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Abstract

Given E ⊆ Fd
q × Fd

q , with the finite field Fq of order q and the integer d ≥ 2, we define the two-parameter
distance set Δd,d(E) = {(‖x − y‖, ‖z − t‖) : (x, z), (y, t) ∈ E}. Birklbauer and Iosevich [‘A two-parameter
finite field Erdős–Falconer distance problem’, Bull. Hellenic Math. Soc. 61 (2017), 21–30] proved that
if |E| � q(3d+1)/2, then |Δd,d(E)| = q2. For d = 2, they showed that if |E| � q10/3, then |Δ2,2(E)| � q2.
In this paper, we give extensions and improvements of these results. Given the diagonal polynomial
P(x) =

∑d
i=1 aixs

i ∈ Fq[x1, . . . , xd], the distance induced by P over Fd
q is ‖x − y‖s := P(x − y), with the

corresponding distance set Δs
d,d(E) = {(‖x − y‖s, ‖z − t‖s) : (x, z), (y, t) ∈ E}. We show that if |E| � q(3d+1)/2,

then |Δs
d,d(E)| � q2. For d = 2 and the Euclidean distance, we improve the former result over prime fields

by showing that |Δ2,2(E)| � p2 for |E| � p13/4.
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1. Introduction

The general Erdős distance problem is to determine the number of distinct distances
spanned by a finite set of points. In the Euclidean space, it is conjectured that for
any finite set E ⊂ Rd, d ≥ 2, we have |Δ(E)| � |E|2/d, where Δ(E) = {‖x − y‖ : x, y ∈ E}.
Here and throughout, X � Y means that there exists C > 0 such that X ≤ CY , and
X � Y with the parameter N means that for any ε > 0, there exists Cε > 0 such that
X ≤ CεNεY .

The finite field analogue of the distance problem was first studied by Bourgain et al.
[2] over prime fields. In this setting, the Euclidean distance between any two points x =
(x1, . . . , xd), y = (y1, . . . , yd) ∈ Fd

q, the d-dimensional vector space over the finite field
Fq of order q, is ‖x − y‖ = ∑d

i=1(xi − yi)2 ∈ Fq. For prime fields Fp with p ≡ 1 (mod 4),
they showed that if E ⊂ F2

p with |E| = pδ for some 0 < δ < 2, then the distance set
satisfies |Δ(E)| � |E|1/2+ε for some ε > 0 depending only on δ.
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[2] The Erdős–Falconer distance problem 503

This bound does not hold in general for arbitrary finite fields Fq, as shown by
Iosevich and Rudnev [9]. In this general setting, they considered the Erdős–Falconer
distance problem to determine how large E ⊂ Fd

q needs to be so that Δ(E) spans all
possible distances or at least a positive proportion of them. More precisely, they proved
that Δ(E) = Fq if |E| > 2q(d+1)/2 in the all distances case, and also conjectured that
|Δ(E)| � q if |E| �ε qd/2+ε in the positive proportion case. In [6], it was shown that
the exponent in the all distances case is sharp for odd d, and the conjecture for the
positive proportion case holds for all E ⊂ {x ∈ Fd

q : ‖x‖ = 1}. It is conjectured that in
even dimensions, the optimal exponent is d/2 for the all distances case. In particular
for d = 2, it was shown in [3] that if E ⊆ F2

q satisfies |E| � q4/3, then |Δ(E)| � q,
improving the positive proportion case. The proofs in [3] use extension estimates for
circles. Therefore, one would expect to get improvements for distance problems if one
can obtain improved estimates for extension problems.

There have been a recent series of other improvements and generalisations on
the Erdős–Falconer distance problem. In [7], a generalisation for subsets of regular
varieties was studied. Extension theorems and their connection to the Erdős–Falconer
problem are the main focus of [10]. The exponents (d + 1)/2 and d/2 were improved
in [13, 14] for subsets E with Cartesian product structure in the all distances case for
|Δ(E)| and in the positive proportion case for the quotient distance set |Δ(E)/Δ(E)|.

A two-parameter variant of the Erdős–Falconer distance problem for the Euclidean
distance was studied by Birklbauer and Iosevich in [1]. More precisely, given E ⊆
F

d
q × Fd

q, where d ≥ 2, define the two-parameter distance set as

Δd,d(E) = {(‖x − y‖, ‖z − t‖) : (x, z), (y, t) ∈ E} ⊆ Fq × Fq.

They proved the following results.

THEOREM 1.1 [1]. Let E be a subset in Fd
q × Fd

q. If |E| � q(3d+1)/2, then |Δd,d(E)| = q2.

THEOREM 1.2 [1]. Let E be a subset in F2
q × F2

q. If |E| � q10/3, then |Δ2,2(E)| � q2.

In this short note, we provide an extension and an improvement of these results.
Unlike [1], which relies heavily on Fourier analytic techniques, we use an elementary
counting approach.

Let P(x) =
∑d

i=1 aixs
i ∈ Fq[x1, . . . , xd] be a fixed diagonal polynomial in d variables

of degree s ≥ 2. For x = (x1, . . . , xd), y = (y1, . . . , yd) ∈ Fd
q, we introduce

‖x − y‖s := P(x − y) =
d∑

i=1

ai(xi − yi)s ∈ Fq.

For any set E ⊂ Fd
q × Fd

q, define

Δs
d,d(E) = {(‖x − y‖s, ‖z − t‖s) : (x, z), (y, t) ∈ E} ∈ Fq × Fq.

