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Abstract In this paper, the linear space F of a special type of fractal interpolation functions (FIFs) on
an interval [ is considered. Each FIF in F is established from a continuous function on I. We show that,
for a finite set of linearly independent continuous functions on I, we get linearly independent FIFs. Then
we study a finite-dimensional reproducing kernel Hilbert space (RKHS) Fi C F, and the reproducing
kernel k for Fp is defined by a basis of F. For a given data set D = {(tx,yx) : K =0,1,..., N}, we apply
our results to curve fitting problems of minimizing the regularized empirical error based on functions
of the form fy + fg, where fy, € Cy and fg € Fp. Here Cy is another finite-dimensional RKHS of
some classes of regular continuous functions with the reproducing kernel k*. We show that the solution
function can be written in the form fy + fg = SN _ ymki |+ Z;\;O ajke;, where ki (-) = k*(-,tm)
and k¢, (-) = k(- ¢5), and the coefficients ym and a; can be solved by a system of linear equations.
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1. Introduction

Approximation theory is concerned with approximating complex or unknown functions
by other simpler functions. The problems of approximation of functions by polynomials,
splines, rational functions, trigonometric functions and wavelets have been well studied.
Similarly, one of the main tasks in the problems of learning, curve fitting and pattern
recognition is to develop suitable models for given data sets. In particular, curve fitting
is a process of constructing a curve that has the best fit to a given data set. The theory
of non-parametric curve estimations has been developed well, and many researchers have
established several types of estimators, see [12-14, 16, 30] and references given in these
books.
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In many real-world applications, data arise from unknown functions, and a function
that interpolates these data is required to be generated. The interpolation problem is
finding a function f in some class of functions and interpolating those data in a given
data set D. Polynomials, splines and rational functions have been applied in interpolation
methods. However, in many practical problems, sampled signals are of irregular forms,
and fractal theory can provide new technologies for making complicated curves and fit-
ting experimental data. A fractal function is a function whose graph is the attractor of
an iterated function system. A fractal interpolation function (FIF) is a continuous fractal
function interpolating points in a given data set. The theory of FIFs is developed for the
interpolation problem with a class of fractal functions. It generalizes traditional inter-
polation techniques through the property of self-similarity. The concept of FIFs defined
through an iterated function system was introduced by Barnsley [2, 3]. It is known that
the theory of FIFs can be applied to model discrete sequences (see [19, 22, 23]). Various
types of FIFs and their approximation properties have been discussed in [4, 5, 8-10, 15,
17, 20, 21, 24-27, 32-35], see also the references given in the literature.

The theory of reproducing kernel Hilbert spaces (RKHSs) has been proven to be a
powerful tool in functional analysis, integral equations and learning theory. The notion of
positive definite functions plays a role in reproducing kernels in RKHSs, see the excellent
monographs [1, 6, 11, 28, 31]. In [7], Bouboulis and Mavroforakis constructed fractal-type
reproducing kernels. They showed that the spaces of some types of FIFs are RKHSs, and
the connection between FIFs and RKHSs was established.

This paper aims to discuss the RKHS consisting of FIFs further and apply such RKHS
to curve fitting problems. Curve-fitting aims to obtain a suitable function that has a
good approximation to the given data set. Such problems have been well studied in
non-parametric regression and machine learning. Although FIFs are constructed to be
interpolation functions, the theory of FIFs has many applications in approximation the-
ory. In [19, 22, 23], FIFs were applied to model discrete sequences. In [24-26], fractal
function spaces with linearly independent sets of a-fractal functions were studied. The
author also discussed the role that these fractal function spaces play in approximation
theory. Since the theory of RKHSs is a useful tool in approximation theory and machine
learning, we are interested in RKHSs that consist of FIFs and their applications to curve
fitting problems.

For a given data set, we aim to fit the data by a linear combination of linearly inde-
pendent FIFs rather than a single FIF constructed from the data set directly. Moreover,
we consider functions of the form fy,, + fz, where fy, belongs to an RKHS of regular
continuous functions and fz belongs to an RKHS of FIFs. Combining these two types of
functions can make solutions to curve-fitting problems more general and flexible.

