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Abstract Montel introduced the concept of quasi-normal families f : Ω → C in 1922: F is quasi-normal
of order N if every sequence {fn} from F has a subsequence which converges uniformly on compact
subsets of Ω \ Z†, where Z† ⊂ Ω contains at most N ∈ N elements. (F is of order N := ∞ if every such
exceptional set Z† is finite.) The problem is that Z† normally depends on the subsequence. So even if
every sequence has a subsequence which converges to a given function f in Ω except at N points, the
sequence itself may not converge in any domain D ⊆ Ω.

In this paper we introduce the concept of general convergence. Indeed, {fn} above converges generally
to f . We also introduce a related concept, restrained sequences, and study some of their properties. The
definitions extend earlier concepts introduced for sequences of linear fractional transformations.
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1. Introduction

The concept of quasi-normal families for holomorphic functions and for meromorphic
functions in a domain Ω ⊆ C was introduced by Montel [5, 6]. The purpose of the
present paper is to introduce a convergence concept for quasi-normal families, which
we call general convergence (Definition 2.6). It generalizes normal convergence (uniform
convergence on compact subsets) in the sense that if {fn} converges normally in a domain
D, then it converges generally to f in D, whereas the converse does not hold in general.
It is related to convergence in measure, but it is more precise. In particular it allows us
to approximate constant limits numerically in an easy way; a fact which is important
in continued fraction theory and dynamical systems (see Remark 3.4). We shall also
introduce what we call restrained sequences in a quasi-normal family (Definition 2.9).
More generally, one can talk about mappings from one metric space (Ω1, m1) to another
(Ω2, m2), but we shall mainly stay on the Riemann sphere Ĉ equipped with the chordal
metric (spherical metric)

d(z, w) :=
2|z − w|√

1 + |z|2
√

1 + |w|2
for z, w ∈ Ĉ.
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We shall use the notation Ā, A◦ and ∂A to denote the closure, the interior and the
boundary of a set A in Ĉ, or, more generally, in a metric space (Ω, m). Moreover, σ(z, A)
denotes the Euclidean distance and d(z, A) denotes the chordal distance between a point
z and a set A in Ĉ and d(A, D) the chordal distance between two subsets of Ĉ, B(a, r) :=
{z ∈ C : |z − a| < r} and Bd(â, r) := {z ∈ Ĉ : d(z, â) < r} for some a ∈ C, â ∈ Ĉ and
r > 0. Similarly, Bm(a, r) is an r-neighbourhood of a point a in a metric space (Ω, m)
and Bm(A, r) := ∪a∈ABm(a, r) for a set A ∈ Ω. In particular, Bm(A, r) = ∅ if A = ∅.
Finally, sup{m(p, q) : p, q ∈ ∅} := 0 and N̂ := N ∪ {0} ∪ {∞}.

In § 2 we set the scene and introduce the two concepts. In § 3 we give some useful
characterizations of these concepts. In § 4 we study families of � N -valent meromorphic
functions, and in § 5 we look at families of univalent functions. Finally, in § 6 we connect
this to generalized iteration of univalent meromorphic functions.

2. Definitions and examples

Montel restricted his definitions to holomorphic or meromorphic functions in planar
domains. It is useful to have a broader perspective. So, we change Montel’s definition
slightly to concern mappings between metric spaces.

Definition 2.1. We say that a family F of mappings from the metric space (Ω1, m1)
into the metric space (Ω2, m2) is quasi-normal if every sequence from F has a subsequence
which converges uniformly on compact subsets of Ω1 \ Z†, where Z† ⊆ Ω1 is a finite set,
possibly depending on the subsequence.

Remark 2.2. If (Ω1, m1) = (Ω2, m2) = (Ĉ, d), then the functions meromorphic in Ω1

are the rational functions, the polynomials and the constant functions.
If Ω1 is a proper subset of Ĉ in this setting, then we may without loss of generality

assume that Ω1 ⊆ C, since a rotation ϕ of the Riemann sphere (i.e. ϕ is a linear fractional
transformation, isometric with respect to the chordal metric) can be chosen such that
ϕ(u) = ∞ for a u �∈ Ω1. If f is meromorphic in Ω1, then f ◦ ϕ−1 is meromorphic in
Ω̃1 := ϕ(Ω1) ⊆ C, and the classical work by Montel and others is valid.

Example 2.3 (see p. 67 of [6]). Let P (z) be a fixed complex polynomial of degree
greater than or equal to 1, and let F be the family of functions of the form f(z) := aP (z),
a ∈ C. Then F consists of functions holomorphic in Ω1 = C. Let fn(z) := anP (z) be a
sequence from F . Let {fnk

} be a subsequence such that ank
→ a ∈ Ĉ.

If a �= ∞, then {fnk
(z)} converges spherically uniformly to aP (z) in compact subsets

of C. If a = ∞, then {fnk
(z)} converges spherically uniformly to ∞ in compact subsets

of C\Z†, where Z† is the set of zeros of P (z). It does not converge spherically uniformly
in any open set containing points from Z† since the limit function is discontinuous at
Z†. Hence F is quasi-normal in C.