Our first result reads as follows.
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THEOREM 1.3. Let E be a subset in Fd
q × Fd

q. If |E| � q(3d+1)/2, then |Δs
d,d(E)| � q2.

Our method also works for the multi-parameter distance set for E ⊆ Fd1+···+dk
q , but we

do not discuss such extensions here. For d = 2, we get an improved version of Theorem
1.2 for the Euclidean distance function over prime fields.

THEOREM 1.4. Let E ⊆ F2
p × F2

p. If |E| � p13/4, then |Δ2,2(E)| � p2.

The continuous versions of Theorems 1.3 and 1.4 have been studied in [4, 5, 8]. We
do not know whether our method can be extended to that setting. It follows from our
approach that the conjectured exponent d/2 of the (one-parameter) distance problem
would imply the sharp exponent for the two-parameter analogue, namely 3d/2, for
even dimensions. We refer to [1] for constructions and more discussions.

2. Proof of Theorem 1.3

By using the following auxiliary result whose proof relies on Fourier analytic
methods (see [15, Theorem 2.3] and [11, Corollaries 3.1 and 3.4]), we are able to
give an elegant proof for Theorem 1.3. Compared with the method in [1], ours is more
elementary.

LEMMA 2.1. Let X, Y ⊆ Fd
q. Define Δs(X, Y) = {‖x − y‖s : x ∈ X, y ∈ Y}. If |X||Y | �

qd+1, then |Δs(X, Y)| � q.

PROOF OF THEOREM 1.3. By assumption, |E| ≥ Cqd+(d+1)/2 for some constant C > 0.
For y ∈ Fd

q, let Ey := {x ∈ Fd
q : (x, y) ∈ E} and define

Y :=
{
y ∈ Fd

q : |Ey| > 1
2 Cq(d+1)/2}.

We first show that |Y | ≥ 1
2 Cq(d+1)/2. Note that

|E| =
∑

y∈Y
|Ey| +

∑

y∈Fd
q\Y

|Ey| ≤ qd |Y | +
∑

y∈Fd
q\Y

|Ey|,

where the last inequality holds since |Ey| ≤ qd for y ∈ Fd
q. Combining it with the

assumption on |E| gives the lower bound
∑

y∈Fd
q\Y

|Ey| ≥ Cqd+(d+1)/2 − qd |Y |.

However, by definition, |Ey| ≤ 1
2 Cq(d+1)/2 for y ∈ Fd

q \ Y , yielding the upper bound
∑

y∈Fd
q\Y

|Ey| ≤
1
2

Cqd+(d+1)/2.

These two bounds together give Cqd+(d+1)/2 − qd |Y | ≤ 1
2 Cqd+(d+1)/2, proving the

claimed bound |Y | ≥ 1
2 Cq(d+1)/2.
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[4] The Erdős–Falconer distance problem 505

In particular, Lemma 2.1 implies |Δs(Y , Y)| � q, as |Y ||Y | � qd+1. However, for
each u ∈ Δs(Y , Y), there are z, t ∈ Y such that ‖z − t‖s = u. One has |Ez|, |Et | � q(d+1)/2,
therefore, again by Lemma 2.1, |Δs(Ez, Et)| � q. Furthermore, for v ∈ Δs(Ez, Et), there
are x ∈ Ez and y ∈ Et satisfying ‖x − y‖s = v. Note that x ∈ Ez and y ∈ Et mean that
(x, z), (y, t) ∈ E. Thus, (v, u) = (‖x − y‖s, ‖z − t‖s) ∈ Δs

d,d(E). From this, we conclude
that |Δs

d,d(E)| � q|Δs(Y , Y)| � q2, which completes the proof. �

3. Proof of Theorem 1.4

To improve the exponent over prime fields Fp, we strengthen Lemma 2.1 as shown
in Lemma 3.1 below. Following the proof of Theorem 1.3 and using Lemma 3.1 proves
Theorem 1.4.

LEMMA 3.1. Let X, Y ⊆ F2
p. If |X|, |Y | � p5/4, then |Δ(X, Y)| � p.

PROOF. It is clear that if X′ ⊆ X and Y ′ ⊆ Y , then Δ(X′, Y ′) ⊆ Δ(X, Y). Thus, without
loss of generality, we may assume that |X| = |Y | = N with N � p5/4. Let Q be the
number of quadruples (x, y, x′, y′) ∈ X × Y × X × Y such that ‖x − y‖ = ‖x′ − y′‖. It
follows easily from the Cauchy–Schwarz inequality that

|Δ(X, Y)| � |X|
2|Y |2
Q

.

Let T be the number of triples (x, y, y′) ∈ X × Y × Y such that ‖x − y‖ = ‖x − y′‖. By
the Cauchy–Schwarz inequality again, one gets Q � |X| · T . Next, we need to bound
T. For this, denote Z = X ∪ Y , so that N ≤ |Z| ≤ 2N. Let T ′ be the number of triples
(a, b, c) ∈ Z × Z × Z such that ‖a − b‖ = ‖a − c‖. Obviously, T ≤ T ′. However, it was
recently proved (see [12, Theorem 4]) that

T ′ � |Z|
3

p
+ p2/3|Z|5/3 + p1/4|Z|2,

which gives

T � N3

p
+ p2/3N5/3 + p1/4N2,

and then T � N3/p (since N � p5/4). Putting all the bounds together, we obtain

N3

|Δ(X, Y)| =
|X||Y |2
|Δ(X, Y)| �

Q
|X| � T � N3

p
,

or equivalently, |Δ(X, Y)| � p, as required. �
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