In §2, the construction of a particular type of FIFs which are applied in this paper is
given. Each FIF is established from a continuous function and can be treated as a fractal
perturbation of that continuous function. In §3, we prove that, for fixed parameters,
the set F of these FIFs is a linear space, and there is a one-to-one correspondence
between C[I] and F. Here, C[I], defined below, is the space of continuous functions on
the interval I. We also show that, for a finite set of linearly independent functions in
C/[I], we get linearly independent FIFs. Then, for applications in curve fitting problems,
a finite-dimensional RKHS Fpi C F is established, and the reproducing kernel k for Fz
is defined by a basis of Fi. In §4, suppose a data set D = {(tx,yx) : k=0,1,..., N} is
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given, and we aim to find a function to fit the data in D. The type of functions considered
here is the sum of a regular continuous function and an FIF. Therefore, we also consider
a finite-dimensional RKHS Cy, of some classes of regular continuous functions with the
reproducing kernel k*, and we study the problem of learning a function in C\), & Fi for
D by minimizing the regularized empirical error

1 N

N+l (g — (fo(tr) + f(ti)))? + Ml FvllE + Nl f5ll% (1.1)

k=0
for fyy € Cy and fg € Fp with fixed non-negative regularization parameters A\; and As.
Here || - ||c and || - || are norms on Cy and Fg, respectively. We show that the solution
of Equation (1.1) can be written in the form

N N
f=f+fs=) ki, +Y_ ak, (1.2)
m=0 =0

where ky () = k*(-,tm) and ktj(o) = k(-,¢;), and the coefficients v,, and «; can be
solved by a system of linear equations.

Throughout this paper, let tg < t; < to < -+ < ty and I = [tg,tn], where N is a
positive integer and N > 2. Foreach k = 1,..., N, let I}, = [tp_1, 1] and Jp = [tj (k). tiw))-
Here j(k),1(k) € {0,1,..., N} and j(k) < I(k). To avoid trivial cases, we assume Jj, # Ij.
We will denote by C[I] the set of all real-valued continuous functions defined on I. Define
Ifllco = maxser|f(t)] for f € CI[I]. For a given set of points D = {(tg,yx) : k =
0,1,...,N}, let Cp[I] be the set of functions in C[I] that interpolate all points in D.
It is known that (C[I],|| - |le) is & Banach space and Cp[I] is a complete metric space,
where the metric is induced by || - || o-

2. Construction of FIFs

The approach to constructing FIFs in this section has been treated in [18]. We show the
details here for readers’ convenience.

Let w € C[I] and D = {(tk,yx) : yx = u(tx),k =0,1,...,N}. For k = 1,..., N, let
Ly : Jx — I be a homeomorphism such that Lg(t;)) = tx—1 and Ly (t;x)) = tx, and
define My, : J x R — R by

My (t,y) = sry + u(Lg(t)) — skpr(t), (2.1)

where —1 < s < 1 and py is a polynomial on Ji such that pi(tjr)) = yjr) and
Pr(tur)) = Yuwy- Then My (x> vik)) = k-1, Mr(tiry» Yue)) = Y&, and

| My (t,y) — My (t,y™)| < |sklly —y*|for all ¢t € Jiand y,y* € R. (2.2)
Define Wy, : Jp xR — I x R by Wi (t,y) = (Lk(t), Mk (t,y)). For h € Cp[I] and for each

k=1,...,N,let Ay = {(t,h(t)) : t € Jip}. Then Wi (Ax) = {(Lr(t), Mx(t,h(¢))) : t €
Ji}. Since Ly, : Ji, — I is a homeomorphism, Wy (Ax) can be written as
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Wie(Ar) = {(t; My (L (), (L (1)) £ € I}
Hence Wy (Ayg) is the graph of the continuous function hy : I — R defined by
hi(t) = Mi(L (1), h(Li ().

It is easy to see that hy(tk—1) = yr—1 and hg(tx) = yi. Define a mapping T : Cp[I] —
Cp[I] by T(h)(t) = hi(t) for t € I, that is, for h € Cp[I] and t € I,

T(h)(t) = skh(L; ' (1)) + u(t) — skpr(Ly ' (1) (2.3)
For hy, hg € Cpll], we have

|T(h1) = T(h2)lle < sllh1 = h2lco, s =max{|si],...,|sn][}.

Since 0 < s < 1, we see that T is a contraction mapping on Cp[I].

Theorem 2.1. (Luor [18, Theorem 2.1]). The operator T given by Equation (2.3) is
a contraction mapping on Cpll].

Definition 2.2. The fived point fi,) of T in CplI] is called an FIF on I corresponding
to the continuous function u.

The FIF f,) given in Definition 2.2 satisfies the equation for k =1,..., N:

Ju(t) = sk{f[u]@kl(t)) —pk<Lk1<t>>} Fult), tel (2.4)

If s = 0 for all k, then f,; = u. Therefore, f],) can be treated as a fractal perturbation
of u.