Example 2.4. Let P (z) be a fixed complex polynomial of degree greater than or equal
to 1, and let F be the family of functions f(z) := a/P (z), a ∈ C \ {0}. Then F consists
of functions meromorphic in Ω1 = Ĉ. Let fn(z) := an/P (z) be a sequence from F . If
an → a �= 0,∞, then {fn} converges spherically uniformly in Ĉ to an f ∈ F . If an → 0,
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then {fn} converges spherically uniformly to 0 on compact subsets of Ĉ \ Z†, where Z†

is the set of zeros of P . Finally, if an → ∞, then {fn} converges spherically uniformly to
∞ on compact subsets of Ĉ \ {∞} = C. Hence F is quasi-normal in Ĉ.

In Example 2.3 we found that a convergent subsequence either converges in C to a
holomorphic function, or to infinity in a smaller domain. This is the typical situation for
holomorphic functions [1, p. 131] but not for meromorphic functions.

Example 2.5 (see p. 213 of [7]). Let P (z) be a fixed complex polynomial of degree
greater than or equal to 1, let g(z) and h(z) be two distinct holomorphic functions in C,
and let F be the family of functions of the form

f(z) := g(z) +
h(z) − g(z)
1 + aP (z)

for a ∈ C.

Let fn ∈ F be chosen such that an → ∞. Then fn(z) → g(z) for z ∈ C \ Z†, where
Z† is the set of zeros of P , whereas fn(z) → h(z) for z ∈ Z†. That is, {fn} converges
spherically uniformly on compact subsets of C \ Z† to a holomorphic function, but not
on all of C.

We shall say that a sequence {fn} of mappings from (Ω1, m1) into (Ω2, m2) con-
verges N -quasi-normally (or just quasi-normally) to f in the space Ω1 for an N ∈ N̂

if it converges uniformly on compact subsets of Ω1 \ Z† for some finite set Z† ⊆ Ω1

with less than or equal to N elements. Following Montel we say that Z† is the set of
irregular points for a quasi-normally convergent sequence if Z† is minimal. Moreover,
the order of a quasi-normal family F is the smallest N ∈ N̂ such that every sequence
from F has a p-quasi-normally convergent subsequence for some p � N . Hence, if P (z)
in Examples 2.3, 2.4 or 2.5 has N distinct zeros, then the families in those examples are
quasi-normal of order N .

Definition 2.6. We say that a sequence {fn} of mappings from a metric space
(Ω1, m1) into a metric space (Ω2, m2) converges N -generally (or just generally) in Ω1 to
the mapping f for some N ∈ N̂ if every subsequence of {fn} has a subsequence which
converges N -quasi-normally to f in Ω1.

Remark 2.7. If there is a point z0 ∈ Ω1 which is an irregular point for every quasi-
normally convergent subsequence of a generally convergent sequence {fn}, then the limit
function f is not specified at z0. However, this is no problem if the singularity for f at z0

is removable. Otherwise, it would be more correct to say that {fn} converges generally
to the restriction of f to Ω \ {z0}, but we shall not make this distinction in this paper.

In the next example, the sequence {fn} in question does not converge spherically
uniformly on any open set in Ĉ. Still, it converges 1-generally to 1 in Ĉ.

Example 2.8. Let {an} be a sequence of complex numbers dense in C. For each
fixed n ∈ N, let {bn,m}∞

m=1 be a sequence of complex numbers not equal to an, but
converging to an, uniformly with respect to n in the Euclidean metric. Finally, let
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fn,m(z) := (z − an)/(z − bn,m) for all m and n, and construct the sequence {f̃n} of mero-
morphic mappings from Ĉ to Ĉ by setting

f̃1 := f1,1,

f̃2 := f1,2, f̃3 := f2,2,

f̃4 := f1,3, f̃5 := f2,3, f̃6 := f3,3,

f̃7 := f1,4, f̃8 := f2,4, f̃9 := f3,4, f̃10 := f4,4,

etc. . . . .




(2.1)

Then {f̃n} does not converge spherically uniformly on any open set in Ĉ. However, we
shall see that it converges 1-generally to 1 in Ĉ. Let {fk} be a subsequence of {f̃n}. Then
fk = fnk,mk

, where nk � mk → ∞. Without loss of generality (taking subsequences) we
may assume that nk → N ∈ N̂, and that ank

→ a ∈ Ĉ. Assume first that a �= ∞.

Case 1 (N �= ∞). Then nk = N from some k onwards, and thus we assume that
fk = fN,mk

which converges 1-quasi-normally to 1 with irregular point a = aN .

Case 2 (N = ∞). Without loss of generality (taking subsequences) |ank
− a| � 1/k

and |ank
− bnk,mk

| � 1/k for all k. Let E be a compact subset of Ĉ \ {a}, and let
k0 � 4/σ(a, E). For z ∈ E and k � k0 we then have

|fk(z) − 1| =
∣∣∣∣
ank

− bnk,mk

z − bnk,mk

∣∣∣∣ � 1/k

|z − a| − |ank
− a| − |ank

− bnk,mk
| � 2/k

σ(a, E)
→ 0.

So, again, fk converges 1-quasi-normally to 1 with irregular point a.

Assume next that a = ∞. Then N = ∞. We shall prove that fk(z) → 1 uniformly on
every compact subset E ⊆ Ĉ \ {a} = C. Since z ∈ E means that z is bounded, whereas
bnk,mk

→ ∞, we have from some k onwards that |z| < 1
2 |bnk,mk

|. Since |ank
− bnk,mk

| �
(1/k) → 0, we thus have

|fk(z) − 1| =
∣∣∣∣
ank

− bnk,mk

z − bnk,mk

∣∣∣∣ � 2/k

|bnk,mk
| → 0.

