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1. INTRODUCTION
The measured responses of the individual test
subjects used in a biological assay sometimes show
an appreciable correlation (positive or negative)
with the values of a concomitant variate which is
itself unaffected by the drug or other substance
under assay. For example, in the assay of insulin
by the rabbit method, the decrease in blood sugar
during the experimental period is affected not only
by the dose of insulin injected but also by the level
of blood sugar before injection. Again, in the assay
of parathyroid extract by injection into dogs and
measurement of the subsequent changes in the
serum calcium, the responses produced by any
specified dose may be correlated with the weights
of the dogs. The precision of such an assay will be
increased if the effects of this type of variation,
irrelevant to the dose-response relationship which
is the basis of the assay, can be eliminated. Pharma-
cologists and other users of assay techniques have
frequently adopted arbitrary adjustments for the
removal of concomitant variation. For example,
when the response is the weight of some organ of
the test subject, this may be expressed as a propor-
tion of the total body weight and the proportion
taken as a response metameter in the statistical
analysis; similarly, in the insulin assay, the fall in
blood sugar may be expressed as a percentage of the
initial value. Alternatively, doses may be expressed
'per unit of body weight' instead of on an absolute
scale.

An adjustment of this kind involves, by implica-
tion, an assumption relating to the form of the
dependence of the response on the concomitant
variate, and in fact assumes that the dependence
is one of direct proportionality. Bliss & Marks
(1939a, b; see especially pp. 97-100) have pointed
out that there is often no sound reason for accepting
this assumption, and have stated clearly the argu-
ments in favour of preferring a method of adjust-
ment derived by covariance analysis from the
internal evidence of the data. They have described
a system of calculation for use when the response
is linearly related to the logarithm of the dose,
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and have illustrated it by reference to numerical
results for an insulin assay using two doses of
a standard and two of a test preparation; the
percentage fall in blood sugar of injected rabbits
is adjusted for inequalities in the initial level of
blood sugar. In a later paper, Bliss (1940) has
discussed a similar analysis for an assay of vitamin D
by means of the ash content of the femur of rats,
and has shown how allowance can be made for the
effect of inequalities in the weight of organic matter
in the bones, a quantity unaffected by vitamin D.
Bliss & Rose (1940) have given examples, from
assays of more complex design, showing how the
serum calcium of dogs used in the assay of para-
thyroid extracts may be adjusted for inequalities
in the initial body weights of the dogs. Fieller
(1940), as part of a very full account of insulin
assays using cross-over designs, has also discussed
the adjustment of percentage fall in blood sugar by
means of a covariance analysis on initial blood sugar.
He was able to estimate a single regression coefficient -
from the combined evidence of many assays, and
to use this in adjusting the responses for each
assay. Providing that the regression coefficient does
not vary significantly from one assay to another,
this procedure possesses all the advantages empha-
sized by Bliss as appertaining to the adjustment
determined from the data instead of by arbitrary-
choice; at the same time, Fieller's estimate of the
adjustment will be more precise than any from
a single assay, so that the complications which
adjustment introduces into the assessment of errors
and fiducial limits will be less important.

The analysis proposed by Bliss and others can
be used whatever the number of doses tested, and
whether or not they are equally spaced on the scale
of the dose metameter, though the published
examples involve only two or three doses of the
standard and test preparations; it may be extended
so as to cover simultaneous adjustment for several
concomitant variates. In the form given by Bliss,
however, the method is not exactly that of orthodox
covariance analysis, as it takes no account of the
correlation between dose and the concomitant
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398 The adjustment of biological assay results
variate. By hypothesis, this variate is unaffected
by the dose, so that the correlation should be small
and attributable entirely to random causes; never-
theless, it will have a sampling value different from
zero. Analysis according to the generally accepted
procedure for covariance work is a little more.
laborious, since if requires consideration of the
multiple regression of response on dose and the
concomitant variate. The extra labour should be
small once the routine has become familiar, and,
indeed, the operations will be more natural for
those accustomed to the covariance technique. For
most practical purposes, however, the refinement in
the analysis will make little difference and need
seldom be undertaken by those who find difficulty
in it.