3. RKHSs of FIF's

3.1. Introduction to RKHSs

We give a brief introduction to RKHSs. We refer the readers to [6] and [28] for more
details. Recall that a m x m real matrix A = [a; ;] is positive semi-definite if and only if
for every aq, ..., a, € R we have that Z:'fj:l ozojag ;> 0. We call A positive definite if
and only if for every a, ..., o, € R with af+---4a7, # 0, we have 3" _ | ayaja; ;5 > 0.

Let Q be a set. The function k : Q x Q@ — R is positive semi-definite (definite) if for
every positive integer m and every choice of distinct points tq,...,%,, in 0, the matrix
[k(t;,t;)] is positive semi-definite (definite). Here, we call k a kernel if it is symmetric and
positive semi-definite. By Moore’s theorem (Paulsen and Raghupathi [28, Theorem 2.14]),
there exists an RKHS H of functions defined on €2 with an inner product (-, -)% such that
k is the reproducing kernel for H. For each ¢ € Q, define ki(2) = k(z,t), z € Q. Then
k: € H and for f € H, we have f(t) = (f,ke)n. Moreover, k(z,t) = ki(z) = (ke ko)n
for ¢,z € Q, and the set span{k; : t € Q} is dense in H.
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Throughout the following subsections, we suppose that N, to,...,tn, tj1), - -+ Ljn)s
ti(1)s - -+ tivy and s1,..., sy are all fixed numbers, and Ly, ..., Ly given in §2 are fixed
functions. Let F be the subset of C[I] such that each f in F is an FIF corresponding
to some function u € C[I] and is constructed by the approach given in §2 with linear
polynomials py for k =1,... N.

3.2. F is a linear space

If uw = 0, the interpolated data set is {(tx,0) : k =0,1,..., N} and each py is the zero
polynomial on J;. The mapping T defined by Equation (2.3) is reduced to T'(h)(t) =
skh(Ly'(t)) for h € CplI]. The zero function is the fixed point of T and hence fj,) =
0eF.

Suppose that f,g € F and a,b € R. Then f and g are FIFs on I corresponding to
some u and v in C[I], respectively. For t € I}, we have

F(t) = sif(L () = sepr(Ly (1)) + ult), (3.1)

9(t) = skg(Ly ' () — skqe(Ly ' (t)) + v(t), (3.2)

where py is a linear polynomial on Jy such that pr(t;)) = u(tjm)), Pe(ti)) = u(tin)),
and g is a linear polynomial on Jy such that qx(tjk)) = v(tim)), a(tir)) = v(tiw))-
Then

(af +bg)(t) = si(af + bg)(L,?l(t)) — sp(apy + bqk)(lel(t)) + (au + bv)(t), te€ I.

Since apy + bgy, is a linear polynomial that satisfies

(apr +bar) (tjxy) = (au +bv)(t;k)), (@pr + bar)(tyw)) = (au + bv)(tym))

for k =1,..., N, we see that af + bg satisfies Equation (2.4) with fi,, px, and u being
replaced by af + bg, apr + bgr and au + bv, respectively. This shows that af + bg is an
FIF in F corresponding to the function au + bv, and hence F is a linear space.

3.3. One-to-one correspondence between C[I] and F

Note that functions in F only depend on functions in C[I]. When u € C[I] is given,
the data set for interpolation, D = {(tx,yx) : yx = u(ty),k =0,1,..., N}, and all linear
polynomials py are determined. Then, the unique FIF f},) in F can be obtained by the
approach in §2.

Theorem 3.1. The mapping ® : C[I] — F defined by ®(u) = f1,) is a one-to-one and
onto bounded linear mapping.
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Proof. We first show that ® is bounded. For u € C[I] and t € I,
[ fru) (8) = u(t)] = [sel[fruy (L (1) = pi(Ly (1))

< Isi) (sup ()] + sup |pk<z>|)
ZEJk ZE.]k
< Isu) (nf[u]nm + maxc{fulty ), |u<tl(k>>|}).

This implies that || fr,) — ullee < /| fulleo + 8ltlloo, Where s = max{|si],...,|sy[}. Then

[ frlloo < [ ffu) — wlloo + llulloe < sl frulloc + (s + Dullo
and hence

2@ = Uil < (122 ) hules v L (33)

The boundedness of @ is obtained by Equation (3.3).