This example shows that general convergence is a natural concept of convergence in
quasi-normal families. We can find the convergence hidden in the sequence {f̃n} by
allowing the argument z to vary with n to avoid the irregular points. (For a more precise
statement, see Theorem 3.5. For approximating the limit, see Remarks 3.4 and 3.6.)

The second concept is particularly useful in dynamical systems. It says that the asymp-
totic behaviour of {fn(z)} is essentially independent of z. (See also Theorem 3.1 and
Remark 3.2.)

Definition 2.9. We say that a sequence {fn} of mappings from a metric space
(Ω1, m1) into a metric space (Ω2, m2) is N -restrained (or just restrained) in Ω1 for some
N ∈ N̂ if every subsequence of {fn} has a subsequence which converges N -quasi-normally
in Ω1 to some constant (which may depend on the subsequence).
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Example 2.10. Let {an} and {bn,m} be as in Example 2.8, let fn,m(z) := an(z−an)/
(z − bn,m), and let {f̃n} be given by (2.1). Let {f̃nk

} be a subsequence of {f̃n}. Then
there is a subsequence of {ank

} converging to some a ∈ Ĉ. By the arguments in the
previous example, the corresponding subsequence {f̃nk

} has a subsequence converging
1-quasi-normally to a in Ĉ with irregular point a. Hence, {f̃n} is 1-restrained in Ĉ.

3. Some useful characterizations

In this section we restrict our attention to N -generally convergent and N -restrained
sequences with finite N .

Theorem 3.1. The sequence {fn} of mappings from (Ω1, m1) into (Ω2, m2) is N -
restrained for some N ∈ N ∪ {0} if and only if there exists a sequence {Z†

n} of sets of N

elements from Ω1 such that

lim
n→∞

{sup{m2(fn(u), fn(v)) : u, v ∈ C \ Bm1(Z
†
n, δ)}} = 0 (3.1)

for every compact set C ⊆ Ω1 and every δ > 0.

Proof. First let {fn} be N -restrained in Ω1. Then every subsequence of {fn} has a
subsequence {fnk

} converging uniformly on compact subsets of Ω1 \Z† to some constant
c, for some Z† ⊆ Ω1 which contains N elements, where Z† and c in general depend on
the subsequence. That is,

lim
k→∞

{sup{m2(fnk
(u), fnk

(v)) : u, v ∈ C \ Bm1(Z
†, δ)}} = 0 (3.2)

for every compact set C ⊆ Ω1 and every δ > 0. Assume that there exists no sequence
{Z†

n} such that (3.1) holds for every C and δ. Then there exist a subsequence {nk} of N,
a compact set C ⊆ Ω1 and a δ > 0 such that

lim inf
k→∞

{sup{m2(fnk
(u), fnk

(v)) : u, v ∈ C \ Bm1(Z
†
nk

, δ)}} > 0 (3.3)

for every sequence of sets Z†
nk

⊆ Ω1 with N elements. However, this subsequence must
have a subsequence satisfying (3.2), which contradicts (3.3). Hence (3.1) holds.

Next, let there exist a sequence {Z†
n} of sets of N elements from Ω1 such that (3.1)

holds for every compact set C ⊆ Ω1 and every δ > 0. Let {fnk
} be a subsequence of {fn}.

For each k ∈ N, we number the points z
(j)†
nk ∈ Z†

nk
, j = 1, 2, . . . , N , arbitrarily. Now, a

sequence {an} from Ω1 must have one of the following two properties.

(i) {an} has a limit point in a ∈ Ω1, in which case {an} has a subsequence converging
to a.

(ii) {an} has no limit point in Ω1, in which case lim inf m1(an, C) > 0 for every compact
C ⊆ Ω1.
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For each j ∈ {1, 2, . . . , N}, {z
(j)†
nk } is a sequence from Ω1. Hence we may assume (taking

subsequences) that either z
(j)†
nk → z(j)† ∈ Ω1 or lim inf m1(z

(j)†
nk , C) > 0 for every compact

C ⊆ Ω1.
Let Z† be the set of points z(j)† ∈ Ω1. We want to prove that {fnk

} has a subse-
quence converging normally to a constant in Ω1 \ Z†. Let C1 be an arbitrarily chosen
compact subset of Ω1 \ Z†. Then there exist a compact C ⊆ Ω1 and a δ > 0 such that
C1 ⊆ C \ Bm1(Z

†, 2δ). Further, let k0 ∈ N be chosen so large that

d(z(j)†
nk

, z(j)†) < δ for all j such that z(j)†
nk

→ z(j)† ∈ Z†,

z(j)†
nk

∈ Ω1 \ C otherwise

for all k � k0. Then Bm1(z
(j)†
nk , δ) ⊆ Bm1(Z

†, 2δ) for k � k0 for each j such
that z

(j)†
nk → Z†, and thus C1 ⊆ C \ Bm1(Z

†
nk

, δ). It follows therefore from (3.1) that
m2(fnk

(u), fnk
(v)) → 0 uniformly with respect to u, v ∈ C1. Without loss of generality

(taking subsequences) we may assume that fnk
(z0) → c for some constant c at some

given point z0 ∈ C1. Then {fnk
} converges uniformly to c in C1. This proves that {fnk

}
converges p-quasi-normally to a constant with all irregular points ⊆ Z†, where 0 � p � N

is the number of points in Z†. Hence {fn} is N -restrained in Ω1.
�

If all Z†
n are identical, i.e. Z†

n = Z† for all n, then (3.1) means that the diameter
of fn(C) shrinks to 0 as n → ∞ for compact subsets C of Ω1 \ Z†. If we choose one
�n ∈ fn(C) for each n, then the asymptotic behaviour of {�n} is independent of C, and
is called the limiting structure of {fn}. Clearly, m2(fn(z), �n) → 0 uniformly on compact
subsets of Ω1 \ Z†.