The correct method does become rather tedious
if full tests of linearity and parallelism of regression
lines are needed. Though these qualities are usually
essential to the validity of an assay, the significance
of deviations from perfect linearity and parallelism
can often be assessed satisfactorily from inspection
of the data, or from tests based on unadjusted
responses; unless the adjustments are large, their
effect on the tests of validity is unlikely to be
important. Nevertheless, the full method of testing
will be described here, as some account of it should
be placed on record.

The reader of this paper will be assumed to have
some familiarity with the analysis of variance and
with the estimation of multiple linear regression
equations, as well as with ordinary biological assay
analysis. To have given a full account of calculations
for these standard statistical techniques would have
made the paper inordinately long; details may be
found in text-books of statistical science, such as
those of-Fisher (1946) and Snedecor (1946).

2. THE ANALYSIS OF UNADJUSTED
RESPONSES

The calculations for the estimation of the potency
of a test preparation relative to a standard, using
an adjustment for a concomitant variate, follow
closely the method of covariance analysis familiar
to statisticians. There are, however, special features,
particularly in the assessment of the precision of
the estimate, which can be shown with reference
to a numerical example more conveniently than by
formula. For this purpose, data on a prolactin
assay, from the Research Division of Glaxo Labora-
tories, will be used. The writer has been concerned
only with the statistical analysis of the data, but
he has been informed by Mr A. L. Bacharach that,
in the assay procedure that was adopted, ' Suitable
doses of the sample to be assayed and of the standard
preparation are injected into groups of pigeons,
as uniform as possible in respect of weight, age, and

general appearance, and preferably of an inbred or
"pure " line, the doses being given on six successive
days by subcutaneous injection. The resultant
enlargement of the crop gland is established for
each animal separately, after it has been killed on
the seventh day of the test, by weighing the gland
emptied of "pigeon milk", cleaned of adventitious
tissue, and preserved in 70 % ethanol for 24 hr.
Except in minor details, the test follows the well-
known procedure originally laid down by Riddell,
and described in more detail by Folley, Turner and
others.'

The assay was based upon the crop-gland weights,
and the concomitant variate for which adjustment
was to be made was the body weight of the pigeons
at the beginning of the assay. In this section, as
a preliminary to the discussion of methods of adjust-
ment, the analysis of the unadjusted responses will

Table 1

(a) Body weights of pigeons («)
(in units of 10 g.)

Dosei of standard
preparation (i.u.)

1-25
49*
53
44
49

195

2-50
49
53
46*
51*

199

5 0 0

49
53
41*
43

186

Dose of test
preparation (mg.)

0125
51*
51
50
52

204

0-250
48
51
48*
50

197

0-500
45*
52
50
53

200

(6) Crop-gland weights of pigeons (y)
(in units of -Jg- g.)

Dose of standard Dose of test
preparation (i.u.) preparation (mg.)

1-25
38*
39
48
62

187

2-50
53

102
81*
75*

311

5 0 0

85
144
54*
85

368

0-125
28*
65
35
36

164

0-250
48
47
54*
74

223

0-50
60

130
83
60

333

Pigeons marked * were <j>, the remainder $.

be described. Twenty-four pigeons were used in the
assay, four on each of three doses of a standard
prolactin preparation and four on each of three
doses of a test preparation. Seven of the birds were
female and the remainder male, but preliminary
examination of the results showed clearly that sex
differences in response were negligible, and, in
order to avoid further complication of this account,
sex has been ignored. Allowance for sex differences
could in fact be made by an extension of the
analysis, introducing a second concomitant variate
which takes the value 1 for males and 0 for females.
The body weights (u) and crop-gland weights {y
are shown in Table 1.

https://doi.org/10.1017/S0022172400014078 Published online by Cambridge University Press

https://doi.org/10.1017/S0022172400014078


D. J. FlNNEY 399
If the mean response at each dose level is plotted

against the logarithm of the dose, little experience
of biological assay is needed in order to be satisfied
that the data will be adequately fitted by two
parallel regression lines, or in other words that
neither deviations from linearity nor deviations
from parallelism approach significance. Hence im-
portant conditions for the validity of the assay
(Finney, 1948) appear to be satisfied. Since the
doses for each preparation are in the ratio of 1 : 2 : 4,
the arithmetic is simplified by the adoption of
a logarithmic dose metameter based upon logarithms
to base 2, and with arbitrary units of log dose x,
such that its values are — 1 for the low, 0 for the
intermediate, and 1 for the high dose of either
preparation. Mean responses are plotted against

. this scale in Fig. 1.