Suppose u,v € C[I] and ®(u) = fi,, ®(v) = fl)- Then fp,) and f},) satisfy
the Equations (3.1) and (3.2) with f and g being replaced by f},) and f,), respectively.
Then, for a,b € R, afp,) +bf}, is in F and is constructed from the function au + bv. This
shows that ®(au + bv) = afj,) + bf) = a®(u) + bP(v), and P is linear.

The mapping @ is onto since every f in F is constructed from a function v in C[I].

In the following, we show that ® is one-to-one. Since ® is linear, we prove that
fiu) = 0 only when u = 0. If fj,(t) = 0 for all ¢ € I, then the interpolated data set
is {(tx,0) : k = 0,1,...,N} and then each py is the zero polynomial on Ji. Since fiy
satisfies Equation (2.4), we have u(t) =0 for all ¢t € I. O

Note that F is a subset of C[I] and each function in F is an FIF constructed by the
approach given in §2. For fixed numbers N, to,...,tn, tj1), - - Ljvys Li)s -+ iy,
s1,...,8ny and for fixed functions Lq,...,Ly, Theorem 3.1 shows that each function
f € Fis an FIF corresponding to a function u € C[I], and for different functions in C[I],
we get different FIFs.

Corollary 3.2. If ui,...,u, are linearly independent functions in C[I], then f|
-+ flun) are linearly independent.

u]s

Proof. Let Y 1", aifj,,) = 0. Since fl,,) = ®(u;) for each 7 and @ is linear, we have
®(>" | au;) = 0. This implies Y., a;u; = 0 by the one-to-one property of ®. Since
U1, ..., U, are linearly independent, we have a; = --- = a,, = 0. O

3.4. Finite-dimensional RKHSs of fractal interpolants

Suppose that an inner product (-,-)r on F is defined. Let B = {¢o,¢1,...,¢}
be a linearly independent set of functions in F and let Fg be the subspace Fp =
span{¢o, ¢1,...,¢,}. Then Fp is a finite-dimensional Hilbert space with a basis B.
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Let A = [A4, ;], where A; ; = (¢s, ¢;) 7. By [28, Proposition 2.23], A is a positive definite
matrix; hence, A is invertible. Define

=3 6 )m(t)Bim, i tET, (3.4)

=0 m=0

where the matrix B = [Bj,,] is the inverse of A. Here, we show that k is positive
semi-definite. Since B is symmetric, let BY/? be the matrix such that B/?B'/? = B.
Let ¢ be any positive integer and let z1, ..., z; be any choice of distinct points in I. Let
U = [¢;(2;)]- Then for any column vector d = [d1, ..., d,]T in RY,

14
> dpdk(zp, zy) = dT¥"BYUd = (B'/*wd)” (B'/2¥d) > 0.
p=1q=1

Let k:(-) = k(-,t) and we write k; in the form

Z(Z O (OB )65 (35)

7=0

Then for f=Y)_,ar¢r € Fgand t € I,

(k) 7 = znjia (Z .t ) (Orr 65) 7

=323 auomi (ZA,W Bin) = L aen) = £, (36)
=0 m=0 k=0

[

We also have k(¥',t) = ki (¢') = (ky, ky) 7 for t,t' € I.

Theorem 3.3. The space Fg is a finite-dimensional RKHS with the reproducing kernel
k defined by Equation (3.4).

By Equation (3.5), we have
U
Z(Zcbm 2) m)gbj, i=0,1,...,N. (3.7)
m=0

In general, ky, ..., k¢, may not be linearly independent. Since each ki, is a function in
FB, Kiy, - - ke are linearly dependent when n < N.

Proposition 3.4. Let K = [k(t;,t;)] and V; = [¢o(t:), p1(ti), .-, ¢n(t:)]T fori,j =
0,...,N. Then, the following three statements are equivalent.
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(1) kg, .- -, key are linearly independent.
(2) The column vectors Uy, Uq,..., Uy are linearly independent.
(3) The matriz K is positive definite.

Proof. We first show that statements (1) and (2) are equivalent. Suppose that

n N n
COktO 4+ .o+ CthN = Z (Z Z CiBj,mQSm(ti))(,bj =0.

§=0 “Ni=0 m=0

Since ¢, ..., ¢, are linearly independent, we have BUC = 0, where B = [B;,,], C =
[co,...,cn]T, O is the zero column vector, and ¥ = [¢,,(¢;)] is the matrix with column
vectors W;, © =0,..., N. Since B is invertible, we have ¥C = 0. Therefore, k¢, .. ., ktN
are linearly independent if and only if the equation ¥C = 0 has only one solution, ¢; = 0
for:=0,...,N, if and only if Wy, Uy,..., ¥y are linearly independent.