Remark 3.2. The important thing about N -restrained sequences is that Z†
n may vary

with n. Then the compact subsets of Ω1 on which m2(fn(z), �n) → 0 uniformly also vary
with n: for each n we have to make sure that we stay away from Z†

n as described in (3.1).
The typical case is that {Z†

n} is more or less unknown. Still one may be able to detect the
main stream asymptotic behaviour, i.e. the limiting structure, of a 1-restrained sequence
{fn} in the following way: choose 3 distinct points zk from Ω1. For each n pick out the
two function values fn(zjn) and fn(zkn) such that

m2(fn(zjn
), fn(zkn

)) � m2(fn(zj), fn(zk)) for all zj , zk.

Let �n be the intermediate value of these two. Then the asymptotic behaviour of {�n}
describes the limiting structure of {fn}. In other words, if N is equal to 1, we have a simple
way of determining such a sequence {�n}. This idea may be adapted for larger values
of N under proper conditions. This makes the concept particularly useful in practical
applications.

Theorem 3.1 also allows for a wider definition of N -restrained sequences for finite N .
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Definition 3.3. Let (Ω1, m1) and (Ω2, m2) be two metric spaces, and let Ω1,n ⊆ Ω1

for all n. We say that a sequence {fn} of mappings fn from (Ω1,n, m1) into (Ω2, m2) is
N -restrained in {Ω1,n} for some N ∈ N ∪ {0} if there exists a sequence {Z†

n} of sets of
N elements from Ω1 such that

lim
n→∞

{sup{m2(fn(u), fn(v)) : u, v ∈ (C ∩ Ω1,n) \ Bm1(Z
†
n, δ)}} = 0 (3.4)

for every compact subset C of Ω1 and every δ > 0.

Of course, we could have made this definition even more general, but this form is what
we shall use in § 5.

Remark 3.4. If {fn} converges N -generally to a constant c, then {fn} is in particular
N -restrained. Hence {fn} converges N -generally to a constant c for some N ∈ N ∪ {0} if
and only if there exists a sequence {Z†

n} of sets with N elements from Ω1 such that

lim
n→∞

{sup{m2(fn(v), c) : v ∈ C \ Bm1(Z
†
n, δ)}} = 0 (3.5)

for every compact C ⊆ Ω1 and every δ > 0. Moreover, we can approximate c by the
intermediate value �n in Remark 3.2. This simple observation is the reason why general
convergence is so important in continued fraction theory. There are also methods to
obtain bounds for the error in the approximation �n ≈ c.

More generally, we have the following characterization of generally convergent se-
quences.

Theorem 3.5. The sequence {fn} of mappings from (Ω1, m1) into (Ω2, m2) converges
N -generally in Ω1 to the mapping f for some N ∈ N ∪ {0} if and only if there exists a
sequence {Z†

n} of sets of N elements from Ω1 such that

lim
n→∞

{sup{m2(fn(z), f(z)) : z ∈ C \ Bm1(Z
†
n, δ)}} = 0 (3.6)

for every compact set C ⊆ Ω1 and every δ > 0.

Proof. The proof is similar to the proof of Theorem 3.1. First let {fn} converge
N -generally to f . Then every subsequence of {fn} has a subsequence {fnk

} such that

lim
k→∞

{sup{m2(fnk
(z), f(z)) : z ∈ C \ Bm1(Z

†, δ)}} = 0 (3.7)

for every compact C ⊆ Ω1 and δ > 0, where Z† is some subset of Ω1 with N elements.
Assume there is no sequence {Z†

n} such that (3.6) holds. Then there exist {nk}, C and
δ such that

lim inf{sup{m2(fnk
(z), f(z)) : z ∈ C \ Bm1(Z

†
n, δ)}} > 0 (3.8)

for every sequence {Z†
n} of sets with N elements. This sequence has no subsequence

satisfying (3.7), a contradiction, and thus (3.6) must hold.
To prove the converse, let {Z†

n} be such that (3.6) holds for all C and δ, where each
Z†

n has N elements. Let {fnk
} be a subsequence of {fn}. Without loss of generality
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Z†
nk

→ Z† in the same sense as in the proof of Theorem 3.1. Let C1 be an arbitrarily
chosen subset of Ω1 \Z†. Then fnk

(z) → f(z) uniformly in C1, by the same argument as
used in the proof of Theorem 3.1. This proves that {fn} converges N -generally to f . �

Remark 3.6. In Remark 3.4 we described how to approximate a constant limit func-
tion for a generally convergent sequence. It is of course harder to approximate the limit
function if it is non-constant. Still, the knowledge that there is at most N irregular points
for each n may be helpful, even if we know nothing about their location. For instance, let
z1, . . . , zN+M ∈ Ω1 be distinct, chosen points, where M � 2, and compute the vectors
ϕn = [fn(z1), . . . , fn(zN+M )]. By comparing ϕn with previous vectors ϕk, one may be
able to weed out N components of ϕn which are less likely to belong to the (at least)
M corresponding convergent subsequences of {fn(zk)}, k = 1, 2, . . . , N + M . If we have
some bounds for the error m2(f(zk), fn(zk)) for m1(zk, Z†

k) � δ > 0, we may even be
able to remove the uncertainty in this procedure.