100—

9 0 -

80-

.5 70-

•g 60-

50-

4 0 -

S.E. of X Standard preparation
mean of + T { s t p r e p a n l t i o n

responses

-1 o1

Dose metameter (a;)

Fig. 1. Relationship between the mean crop-gland
weights from Table 1 (6) and the dose metameter,
without adjustment for body weight.

Bliss & Marks (19396) and Bliss (1940) have
shown how polynomial coefficients may be used in
assays with equally spaced log doses, and especially
in four-point and six-point designs, for expediting
the calculations needed in exact tests of linearity
and parallelism. Though inspection of Table 1 and
Fig. 1 here suffices to show that these tests are not
required, the complete calculations will be given
for comparison with those for the adjusted responses
discussed in § 5. The coefficients for this assay are

listed in Table 2, and the subsequent calculations
may be considered as the estimation, of a linear
regression of the response y, on xx, xz, x3 and a;4;
x± is identical with the dose-metameter x, and the
regression coefficient on xl is used in the calculation
of potency. A significant regression on x% would
indicate that the linear regressions on log dose for
the two preparations were of different slope. A sig-
nificant regression on xa would indicate a departure
from linearity as evidenced by the combined results
for the two preparations, and a significant regression
on x4 would show an inequality in the deviations
from linearity of the two series. Any of these results
would cast grave doubts on the validity of the assay,
or at least on its analysis in terms of a linear re-
gression on log dose (Finney, 1948).

Table 2. Table of polynomial-coefficients
for tests of assay validity

Dose
Standard

1-25
2-50
5-00

Test
0-125
0-250
0-500

x i

i

- 1
0
1

- 1
0
1

x i

1
0

- 1

- 1
0
1

X3

1
- 2

1

1
- 2

1

xt

- 1
2

- 1

1
- 2

1

Since xlt x2, x3 and xA have been chosen so as to
be mutually orthogonal, the regressions on each
may be calculated independently of the others. The
sums of squares and the sums of products with y are
required for each x; these should be the 'within
preparations' components with 22 degrees of
freedom, but, since the mean value of any x is the
same (zero) for each preparation, the ' between -
preparations' component is zero for each of these
sums of squares and products. The sums are:

Sx\=l6, Sxxy= 350,
Sx%=16, Sx2y=-12,
8x1 = 48, Sx3y=-16,
&EJ = 4 8 , Sxty = 118.

Each variate is responsible for a portion
of the 'within-preparations' sum of squares for y.
The analysis of variance of the values of y in
Table 1 (b) may now be completed in the form
shown in Table 3.

The non-significance of the regressions on x2, x3
and xt, apparent from Fig. 1, is confirmed by
Table 3. Since the analysis has been cast in this
form, in strictness the residual mean square with
18 degrees of freedom should be used as the estimate
of error variance; any amalgamation of other mean
squares which have been examined and found non-
significant with the residual introdixces a risk of
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bias into the error variance. Here, however, the
complete analysis was really unnecessary, and for
purposes of comparisons with results to be obtained
in subsequent sections an error variance •will be
formed by combining the x2, xs and xt components
with the residual; this gives

„•>• 1 0 6 8 6
S — 2 1

= 508-9 with 21 degrees of freedom. (1)

Table 3. Analysis of variance for unadjusted
crop-gland weights

The adjustment of biological assay results

D.F.