The following shows that statements (1) and (3) are equivalent. Since k(t;,t;) =
(ktj,kti>; fori,j=0,...,N, we see that, for ag,...,ay € R,

2
k|l >0.  (38)
_F

N N
ZZaiajk(ti,t <Za]kt ;Zazkt > -
F

i=0 j=0 =0

The matrix K is positive definite if and only if for every ag,...,ay € R with a3 +
-+ a3, # 0, we have Zij\io Z;V:o a;ok(t;, t;) > 0. Then statements (1) and (3) are
equivalent and can be obtained by Equation (3.8). O

If N is large, functions k¢, ..., k¢, are usually linearly dependent. In the following,
we investigate the dependence of these functions. Let u; = ®7!(¢;) for j = 0,1,...,n
and U; = [uo(t;), ur(ts), ..., uy(t;)]T for i = 0,1,...,N. Since u;(t;) = ¢;(t;), we have
U; = U, for each ¢, where ¥; is given in Proposition 3 4.

Proposition 3.5. If k;; = Y77, ﬁikt ) where B; # 0, §,r(i) € {0,1,...,N} and
r(i) #0 fori=1,...,s, thenUs =Y ;_, & . The converse is also true.

Proof. By Equation (3.5), we have

z(z¢m 5By )@ziﬁi{i(z% B )}

7=0 i=1 7=0

n
-3 (303 et B ),

7=0 “m=0 i=1

This implies

Z{ > Gmlts)Bim — Y Zﬁmm(trm)Bj,m}qﬁj = 0. (3.9)
] m=0 i=1
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Since ¢q, ..., ¢, are linearly independent, we have

n s
Z <¢7n té Z Bl¢m(tr(z))> Bj,’m = Oa .] = 07 17 BERPR/R (310)
=1

m=0

Then
B(Vs — [¥,1),..., ¥r(9)B) =0,
where B = [Bj..], 8 = [B1,...,8s)7, and 0 is the zero column vector. Here ¥, =
[o(te), ¢1(tz) oy Oy(te)]T for £ = 6,r(1),...,r(s). Since B is invertible, we have U5 =
i1 BiV,¢iy. The equalities U; = ¥; for each i show that Us = 37, Billy()
Conversely, if Us = >0, Billri), then Equation (3.10) holds and we have
Equation (3.9). This implies k;; = Z -, Bik tiiy O

4. Curve fitting problems

Let D = {(tx,yr) : k = 0,1,..., N} be a given data set. Suppose that t;(1, ..., t;(n),
i1y, - - tivy and s1,..., sy are all fixed numbers, and Ly, ..., Ly given in §2 are fixed
functions. Let F be the space of FIFs that are constructed by the approach given in
§2 with a function u € C[I], where I = [to,tn], and linear polynomials p; on J; =
[tj(k)7tl(k)] such that pk(tj(k)) = u(tj(k)) and pk(tl(k)) = u(tl(k)) for k =1,...,N. Let
B = {¢o,$1,...,¢,} be a linearly independent set of functions in F and let Fg =
span{¢o, ¢1, ..., ¢, }. Suppose that an inner product (-, ) on F is defined. Theorem 3.3
shows that Fp is a finite-dimensional RKHS with a basis B, and the reproducing kernel
k is given by Equation (3.4).

Let V = {wo,v1,...,v¢} be a linearly independent set of functions in C[I] such that
BUYV is also linearly independent. Let Cy = span{vg, v1, ..., v }. Suppose that an inner
product (-, -)c on C[I] is defined. By a similar approach given in § 3.4, we see that Cy, is
also a finite-dimensional RKHS with the kernel k* defined by

£ ¢
K, 0) =Y > 0V on®)B),, . tel (4.1)

§=0 m=0

where the matrix B, ] is the inverse of A* = [(v;,v;)c].
Consider the problem of learning a function in Cy @ Fp from D by minimizing the
regularized empirical error

N

ﬁ > (e = (folte) + f8(t))* + MG + Al f5l5 (4.2)
k=0

for fyy € Cy and fg € Fp with fixed non-negative regularization parameters A\; and As.

