants J2, J4, J6, J8, J10 of a hyperelliptic equation, we use the

pari/gp package of Rodriguez–Villegas, based on work of Mestre and Liu. We used the same
software to determine the places of potentially good reduction for the curves listed below.

We consider three curves of genus 2 defined over the rationals. The first quite obviously has
a jacobian variety with CM. Van Wamelen [vWa99a, vWa99b] verified this in the remaining
two cases. The source of the CM fields K in the second and third examples is van Wamelen’s
table [vWa99a]. For examples 2 and 3, van Wamelen does not prove that the endomorphism ring
is the full ring of integers of K. But equality is compatible with our computations below. We use
the symbol =̇ to denote conditional equality, subject to the hypothesis that the endomorphism
ring of the jacobian under consideration is indeed the full ring of integers of the CM field. In all
three cases, K has trivial class group.

Example A.1. We consider the curve C defined by

y2 = x5 − 1.

Let ζ = e2πi/5 be a primitive 5th root of unity. Then (x, y) 7→ (ζx, y) is a automorphism of C
of order 5 defined over the cyclotomic field K = Q(ζ). So, the endomorphism ring of Jac(C)
over the algebraic closure contains Z[ζ] = OK . The two must be equal. Observe that F = Q(

√
5)

is the maximal totally real subfield of K and fK = 5. As a character χ near (A 2), we take for
example χ(1) = 1, χ(2) = i, χ(3) = −i, χ(4) = −1. So,

h(Jac(C)) = 1
2 log 5 + 1

2 log(Γ(1
5)−3Γ(2

5)−1Γ(3
5)Γ(4

5)3) = −1.4525092396456 . . . . (A 3)

Bost et al. [BMM90] computed this Faltings height using a different approach to be

h(Jac(C)) = 2 log 2π − 1
2 log(Γ(1

5)5Γ(2
5)3Γ(3

5)Γ(4
5)−1).

This expression equals (A 3) by classical properties of the gamma function.
The Igusa invariants of C are

(J2, J4, J6, J8, J10) = (0, 0, 0, 0, 2−12 · 54).

So, there is no contribution to the finite places in Theorem 4.5. In fact, C has potentially good
reduction everywhere. This was already observed by Bost et al.

The different ideal DF/Q equals
√

5OF . If ω1 = 1 and ω2 =
√

5ζ, then

ω1OF + ω2D
−1
F/Q = OF + ζOF = OK .

The period matrix of OK can be computed using Remark 3.4 with θ = (5 +
√

5)/2,

τ1 =
√

5ζ and τ2 = −
√

5ζ3
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as

Z =

√5
−1

(ζ − ζ3) −1− ζ 1 +
√

5

2

−1− ζ 1 +
√

5

2
2
√

5ζ +
5 +
√

5

2

 .

We observe that det Im(Z) =
√

5/4 and use a computer to approximate

− 1
10 log(|χ10(Z)|det Im(Z)5) = 0.246738390651711 . . . .

We add −log(24/5π) in accordance with Theorem 4.5 and find that the sum approximates (A 3)
up to the displayed digits.

Example A.2. The second example concerns the new curve C

y2 = −103615x6 − 41271x5 + 17574x4 + 197944x3 + 67608x2 − 103680x− 40824.

The endomorphism ring of the jacobian Jac(C) has complex multiplication by the ring of

algebraic integers in K = Q(
√
−61 + 6

√
61). The real quadratic subfield of K is F = Q(

√
61).

We have ∆K = 613 and ∆F = 61, so the conductor of K is fK = 61. Now DF/Q =
√

61OF .
Let χ : (Z/61Z)× → C× be the character of order 4 with χ(2) = i; observe that 2 generates
(Z/61Z)×. Then