Between preparations 1
Regression on xt 1
Regression o n i , 1
Regression on x3 1
Regression on xt 1
Residual 18
Total 23

Sum of Mean
squares square

888 —
7,656 7,656

9 9
5 5

290 290
10,382 576-8
19,230

From the sums of squares and products already
quoted, the regression coefficient of y on x± (or x) is

= 21-875.
Hence the two regression lines are

Ys = y, + b (x-x.\
= 72-167+ 21-875x,

and F t = 60-000+21-875x,
since for the mean log dose xB = xt — 0. The estimate
of relative potency is derived from M, the difference
between a;-values which give equal values to the
expected responses Ys and Yt. Hence

1V1 —X, — Xt (4)

12167
~~~ 21-875
= -0-5562.

Application of the usual formula for the variance
of this estimate (see, for example, Finney, 1948)

r (3)

508-9
; [0-1667+ 0-0193]

(21-875)2'

= 0-1978,

and therefore
M= -0-5562 + 0-4447. . (4)

As is well known, however, the standard error
calculated in this way can safely be used in deriving
fiducial limits for M only if b is very large compared

•with its standard error. A convenient criterion is
provided by

g = t*V(b)lb* • (5)
_(2-080)2x 508-9

16x(21-875)2

= 0-288;
t is the deviate corresponding to the probability
level (here 5 %) selected for the fiducial limits, and
may be read from Fisher & Yates's (1947) Table III
•with the number of degrees of freedom appropriate
to s2. If g is almost zero (say less than 0-1), expres-
sion (6) below will be practically unaffected by g,
and multiplication of t by the standard error derived
from equation (3) will give the width of the fiducial
interval on either side of M. If the assay is to
provide any useful estimate, g must be less than 1,
for g greater than 1 would imply that the regression '
coefficient of response on x was not significantly
different from zero. The exact formula for the
fiducial limits is

-g

- - 0-5562- 0-2250 ±

6 16

2-080
21-875x0-712

^70-228

= -0-7812± 1-1192
= 0-3380 and -1-9004;

formulae equivalent to (6) have been given in earlier
publications, notably by Fieller (1940) and Irwin
(1943), but the writer finds the form given here the
most convenient for calculation, especially as it
shows clearly whether or not g is important. From
the relationship between the a;-scale and the true
dose levels in Table 1, the value of M in equation (4)
is seen to correspond to a potency for the test pre-
paration of

10x2-°-5562=6-80i.u./mg. (7)
Similarly, the fiducial limits just calculated corre-
spond to 12-6 and 2-68 i.u./mg.

3. ADJUSTMENT BY PROPORTIONALITY
Inspection of Table 1 suggests that the crop-gland
weights of birds receiving the same dose are corre-
lated with the body weights. A common, and
perhaps a natural, method of taking account of
correlation of this kind so as to increase the pre-
cision of the assay is to express the weight of the
organ used for the assay as a proportion of the body
weight and to perform the subsequent calculations
on the proportions instead of on the absolute weights.
I t might seem more logical to express the gland
weights as proportions of final, rather than initial,
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body weights, but there is a danger that the sensi-
tivity of the new response metameter to changes
in dose would be reduced if body weight were itself
affected by the substance under assay. In this
example, body weight showed no appreciable effect
of prolactin dosage, but the general practice of
using initial weights which necessarily cannot have
been influenced by subsequent treatment (assuming,
of course, that an unbiased randomization procedure
has been adopted in allocating pigeons to doses) is to
be preferred. For arithmetical convenience, the
proportions may be calculated to give y (in Table 1)
as a percentage of u; the response metameters so
obtained are given in Table 4.

Table 4. Proportional crop-gland weights (lOOy/u)

Dose of standard
preparation (i.u.)

Dose of test
preparation (mg.)

1-25 2-50

78 108
74 192

109 176
127 147

388 623

500

173
272
132
198

775

0-125

55
127
70

321

0-250 .0-500

100 133
92 250

112 166
148 113

452 662

The figures in Table 4 may be analysed exactly
as were those for y in § 2. The analysis of variance
is given in Table 5; again there are clearly no
difficulties about the validity of the assay. Equa-
tions (2) and (3) lead to

M = -0-6429 + 0-3818, (8)

which, as was to be expected, is a rather more
precise estimate than that in equation (4). The
variance s2, is now relatively smaller (1568 if the
x2, x3 and xt components are again included with
the error), so that g, calculated from equation (5)
at the 5 % probability level, takes the lower value
0-205. The formula (6) now gives 0-0973 and
-1-7147 for the fiducial limits of M. Calculation
as in equation (7) leads to 6-40 i.u./mg. as the