Here || fvll&; = (fv, fv)c and || fsl% = (fs, f5) 7. The function fy + fp is in Cy & Fg,
and the first item of Equation (4.2) is the empirical mean squared error. It is often to add
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a complexity penalty item to the objective function to avoid overfitting. In the RKHS
approach, we may choose the squared norm of functions in RKHS as the penalty item. In
this paper, the penalty item is given by 1| fv[|2 + A2|| fsll%- || fv||Z and | f5]|% measure
the complexity of the functions, and A\; and Ao control the strength of the complexity
penalty. If A\; = A2 = 0, minimizing Equation (4.2) is reduced to the least mean squared
error problem. If there exists an interpolation function for D in Cy, & Fg, it is a solution
for the least mean squared error problem, and the empirical mean squared error is equal
to 0.

Let k and k* be the kernels defined by Equations (3.4) and (4.1), respectively. Let
Fp = span{ky, ke, ..., ki } and Cf = span{k; ki, }, where ky; is given by
Equation (3.7) and

to) tl,...,

¢ ¢
ki = Z(Z vm(ti)B;:m>vj7 i=0,1,...,N. (4.3)

7j=0 “m=0

We see that Fp is a subspace of Fi and C} is a subspace of Cy.
For fp € F5, let Pz, (fp) be the orthogonal projection of fs on Fp. Then

fB(tl) - P]:D(fB)(t'L) = <f3 _P]:D(fB)ukti>]: =0, i= 07"'7N7

and hence f5(t;) = Pr,(fs)(t:) for i = 0,...,N. Similarly, for fy, € Cy, fy(t;) =
PC%( fv)(t;) for each i, where PC%( fv) is the orthogonal projection of fy on C5,. Since
IPrp (fe)ll7 < |Ifsll7 and [Pex (fv)lle < fvlle, we see that if a function fy + f5
minimizes the regularized empirical error given in Equation (4.2), where fy € Cy and

fB € Fi, then fy € C5 and fg € Fp. Therefore, a solution of Equation (4.2) can be
written in the form

N N
f=f+fs=) ki, +Y_ ak,. (4.4)
m=0 §j=0
This implies
N
Z% (tirt;) Zajk(ti,tj) i=0,1,...,N,
j=0

and

N N N N
Il2 = (o oo = <Z%kzj, Z%k;>c S k()

7=0 =0 7=0 i=0
N N N

1 fsll% = (f5: f8)F = <Z Oéjktj,zaiktz—> = Zzajaik(tiatj)'
=0 i=0 F =0 i=0
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Then, Equation (4.2) can be reduced to

1 N N 2
12(%_27] tzat Zajk t“t >
=0 7=0 ]:O

+/\122%% (ti,t; +)\222aj0¢1 (ti, t;) (4.5)

7=0 =0 7=0 =0

It is not hard to see that the solutions {v;} and {«a;} that minimize Equation (4.5) satisfy
the following equations

N , N N
Z (Z vk (i, t5) + Z ajk(ti,t;) — yi) K" (i, te)
=0 =0

1=

N

F AN+ 1) 7k (ti, te) =0,
=0
N N N
Z(Z YK (tisty) + > ajk(ti, t) — yi) k(ti, tn)
i=0 \j=0 =0

N
+ XN+ 1)) ak(ti,tn) =0,
=0

for tn = 0,1,...,N. Let D = [y0,7,...,7]%, C = [ap,a1,...,an]T, Y =
[Yo,1,---,yn]T, K = [k(t;, t;)], K* = [k*(t;,t;)], and let O be the zero column matrix.
We can write the equations in the matrix forms

K*(K*D + KC — Y) + Ay (N + )K*D =0, (4.6)

K(K*D + KC —Y) + A2(N + 1)KC = 0. (4.7)
Putting the two matrix equations together, we have
K* 0 ( K* K )
0 K K* K

Here I is the (N 4+ 1) x (N + 1) identity matrix and 0 is the (N + 1) x (N 4+ 1) zero
matrix. If [DT CT]7 is a column matrix that satisfies Equation (4.8), then

M0
0 I

D
C

K* 0
0 K

Y

+(N+1) ylo @9

f=1K. .k D+ [k, Ky ]C (4.9)

is a function in Cy @ Fp that minimizes Equation (4.2).
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If K* and K are invertible, then Equations (4.6) and (4.7) imply AyD = A2C. In the
case that Ay = 0 and A\ # 0, we have v, =0 for m =0,..., N, and f € Fp. Similarly,
in the case that \; = 0 and Ay # 0, we have o; = 0 for j = 0,...,N, and f € Cy. If
Aleg#O,thenD:C.