4. Quasi-normality and valence

In this section we shall see some more examples of quasi-normal families and how they
behave. We let (Ω1, m1) and (Ω2, m2) be subsets of Ĉ with the chordal metric d. (For
domains Ω ⊆ Ĉ with ∞ �∈ Ω, the chordal metric is equivalent to the Euclidean metric.)
We shall further let our functions belong to the following family.

Definition 4.1. We say that f ∈ V(Ω, r2, r3, δ), where r2, r3 ∈ N, δ > 0 and Ω is a
domain in Ĉ, if f is a meromorphic function in Ω and there exist three values wj ∈ Ĉ,
j = 1, 2, 3, such that

(i) f(z) = wj for at most rj values of z ∈ Ω, where r1 � r2 � r3, and

(ii) d(wi, wj) � δ for i �= j.

According to Montel [6, p. 149], the family F of meromorphic functions on a domain
Ω ⊆ C is quasi-normal of order r2 in Ω if there exist three distinct values w1, w2, w3 ∈ Ĉ

such that

f(z) = wj for at most rj values of z ∈ Ω for every f ∈ F , where r1 � r2 � r3.

This was extended by Chuang [1, Theorem 5.4, p. 147] to allow the points wj to depend
on the function f ∈ F , as long as d(wi, wj) � δ for i �= j for some fixed constant δ > 0.
We then have the following theorem.

Theorem 4.2 (see Theorem 5.4 on p. 147 of [1]). Let Ω ⊆ C be a domain, and
let r2, r3 ∈ N and δ > 0. Then V(Ω, r2, r3, δ) is a quasi-normal family of order r2.

Of course, we may extend this to domains Ω ⊆ Ĉ.

Corollary 4.3. Let Ω ⊆ Ĉ be a domain, and let r2, r3 ∈ N and δ > 0. Then
V(Ω, r2, r3, δ) is a quasi-normal family of order r2.
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Proof. If Ω �= Ĉ, we may without loss of generality (rotation of the Riemann sphere)
assume that Ω ⊆ C, and the result follows from Theorem 4.2.

Let Ω = Ĉ. Let {fn} be a sequence from V(Ĉ, r2, r3, δ). Assume first that the restriction
f∗

n of fn to C has a subsequence belonging to V(C, r2, r3, δ1) for some 0 < δ1 � δ. This is
a quasi-normal family of order r2. Let {f∗

nk
} be a subsequence which converges r2-quasi-

normally in C with irregular points Z† ⊂ C.

Case 1 (Z† contains less than r2 points). Then {fnk
} converges r2-normally in

Ĉ with irregular points Z† or Z† ∪ {∞}.

Case 2 (Z† contains r2 points). To see that {fnk
} has a subsequence which con-

verges normally in a neighbourhood of ∞, let z0 ∈ C \ Z†, and let ϕ be a rotation of
the Riemann sphere such that ϕ(z0) = ∞. Then {fnk

◦ ϕ−1} restricted to C belongs
to V(C, r2, r3, δ1) and thus has a subsequence {f̃nk

} converging r2-quasi-normally in C.
ϕ(Z†) ⊆ C are r2 irregular points for this subsequence. Since ϕ(∞) �∈ ϕ(Z†), it follows
that the subsequence converges normally in a neighbourhood of ϕ(∞), i.e. {fnk

} has a
subsequence which converges r2-quasi-normally in Ĉ with irregular points Z†.

Assume next that f∗
n has no subsequence belonging to V(C, r2, r3, δ1). (This can only

happen if fn(∞) = wj for all but finitely many n, where rj = 1.) Let z0 ∈ C be chosen
such that fn(z0) �= wj for all n and j = 1, 2, 3. A rotation of Ĉ with ϕ(z0) = ∞ will then
give a sequence {fn} ⊆ V(Ĉ, r2, r3, δ) with {f∗

n} ⊆ V(C, r2, r3, δ1), and the result follows
as above. �

For such functions we also have the following theorem.

Theorem 4.4. Let Ω ⊆ Ĉ be a domain, let r2, r3 ∈ N and δ > 0, and let {fn}
be a sequence of functions from V(Ω, r2, r3, δ) converging uniformly with respect to the
chordal metric on compact subsets of Ω. Then the limit function is either constant or a
function from V(Ω, r2, r3, δ).

Proof. First let Ω �= Ĉ. Then we may without loss of generality (rotation of the sphere
Ĉ) assume that Ω ⊆ C. Assume that the limit function f is non-constant. For each n,
let w1,n, w2,n, w3,n ∈ Ĉ satisfy (i) and (ii) for fn in Definition 4.1. Then {fn(z) − wj,n}
is a sequence of functions which have at most rj zeros for j = 1, 2, 3. By the Hurwitz
theorem generalized to meromorphic functions, it thus follows that f(z)−wj has at most
rj distinct zeros for every limit point wj of {wj,n}. Hence, f ∈ V(Ω, r2, r3, δ).

If Ω = Ĉ, the result follows for Ω1 := Ĉ \ {z0} for every z0 ∈ Ĉ, and thus in all of
Ĉ. �

Evidently, the family of N -valent meromorphic functions on Ω is a subclass of
V(Ω, N, N, δ) for sufficiently small δ > 0. Indeed, if we say that a function f is � N -
valent in a set Ω when each value w ∈ f(Ω) is taken at most N times in Ω, then we
have the following theorem.