estimated potency of the test preparation, with
fiducial limits at 10-7 and 3-05 i.u./mg.

4. ADJUSTMENT BY COVARIANCE

The adjustment of responses by expressing them as
proportions of the concomitant variate may often
be very effective in improving the precision of an
assay. Nevertheless, as has been pointed out in the
Introduction to this paper, it involves an arbitrary
assumption about the nature of the relationship
between the two variates which may often be hard
to justify; the proportionality adjustment might
indeed lower the precision of assays in which it
happened to be inappropriate, even though there

was a marked correlation between the response and
the concomitant variate (an obvious example is
the situation in which the correlation is negative).
A further disadvantage of the method is that its
application is restricted to a single concomitant
variate, though assays may occur in which simul-
taneous adjustment for two or more variates is
needed.

Bliss and others have given adequate reasons for
preferring a method of taking account of concomitant
variation which estimates the appropriate adjust-
ment from the assay data themselves, instead of
determining it arbitrarily. They recommend the
calculation of a covariance analysis for y, the

Table 5. Analysis of variance for proportional
crop-gland weights

Between preparations
Kegression on xx

Regression on x2

Regression on xa

Regression on xt

Residual

Total

Sum of Mean
D.F. squares square

1 5,133 —
1 33,124 33,124
1 132 132
1 0 0
1 547 547

18 32,244 1,791

23 71,180

response, and u, the concomitant variate. The error
regression of y on u is then taken as the estimated
effect on individual responses of unit change in u.
This figure is used for the adjustment of the mean

' response at each dose level to the basis of a mean
value for u, and the relationship between the
adjusted mean response and the dose metameter x,
is then used for the assay just as were the unadjusted
responses in § 2; the estimation of error, of course,
is complicated by this procedure. The method, in
fact, entails first the estimation of the regression
of y on u, and then the estimation of the regression
of adjusted values of y on x; a procedure more in
accordance with statistical practice, and a more
satisfactory way of studying the relationship be-
tween x, u and y, is to estimate a multiple regression
equation of y on x and u simultaneously. This may
require slightly more laborious calculations than
Bliss's method, though the difference is not great
unless detailed validity tests are necessary. On the
other hand, the estimation of error and the assess-
ment of fiducial limits is accomplished more satis-
factorily by the method proposed here. If there
were no correlation between u and x, the two
methods would be identical; in practice, even though
u is a pre-treatment measurement which cannot be
correlated with dose in the whole population, there
will be sampling variation from- zero correlation
within any assay, and it is desirable tha,t this be
taken into account.
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402 The adjustment of biological assay results
In the prolactin assay, preliminary examination

makes clear that the data are satisfactorily fitted
by two parallel straight lines. After the analysis of
variance shown in Table 3, there is no real need for
exact tests of linearity and parallelism on adjusted
responses; unless the adjustment altered the re-
sponses very considerably, or very much reduced
the residual variance s2, the conclusions from that
table could not be altered. As the estimation of
potency is much simplified when these tests can
be ignored, the calculations will first be given on
that assumption. They are begun by the preparation
of a table of analysis of variance and covariance
for x, u and y, only the ' between -preparations'
component being removed from the total. The
figures required for the analysis of y2 are already
available in Table 3, and the other columns are
completed in a similar manner, using either the
squares of the variates or the products of corre-
sponding values of two variates. The calculations
present no special features, and their result is shown
in Table 6.

bu = 350 x 0-003636 + 531 x 0-004476
= 3-649.

Now the regression on x and u jointly removes an

amount 3506 +5316U= 10,632

from the 'within-preparations' sum of squares, as
compared with 3502/16 or 7656 removed by a
regression on x alone. The difference between these
amounts is a "sum of squares with 1 degree of
freedom, representing the additional portion of the
within-preparations sum of squares attributable to
variations in u, after account has been taken of
the component due to x. Hence, as is shown by