The empirical error defined in Equation (4.5) is equal to

———||Y - K*D — KC||3 + \,D"K*D + X\,C"KC

N +1
1
= m(YT —-DTK* - CTK)(Y - K*D — KC) + \;DTK*D + A\, CTKC
= %HYT(Y — K*D - KC). (4.10)

The last equality is based on Equations (4.6) and (4.7). If K* is invertible, then
Equation (4.6) implies that Y — K*D — KC = A1 (N + 1)D, and Equation (4.10) can
be reduced to A\;YTD. Similarly, if K is invertible, then Equation (4.7) implies that
Y — K*D — KC = M\2(N + 1)C, and Equation (4.10) can be reduced to A;YZ C.

Let @ be the operator given in Theorem 3.1. For the basis B = {¢q, ¢1,..., ¢y} of the
RKHS Fg, let U = {u; : u; = ®71(¢;),i = 0,1,...,n}. Let Cy = span{ug,u1,...,uy,}
If we choose (-, )¢ to be an inner product on Cyy, then Cyy is a finite-dimensional RKHS
with the kernel k defined by

7 7
=3 > um®ui(t)Bjm, t,t €1, (4.11)

m=0 j=0

where the matrix [B; ] is the inverse of A = [(u;, uj)¢]. Consider the problem of learning
a function in Cy & Cyy by minimizing the regularized empirical error

N
Z yk — (folte) +u(te)® + Ml llE + Azllullg, (4.12)
k:

where fy € Cy and u € Cy. In the following, we show that if we define (f, g)r =
(®~L(f),® (g))c for f,g € F, and if fy +u minimizes Equation (4.12), then fy + ®(u)
minimizes Equation (4.2). Suppose that fy + v minimizes Equation (4.12). Then by a
similar approach, u can be written in the form u = Zio dif(ti, where

lEti_Z(Zum ; )u], i=0,1,...,N, (4.13)

7=0
and the vectors D and C = [Go, A1, .., an]T satisfy
K* 0| (|K* K MI0 D K* 0| |Y
- ( S+ (v+1) | ) _ | = ~ , (4.14)
0 K K* K 0 Al C 0 K| |Y
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250 1

200 4

150 A

100 +

L] Ll L] T

0 2 - 6 8

Figure 1. Monthly mean total sunspot numbers.

where K = [k(t;,t;)]. Since Ap; = (bmsd5) 7 = (Um,uj)c = Amj, A = A and then
[Bjm] = [Bjm]- By tm(t;) = ém(ts), m = 0,1,...,n7 and i = 0,1,..., N, we have
®(ky;) = ke, for each i. By Equations (3.4) and (4.11), k(t;,t;) = l~<(tl,t ) for each i, j
and hence K = K. This implies that Equations (4.14) and (4.8) have the same solutions.
Note that | ®(u)||% = |lul|Z and ®(u)(tx) = u(ty) for k =0,1,..., N. Therefore, if fy +u
minimizes Equation (4.12), then fy, + ®(u) minimizes Equation (4.2). In general, this
conclusion may be false if we define (-, -) 7 in another way.

Remark 4.1. Gaussian process regression is a Bayesian-based machine learning model
that produces a posterior distribution for an unknown regression function [29]. The pos-
itive semi-definite kernel k defined by Equation (3.4) can be applied to Gaussian process
regression as the covariance function. Applications of FIF's and k to the Gaussian process
are interesting and valuable directions for future research.

5. An example

5.1. Data description

The monthly mean total sunspot number is obtained by taking the arithmetic mean of
the daily total sunspot numbers over all days of each calendar month. The data set we
used in our example is the series of monthly mean total sunspot numbers from 1990/01 to
2017/01. There are 325 data in total. These data are open and available on the webpage
https://www.sidc.be/SILSO/datafiles.

We choose the monthly mean total sunspot numbers for 1990/01, 1993/01,..., 2014/01,
and 2017/01 as our data in D. To simplify our example, we set D = {(k,yx) : k =
0,1,...,9}. The data curve of the monthly mean total sunspot numbers and data points
in D are shown in Figure 1.
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Table 1. Values of parameters.

Liu

S1 52 83 S4 55

56

St 58

S9

-0.6 0.2 0.2 -0.8 —-0.5

0.1 0.1 —0.6

0.3

200 1

150 -

100 H

® Raw Data
=~ The Graph of f

0 2 4

Figure 2. Fractal curve of fv + fs(A1 = 0.02, A2 = 0.03).

300

250 1

200 1

150

100 -

® Raw Data
= The Graph of f

0 2 4

6

Ll

8

Figure 3. Fractal curve of fv + fe(A1 = 0.02,\2 = 0).