Theorem 4.5. Let N ∈ N, and let {fn} be a sequence of � N -valent meromorphic
functions on a domain Ω ⊆ Ĉ. Then the following statements are equivalent.
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(A) {fn} is N -restrained in Ω.

(B) There exist a compact subset C of Ω and 2N sequences {u
(j)
n }∞

n=1 ⊆ Ω, j =
1, 2, . . . , 2N , such that

lim inf
n→∞

d(u(j)
n , u(k)

n ) > 0 for j �= k, lim
n→∞

d(u(j)
n , C) = 0,

lim
n→∞

d(fn(u(j)
n ), fn(u(k)

n )) = 0 for j, k ∈ {1, 2, . . . , 2N}.


 (4.1)

(C) There exists a sequence {Z†
n} of sets of N elements from Ω such that lim d(fn(un),

fn(vn)) = 0 whenever {un} and {vn} are contained in a compact subset of Ω and
lim inf d(un, Z†

n) > 0 and lim inf d(vn, Z†
n) > 0.

(D) There exists a sequence {Z†
n} of sets of N elements from Ω such that

lim
n→∞

{sup{d(fn(u), fn(v)) : u, v ∈ C \ Bd(Z†
n, δ)}} = 0 (4.2)

for every compact set C ⊆ Ω and every δ > 0.

(E) The sequence of spherical derivatives

f#
n (z) := lim

z̃→z

d(fn(z̃), fn(z))
d(z̃, z)

(4.3)

converges N -generally to 0 in Ω.

To prove this result, we shall use the following trivial lemma.

Lemma 4.6. Let {fn} be a sequence of meromorphic functions converging uniformly
with respect to the chordal metric in the closure of an (open) domain D ⊆ Ĉ to a non-
constant limit function f . Let z0 ∈ D, and let w0 := f(z0). Then there exist an n0 ∈ N

and an r > 0 such that Bd(w0, r) ⊆ fn(D) for all n � n0.

Proof. First let D �= Ĉ, and assume that no such n0 and r exist. Then there exists a
subsequence {nk} ⊆ N such that d(fnk

(zk), w0) → 0 for some zk ∈ ∂D. However,

d(fnk
(zk), w0) � d(f(zk), w0) − d(fnk

(zk), f(zk)),

where d(f(zk), w0) � d(w0, ∂f(D)) > 0 (since f is an open mapping) and d(fnk
(zk),

f(zk)) → 0. Hence the result holds for the case D �= Ĉ. If D = Ĉ, then we can prove the
result by reducing D. �

Proof of Theorem 4.5. The equivalence A ⇔ D was proved in Theorem 3.1. More-
over, D ⇒ C ⇒ B follows trivially. It remains to prove that B ⇒ A and A ⇔ E.

B ⇒ A. Let {u
(j)
n }∞

n=1 ⊆ Ω, j = 1, . . . , 2N , satisfy (4.1) for some compact subset
C ⊆ Ω. Let {fnk

} be a subsequence such that u
(j)
nk → u(j) for all j. By (4.1), all u(j) are

distinct points in C. Since {fn} is a sequence from an N -quasi-normal family, it follows
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that {fnk
} has a subsequence {f̃km

} which converges uniformly on compact subsets of
Ω \ Z† for some Z† ⊆ Ω with less than or equal to N elements to some limit function f .
At least N of the 2N points u(j) must be in Ω \Z†, say u(j) ∈ Ω \ Z† for j = 1, 2, . . . , N .
Since Ω \ Z† is an open set, there exists a δ > 0 with δ < 1

2d(u(j), u(k)) for all j, k ∈
{1, 2, . . . , 2N}, such that D := ∪N

j=1Bd(u(j), δ) ⊆ Ω \ Z†.
Assume that f is non-constant in Ω\Z†. Then f is � N -valent (by an argument similar

to the proof of Theorem 4.4), and f(u(j)) = c for j = 1, 2, . . . , N . Indeed, by Lemma 4.6
there exist an m0 ∈ N and an r > 0 such that

Bd(c, r) ⊆ f̃km
(Bd(u(j), δ)) for all m � m0 and j = 1, 2, . . . , N.

On the other hand, c
(N+1)
m := f̃km

(u(N+1)
nkm

) → c as m → ∞, where u
(N+1)
nkm

�∈ D from some
m onwards. That is, from some m onwards, f̃km takes the value c

(N+1)
m at N + 1 distinct

points. This contradicts that f̃km
is � N -valent. Hence f is constant.

A ⇔ E. First let {f#
n } converge N -generally to 0 in Ω. Without loss of generality

(taking subsequences) we may assume that f#
n (z) → 0 normally in Ω \Z†

1 and fn(z) → f

normally in Ω \Z†
2 , where Z†

1 and Z†
2 has at most N elements each. Then f#

n (z) → f#(z)
in Ω \ (Z†

1 ∪ Z†
2) by Weierstrass’s theorem. That is, f#(z) ≡ 0 in Ω \ (Z†

1 ∪ Z†
2), which

rules out the possibility that f is � N -valent in this set. Hence f is constant.
Conversely, let {fn} be � N -restrained. Without loss of generality (taking subse-

quences) we assume that {fn} converges normally in Ω \ Z† to a constant function f .
Then f#

n (z) → 0 in Ω \ Z†. Hence, every sequence {f#
n } has a subsequence converging

N -quasi-normally to 0. �

Since {fn} converges generally to a constant function only if {fn} is restrained, we
also have the following corollary to Theorem 4.5.