Table 7, the inclusion of u in the regression equation
effects a significant reduction in the residual sum of
squares, and improvement in the precision of the
assay may result from the elimination of variations
due to u.

The regression equation for either preparation is
Y = y + bu(u-u) + b{x-x),

where y, x and u are mean values for the twelve

Table 6.

Between preparations
Within preparations
Total

Analysis

D.F.

1
22

23

of variance and

(*2)
0

16

16

0
- 1 3

- 1 3

covariance for x, u and

(«•) (xy)
18 0

234 350
252 350

y

(uy)

- 1 2 8
531

403

(2/2)
888

18,342

19,230

The regression coefficients of y on x and u are
determined from the 'within-preparations' com-
ponents in Table 6, and are the solutions of the
equations 136U = 35O,)

(9)
531J

Since the variances of the regression coefficients
will be required, these equations should be solved
by Fisher's' c-multiplier' or ' inverse matrix' method
(1946, § 29). Full explanation of this can be found
in many standard works on statistical methods; it
requires the construction of an inverse matrix V,
whose first row is formed by the solution of equa-
tions (9) •with the numbers 1, 0 replacing 350, 531
on the right-hand side and whose second row is
formed by the solutions with 0, 1 on the right-hand
side. Simple arithmetic gives this matrix as

J-065455 0-003636\

~ f-003636 0-004476/
(10)

and the regression coefficients are then obtained b y
multiplying each row of the matrix in turn by the
right-hand sides of equations (9):

b = 350 x 0-065455 + 531 x 0-003636

= 24-840,

Table 7." Analysis of variance for test of significance
of body-weight regression

Regression on x
Addition for inclusion of u
Regression on x and u
Between preparations
Residual
Total

D.F.

1
1

~2
1

20
23

Sum of
squares

7,656
2,976

10,632
888

7,710
19.230

Mean
square

2,976

385-5

doves used for the preparation. The dose metameter
has been so chosen that x is zero for each prepara-
tion, and the two regression equations are therefore

and

The relative potency is derived from M, the
difference between x-values which, for equal values
of u, give equal values of Y. The general expression
for M is

6U (u- 47-3333) + bx

= - 104-20 + 3-649M + 24-84Oo;,

Yt = 60-0000 + bu (u - 50-0833) + bx

M-x -x <
1VL — Xs — Xt

(11)
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this here gives and therefore

12-1667 +1-75006,,

18-552
24-840

= -0-7469,

which corresponds to a potency estimate' of
5-96 i.u./mg., a figure obtained as in equation (7).

In order to express the precision of this estimate,
formulae rather more complicated than for the
unadjusted responses are required, since they must
take into account the covariance between b and bu

indicated by equation (10). From Table 7 the
residual variance per response, after the fitting of
the regression equation, is

s2= 385-5.

Multiplication of the diagonal elements of the
matrix V, equation (10), by s2 gives the variances
of 6 and bu, and a similar multiplication of the
remaining element gives the covariance. Write now

vu = variance of [(?/,-yt) - bu {u, - ut)}

= - + -+(u,-ut)*V(bu), (12)

where n, and nt are the total numbers of individuals
used for the two preparations, in this example 12
for each;

vx% = covariance of 6 and [(y, — yt) — bu (us — u,)] •

= — (ua — ut) covariance (b, &„); (13)

and v22=V(b). (14)

The variance of M may then be written

V (M) = i [«„ + 2Mv12 + M*vu]; (15)

for the more general expression of equation (11),
with xs and xt unequal, M in equation (15) must be
replaced by (M — x, + xt). For the data under dis-
cussion,

vu = 385-5 x [j^ + i^ + (fi)2 x 0-004476]

= 69-53,

v12 = - 385-5 x ( - f i ) x 0-003636

= 2-45,

v2i = 385-5x0-065455

= 25-23;

substitution in equation (15) gives

V (M) = [69-53 - 2 x 0-7469 x 2-45

79-94 +(0-7469)2x25-23]/617-03

61703

= 0-1296,

M= -0-7469 ±0-3600. (16)

As in § 2, however, the standard error cannot be
used in assigning fiducial limits to M unless the
quantity denned as g in equation (5) is small; g, of
course, must now be recalculated according to the
numerical results of this section, taking V (b) from
equation (14) and using t = 2-086 (5% level and
20 degrees of freedom). The exact expression for the
limits, of which (6) is a particular case, may be
obtained by means of a theorem stated by Fieller
(1944; Fisher, 1946, § 26-2). A convenient form for
calculation is practically the same as that for another
purpose given elsewhere by the writer (Finney,
1948, equation (32)):

M+-.
-S '

/U -g Ln-^Y\,
in which, at every appearance except the first, M
must be replaced by {M — x, + xt) when the two
values of x are unequal. For the example

Sr=0-178,

and the 5 % fiducial limits are therefore

or -0-0476 and -1-7276, corresponding to 9-68