60∑
m=1

χ(m)m = −61(1− i)

and so

h(Jac(C)) =̇
1

2
log 61− 1

2

60∑
m=1

Re(χ(m)(1 + i)) log Γ

(
m

61

)
= 0.2688651723313 . . . (A 4)

by (A 2).
The Igusa invariants satisfy

J5
8

J4
10

= −240 · 3−91 · 5−48 · 41−48 · 6435 · 18715 · 197802923306762502646309935,

J5
6

J3
10

= 225 · 3−72 · 5−36 · 75 · 41−36 · 4875 · 34495 · 34675 · 424885335911995, (A 5)

and
J5

2

J10
= −225 · 3−19 · 5−12 · 715 · 41−12 · 390795. (A 6)

The quotient (A 5) yields the contribution of 3 to the Faltings height and (A 6) the contributions
of 5 and 41. Explicitly, the finite contribution to h(Jac(C)) as in Theorem 4.5 is

2
5 log 3 + 1

5 log 5 + 1
5 log 41. (A 7)

Our curve has potentially good reduction away from 3, 5, and 41.
We fix roots τ1, τ2 ∈ H of x4−61x3 + 6039x2−137677x+ 889319. They are suitable diagonal

elements as in Remark 3.4 and can be used to construct a period matrix Z with θ = (61+
√

61)/2.
We approximate

− 1
10 log(|χ10(Z)|det Im(Z)5) = 0.464065891333779 . . . .

We add (A 7) and −log(24/5π) from Theorem 4.5 to this value and see that the resulting value
approximates (A 4) well.

2572

https://doi.org/10.1112/S0010437X17007424 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X17007424


Bad reduction and CM jacobians

Example A.3. Our final example has bad reduction above 2. Let C be given by

y2 = −x5 + 3x4 + 2x3 − 6x2 − 3x+ 1.

The endomorphism ring of Jac(C) is the ring of integers in K = Q(
√
−2 +

√
2) which contains

F = Q(
√

2). We have ∆K = 211,∆F = 23, and fK = 24. We must take slightly more care when

finding χ as (Z/16Z)× ∼= Z/4Z× Z/2Z is not cyclic and admits four characters of order 4. The

kernel of χ we are interested in corresponds to the fixed field ofK in the number field generated by

a root of unity of order 16. The non-trivial element in kerχ ⊆ (Z/16Z)× is represented by 7, 9, or

−1. However, a2 ≡ 1 or 9 mod 16 if a is odd. This rules our 9 as a representative because K/Q is

cyclic of order 4. Moreover, −1 is also impossible because it represents complex conjugation in the

Galois group. This leaves 7, i.e., χ(7) = 1. We must have χ(15) = −1 and χ(9) = χ(7 · 15) = −1.

Again up to complex conjugation there are at most two choices for χ. As χ(3) = χ(3 · 7) = χ(5),

one choice is
m 1 3 5 7 9 11 13 15

χ(m) 1 i i 1 −1 −i −i −1
.

Thus,
15∑
m=1

χ(m)m = −16(1 + i)

and so

h(Jac(C)) =̇ log 4 +
1

2
log

(
Γ( 9

16)Γ(11
16)Γ(13

16)Γ(15
16)

Γ( 1
16)Γ( 3

16)Γ( 5
16)Γ( 7

16)

)
by (A 2). Numerically, we find

h(Jac(C)) =̇ −1.2016102497487 . . . . (A 8)

The Igusa invariants satisfy

J5
8

J4
10

= −2−24 · 310 · 20295,
J5

6

J3
10

= 2−8 · 35 · 475, and
J5

2

J10
= 24 · 315.

So, only 2 contributes to the finite part of the height in Theorem 4.5. In fact, C has potentially

good reduction outside of 2. The contribution to the finite part is

1
10 log 2.

We can take

τ1 = 2

√
−2 +

√
2
√

2 and τ2 = 2

√
−2−

√
2
√

2

to construct Z, now with θ = (2 +
√

2)/2, and find

− 1
10 log(|χ10(Z)|det Im(Z)5) = 0.428322662492607 . . . .

We must add (log 2)/10 to this value to compensate for bad reduction and −log(24/5π) due to

the normalisation of the archimedean places. We end up with a good match with (A 8).
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Études Sci. Publ. Math. 36 (1969), 75–109.

Fal83 G. Faltings, Endlichkeitssätze für abelsche Varietäten über Zahlkörpern, Invent. Math. 73
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