Theorem 4.7. Let N ∈ N, and let {fn} be a sequence of � N -valent meromorphic
functions on a domain Ω ⊆ Ĉ. Then the following statements are equivalent.

(A) {fn} converges N -generally in Ω to a constant c.

(B) There exist a compact subset C of Ω and 2N sequences {u
(j)
n }∞

n=1 ⊆ Ω, j =
1, 2, . . . , 2N , such that

lim inf
n→∞

d(u(j)
n , u(k)

n ) > 0, j �= k, lim
n→∞

d(u(j)
n , C) = 0, lim

n→∞
fn(u(j)

n ) = c

(4.4)
for j, k ∈ {1, 2, . . . , 2N}.

(C) There exists a sequence {Z†
n} of sets of N elements from Ω such that fn(un) → c

whenever lim inf d(un, Z†
n) > 0 and lim d(un, C) = 0 for some compact subset

C ⊆ Ω.
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(D) There exists a sequence {Z†
n} of sets of N elements from Ω such that

lim
n→∞

{sup{d(fn(u), c) : u ∈ C \ Bd(Z†
n, δ)}} = 0

for every compact set C ⊆ Ω and every δ > 0.

(E) {fn} is restrained in Ω, and there exist N + 1 sequences {u
(j)
n } such that

lim inf
n→∞

d(u(j)
n , u(k)

n ) > 0 for j �= k,

lim
n→∞

fn(u(j)
n ) = c for j = 1, 2, . . . , N + 1.

Some families of functions have the following property.

Definition 4.8. We say that a family F of functions from (Ω1, m1) to (Ω1, m2) is of
type C if every sequence from F which converges quasi-normally in Ω1 to a non-constant
function converges normally in Ω1.

For such families, we have the following simplification of statement (B) in Theorems 4.5
and 4.7.

Theorem 4.9. Let F be a family of type C of � N -valent meromorphic functions
in a domain Ω ⊆ Ĉ, and let {fn} be a sequence from F . Then the following statements
hold.

(1) {fn} is N -restrained in Ω if and only if there exist N + 1 sequences {u
(j)
n } ⊆ Ω,

j = 1, 2, . . . , N + 1, such that (4.1) holds for j, k ∈ {1, 2, . . . , N + 1}.

(2) {fn} converges N -generally in Ω to a constant if and only if there exist N + 1
sequences {u

(j)
n } ⊆ Ω, j = 1, 2, . . . , N + 1, such that (4.4) holds for j, k ∈

{1, 2, . . . , N + 1}.

Proof.

(1) The fact that N -restrained sequences {fn} satisfy (4.1), follows from Theorem 4.5.
Let (4.1) hold for j, k ∈ {1, 2, . . . , N +1}. Then {fn} has no subsequence converging
normally in Ω1 to a � N -valent function. Hence it is restrained.

(2) If {fn} converges N -generally to the constant c, then (4.4) follows from Theo-
rem 4.7. Let (4.4) hold for j, k ∈ {1, 2, . . . , N + 1}. Then {fn} is restrained by
part (1). The result follows therefore since limn→∞ fn(wn) = c for

wn := u(j)
n where d(u(j)

n , Z†
n) � d(u(k)

n , Z†
n) for all k �= j,

where {Z†
n} is as in parts (C) and (D) of Theorem 4.7.

�
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5. Univalent meromorphic mappings

We shall let (Ω1, m1) and (Ω2, m2) be subsets of Ĉ with the chordal metric d in this
section also. And again we shall let the functions f ∈ F be meromorphic in Ω1, but now
we shall restrict our attention to univalent mappings. According to Corollary 4.3, we
then have that F is either normal or 1-quasi-normal, which makes Theorems 4.5 and 4.7
much simpler.

A prominent example of such functions is the family M of linear fractional transfor-
mations. It follows that since these functions are univalent, meromorphic mappings of
(Ĉ, d) onto (Ĉ, d), M must be either normal or 1-quasi-normal in Ĉ. It is easy to see that
M is not normal: if {Tn} from M converges to a constant c at two distinct points z1 and
z2, then {Tn} does not converge to a T ∈ M. However, Tn(zn) = b for zn := T−1

n (b), so
{Tn} cannot converge uniformly in (Ĉ, d) to c. Hence, M is quasi-normal of order 1 in
Ĉ. Moreover, it is of type (C), since if {Tn} converges to a non-constant function T , then
T ∈ M and the convergence is uniform in Ĉ.

These functions have been extensively studied. Indeed, the concept of general conver-
gence was introduced by the author in 1986 [2] for a subclass of M related to continued
fractions. In this setting she pointed out that general convergence to a constant is really
the correct type of convergence for continued fractions. This was extended to M in
1987 [3].

Another advantage in working with families F of univalent functions is that every
f ∈ F has an inverse function f−1. This was the background for the introduction of the
concept of restrained sequences in M, as introduced in [3]. If {Tn} from M converges
generally in Ĉ to a constant c, then Z†

n := {T−1
n (b)} for all n must be a sequence of

irregular point sets whenever b �= c. Hence {T−1
n } is restrained. Indeed, it was proved

in [3] that {Tn} is restrained if and only if {T−1
n } is restrained. This is also true under

more general conditions.