and 3-02 i.u./mg. These limits are a little narrower
than for the adjustment by proportionality dis-
cussed in § 3; the three estimates, and their fiducial
limits, are summarized in Table 8.

Table 8 shows a clear, though not very great,
advantage for the covariance adjustment by com-
parison with the unadjusted results; adjustment by
proportionality has been almost as good. Examina-
tion of other data has indicated that, even though
there is a significant regression on the concomitant
variate, the benefit of making allowance for it may
be nullified by low precision in the estimation of
the adjustment, and by the fact that the partial
regression coefficient of response on dose chances
to be lower than the regression coefficient when u is
ignored. In these circumstances, of course, no
arbitrary adjustment, by proportionality or other-
wise, is likely to prove any better. Providing that
the regression on u is significant, adjustment can
scarcely lead to any appreciable loss of precision;
that, however, is insufficient to justify the more
troublesome calculations! The present finding,
taken in conjunction with that of Bliss (1940) for
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other data, suggests that the gain in precision is
often less than might be expected merely from
consideration of the reduction in a2 caused by
allowance for the concomitant variate. This con-
clusion, of course, is applicable whether the com-
putations are carried out in the form recommended
here or in that used by Bliss and others. Further
experience, from analyses of other assays, is needed
before any general recommendation can be made
about the circumstances in which covariance adjust-
ment is likely to be profitable.

In all the analyses made on these data, the
variance per response has been assumed to be
independent of the dose or the magnitude of the
response. Inspection of Table 1 suggests that, in
fact, the responses are more variable at high doses
than at low, and allowance for this should perhaps

insufficient to upset this result, but if exact tests are
required the multiple regression on xlt x2, x3, a;4
and u must be investigated; u is not orthogonal
with the other four, and calculation from Tables
1 and 5 gives

Sx1u= -13, Sxtu=5, Sx3u=-1, Sxtu = 21.

Hence the equations for estimating the regression
coefficients are

16&! -136U= 350,1
1662 + 5&u=-12,

48&3 - 7 & u = - 1 6 ,
4864 + 27&u = 118,

•13&! +562 -763 +2764 + 234&u = 531,

(18)

Table 8. Estimates of potency and fiducial limits
(in i.u./mg.)

Adjustment for body weight

Estimated potency of
test preparation

5 % limits
5 % limits as % of mean
1% limits
1 % limits as % of mean

be made by using weighted rather than unweighted
regressions, assigning greater weight to the less
variable responses. The data are used in this paper
only in illustration of covariance technique, and for
clarity it seemed preferable to avoid the additional
complication of weighted regressions.

5. TESTS OF ASSAY VALIDITY

In § 2 have been described tests of significance for
deviations from linearity and parallelism of the
regression lines fitted to the unadjusted data. When
the logarithms of the doses tested are equally
spaced, these tests are made particularly simple by
the use of polynomial coefficients. A concomitant
variate, such as body weight in the example under
discussion, destroys some of the simplicity, and full
analysis involves a rather laborious procedure.
However, it is required only when inspection of the
data, or a preliminary graphical analysis, leaves
some doubt of the assay validity, and it need not
be adopted as a routine.

In the prolactin assay, the analysis summarized
in Table 3 has shown that, for the unadjusted
crop-gland weights, the deviations-do not approach
significance. Those who are experienced in the
analysis of assays probably need no further analysis
to satisfy them that the adjustment for u is

None
6-80

2-68-12-6
39-185

1-14-16-9
17-249

Proportionality
6-40

3-05-10-7
48-167

1-81-13-1
28-205

Covariance
5-96

3-02-9-68
51-162

1-95-11-7
33-196

the solutions of which are*

6 1 = 24-840, 64 = 0-406,
62=-1-890, &„= 3-649, (19)

The sum of the products of the regression coefficients
with the right-hand sides of equations (18), 10,699,
is the sum of squares attributable to the five-variate
regression. Table 7 may now be extended to" the form
of Table 9, in order to test the significance of b2, b3
and b4. The sum of squares for the 3 degrees of
freedom is obviously too small to contain any sig-
nificant component. If necessary, any one of the
regression coefficients could be examined separately
by omission of those parts of equations (18) relating
to the other two, and repetition of the calculations,
leading to a sum of squares with 1 degree of freedom