Define (f,g)r = [, f(t)g(t)dt for f,g € F.For k=1,...,9,let J, = I =[0,9] and let
Ly, be the linear polynomial that satisfies the conditions Ly (0) = k — 1 and Lg(9) = k.
For j =0,1,...,9, let u; be the Gaussian function defined by
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® Raw Data
200 1 —— The Graph of f
150 A
100 A
m .
0 g
0 2 4 6 8
Figure 4. Fractal curve of fv + fe(A1 = 0, A2 = 0.03).
800 1 ® RawData
- The Graph of f
600 1
400 -
200 1
0 e
_200 E

0 2 4 6 8
Figure 5. Fractal curve of fy + fs(A1 = 0, 2 = 0.0).

—] h>0. (5.1)

In this example, ¢t; = j, and we set h =0.7. We construct ¢; = ®(u;) by the approach
given in § 2 with linear polynomials pj and parameters si given in Table 1. We also define
<fa g>C = f[ f(t)g(t)dt for fag € Cv and let
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g ® Raw Data
200 - =~ The Graph of f
L ]
150 A
<
100
m E
0 -
0 2 4 6 8
Figure 6. Fractal curve of fy (A = 0.02).
250
® Raw Data
= The Graph of f
200 -
150
100 H
50 -
0 -
0 2 4 6 8

Figure 7. Fractal curve of fg(A2 = 0.03).

it

v; (%) :cos<m>, j=0,1,...,¢&

In this example, |I| =9 and we choose £ =9.

Let k* and k be defined by Equations (4.1) and (3.4), respectively. By choosing A; =
0.02, A2 = 0.03, we compute the coefficients 5 and «; by Equation (4.8) and then
establish
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® Raw Data
20 = The Graph of f
200 -
150 A
100 -
50 e
0 g
0 2 4 6 8
Figure 8. Fractal curve of fv + fe(A\1 = 0.02, A2 = 0.03).
® Raw Data
300 - = The Graph of f
250 +
200 +
150 -
100
m .
0 e
0 2 4 6 8

Figure 9. Fractal curve of fy + fz(A1 = 0.02, A2 = 0.0).

9 9
f=+fs=) ki, +Y_ ak, (5.2)
Jj=0

m=0

where each kj =~ is given by Equation (4.3) with {=9 and each ktj is given by
Equation (3.7) with n=9. The graph of f is shown in Figure 2. The fractal curve with
A1 = 0.02 and Ay = 0 is shown in Figure 3. The fractal curve with A\; = 0 and A2 = 0.03
is demonstrated in Figure 4. If we choose \; = A2 = 0, we obtain the fractal interpolation
curve which is shown in Figure 5.
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® Raw Data
250 4 =~ The Graph of f
200 A
150 A
100
w .
0 .
0 2 4 6 8
Figure 10. Fractal curve of fv + fs(A1 = 0.0, A2 = 0.03).
400 A
® Raw Data
300 - —— The Graph of f
200 1
100 1
0 -
=100 -
_20.0 e
-300 A
0 2 4 6 8

Figure 11. Fractal curve of fy + fs(A1 = 0.0, A2 = 0.0).

A function in Cy that minimizes

N
1
N1 D (e = (o) + Ml Al
E=0
with N =9 is given by fy = Z?n:[) YK}, where D = [y0,71,...,70]"

K*(K* + A1 (N + DI)D = K*Y.
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b e Raw Data
200 - ——— The Graph of f
°
150 +
100
m -
0 -

T L] T

0 2 4 6 8
Figure 12. Fractal curve of fy (A1 = 0.02).

If we set A\; = 0.02, the graph of fy is shown in Figure 6.
A function in Fpz that minimizes

N
7 2ok = (s(t) + Xall fsll (5.5)
v
with N =9 is given by fg = Z?:o ajke;, where C = [ag, a1, ..., ag)T satisfies
K(K + A\o(N + DI)C = KY. (5.6)

If we set Ao = 0.03, the graph of fgz is shown in Figure 7.
Similar graphs of functions for the case £ =4 are given in Figures 8-12.

Remark 5.1. In this paper, the parameters {s;} given in Table 1 are just an example
of the graphs of fractal functions constructed by our approach. These parameters are
not good choices for the cases shown in Figures 5 and 11. Determining parameters {s}
plays an essential role in the theory of fractal functions and applications on curve fitting
problems. The study of finding the optimal values of {sj} for curve fitting problems is
one of our future research directions.
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