Theorem 5.1. Let (Ω1, m1) and (Ω2, m2) be two metric spaces, and let Ω1,n ⊆ Ω1

for all n. Furthermore, let {fn} be a sequence of univalent mappings fn from (Ω1,n, m1)
to (Ω2, m2) with the following two properties.

(i) If C is a compact subset of Ω1, then
⋃∞

n=1 fn(Ω1,n ∩ C) is contained in a compact
subset of Ω2.

(ii) If C is a compact subset of Ω2, then
⋃∞

n=1 f−1
n (fn(Ω1,n) ∩ C) is contained in a

compact subset of Ω1.

Then {fn} is restrained in {Ω1,n} if and only if {f−1
n } is restrained in {fn(Ω1,n)}.

Proof. Let {fn} be 1-restrained in {Ω1,n}. That is, there is a sequence {z†
n} from Ω1

such that
lim

n→∞
{sup{m2(fn(u), fn(v)) : u, v,∈ Cn(C1, δ1)}} = 0 (5.1)

for every compact C1 ⊆ Ω1 and δ1 > 0, where Cn(C1, δ1) := (C1 ∩ Ω1,n) \ Bm1(z
†
n, δ1).

(See Definition 3.3.)
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Let w†
n := fn(un) for some un ∈ Cn(C1, δ1) for some suitable choice of C1 and δ1.

Then (5.1) is equivalent to

lim
n→∞

{sup{m2(fn(u), w†
n) : u ∈ Cn(C1, δ1)}} = 0. (5.1′)

Furthermore, let C2 ⊆ Ω2 be compact and δ2 > 0. To see that {f−1
n } is 1-restrained in

{fn(Ω1,n)}, it suffices to prove that

lim
n→∞

{sup{m1(f−1
n (v), z†

n) : v ∈ C̃n}} = 0, (5.2)

where C̃n := (C2 ∩ fn(Ω1,n)) \ Bm2(w
†
n, δ2). Assume that this does not hold. Then there

exist a subsequence {fnk
} and points vk ∈ C̃nk

such that lim infk→∞ m1(f−1
nk

(vk), z†
nk

) >

0. That is, f−1
nk

(vk) ∈ Cnk
(C1, δ1) from some k onwards for a suitable choice of C1 and δ1.

But then, by (??′) and property (ii), m1(fnk
(f−1

nk
(vk)), w†

nk
) → 0, i.e. m1(vk, w†

nk
) → 0,

which contradicts the fact that vk ∈ C̃nk
. Hence (5.2) holds.

The converse follows similarly from property (i). �

The family M is a group with respect to compositions. A subgroup G of M is discrete
if it contains no sequence {Tn} of distinct elements converging to the identity function.
Restrained sequences are connected to discrete subgroups of M in the following way.

Theorem 5.2. A group G ⊆ M is discrete if and only if every sequence with distinct
elements in G is restrained.

Proof. Let G be discrete. Then no sequence {Tn} with distinct elements from G

converges to a Möbius map since Tn → T ∈ M only if tn+1 := T−1
n ◦Tn+1 → T−1◦T = I,

where tn+1 �= I since Tn �= Tn+1. Hence, every such sequence is restrained.
Conversely, let every sequence from G with distinct elements be restrained. Then no

such sequence from G converges to a Möbius map. But then, since I ∈ M, no such
sequence converges to the identity function. �

This shows that for n = 2, every sequence from a quasi-conformal discrete convergence
group is restrained.

6. Application to generalized iteration

Let F be a family of functions which map the metric space (Ω1, m1) into itself. To a
given sequence {fn} from F we can then form the compositions

Fn := f1 ◦ f2 ◦ · · · ◦ fn and Gn := fn ◦ fn−1 ◦ · · · ◦ f1 (6.1)

for n = 1, 2, 3, . . . , and we ask, for instance, whether {Fn} converges generally or whether
{Gn} is restrained in Ω. This generalizes classical iteration, where all fn are identical.
It also generalizes continued fractions, where all fn have the form fn(z) = sn(z) =
an/(bn + z) in the expression for Fn = Sn and the form fn = s−1

n in the expression for
Gn = S−1

n . The following theorem is easily obtained.
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Theorem 6.1. Let F be a family of univalent meromorphic mappings from a domain
Ω ⊆ Ĉ into itself. Let {fn} be a sequence from F . Then {Fn} converges to an F ∈ F or
{Gn} converges to a G ∈ F only if {fn} converges to the identity function I(z) ≡ z in
Ω.

Proof. Let {Fn} converge to F ∈ F . Then fn = F−1
n−1 ◦ Fn converges to F−1 ◦

F (z) ≡ z. Similarly, let {Gn} converge to G ∈ F . Then fn := Gn ◦ G−1
n−1 converges to

G ◦ G−1(z) ≡ z. �

In continued fraction theory and in dynamical systems it is important to establish
sufficient conditions for Fn and Gn to be restrained or generally convergent. Evidently,
we have the following corollary.

Corollary 6.2. Let F be a family of univalent meromorphic mappings from a domain
Ω ⊆ Ĉ into itself. Let {fn} be a sequence from F such that no limit function of {fn} is
the identity function. Then {Fn} and {Gn} given by (5.1) are restrained.

This generalizes a result from [5] saying that if V is an open set and {fn} is a sequence
of functions from Mε(V ) := {f ∈ M : f(V ) ⊆ V \ B(α, ε) for some α ∈ V̄ , α depending
on f} for some ε > 0, then {Fn} does not converge to a function from M.
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