for this coefficient alone. Had the variances of the
five partial regression coefficients been required,
equations (18) would have been solved by the inverse
matrix method, but usually 62, b3 and 64 are required
only for tests of significance and no other interest
attaches to their values; if any one of them were
significant, it would indicate either that the assay

* That &t and bu are identical with the b and bu of
§ 4 must be attributed to coincidence.
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was invalid or that the metameters used needed
modification in order to give linearity (Firtney,
1948). If it were customary to make the full
analysis for every assay, the residual mean square
in Table 9 (as in Table 3) would naturally be used
as s2, but, since this procedure should seldom be
needed, values of s2 obtained without the inclusion
of x2, x3 and x4 in the regression equation have been
used for comparative purposes in this paper.

Table 9. Analysis of variance for validity tests
with adjusted crop-gland weights

Sum of
squares

Regression on xt 1 7,656
Addition for inclusion of u
Regression on xx and u
Linearity and parallelism
Regression on x1, xi, xa, xt, u
Between preparations
Residual
Total

D.F.
1
1

~2
3

"5
1

17

Mean
square

2,976 2,976
10,632

67
10,699

888
7,643

22-3

449-6

19,230

In an assay based on a greater number of doses
of each preparation, these still being equally spaced
on the logarithmic scale, the same procedure of
expressing components of non-parallelism and non-
linearity in terms of orthogonal coefficients can be
followed (Bliss & Marks, 1939a, b). If the log doses
are not equally spaced, the tests become more
laborious; standard methods of covariance analysis
still serve to determine whether the linear partial
regression coefficients on log dose are significantly
different for the two preparations, and a test of
linearity could be put in the form of a test of
significance of the regression on the square of the
log dose. Fortunately, so complete an analysis will
seldom be needed; experience and discretion will
enable a decision to be reached without exact tests
in many assays, and will allow attention to be
focused on the features most open to suspicion in
others.

6. SUMMARY

When individual responses in a biological assay show
considerable variation associated with the values of
a concomitant variate, covariance analysis may be
used in order to adjust the mean responses and to

improve the precision of the assay. Usually this is
preferable to the choice of an adjustment which
involves an arbitrary assumption about the effect
of variations in the concomitant variate on the
measured response. Published accounts of the
process are open to certain theoretical objections,
though they may be sufficiently exact for most
practical purposes.

The present paper describes a method of calcu-
lating the relative potency, and its precision, which
may be a little more laborious, but which is in full
accord with standard statistical practice. The com-
putations are illustrated on data from a prolactin
assay by the pigeon crop-gland technique, in which
the final crop-gland weight showed a positive corre-
lation with the body weight at the start of the assay.
The results are compared with those obtained either
from the unadjusted crop-gland weights or from
these weights expressed as proportions of body
weights. The covariance method leads to a more
precise estimate of the potency of the test prepara-
tion than do either of the others; there is evidence,
however, that the increase in precision will not
necessarily be large unless the correlation between
the response and the concomitant variate is very
close. •

In a final section, the full statistical tests of assay
validity in the covariance analysis are described;
these are lengthy, and fortunately are required only
when the validity is in considerable doubt.

The methods of adjustment have been described
in this paper with respect to an assay depending
upon parallel regression lines of responses on the
logarithms of doses. They may be adapted for use
with 'slope-ratio' assays (Bliss, 1946; Finney, 1945;
1948; Wood & Finney, 1946), in which the regression
of response on dose itself is linear. So far the need
for adjusting for concomitant variation in these
assays seems not to have arisen, and discussion of
computational details may be postponed until the
need is felt.

I am indebted to Mr A. L. Bacharach and to
Glaxo Laboratories Ltd. for the results of the
prolactin assay used as the numerical illustration of
the methods of this paper. I wish also to acknow-
ledge valuable suggestions from Mr Bacharach and
from Dr E. C.-Wood on the argument of the paper.
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