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Abstract. Kingman’s subadditive ergodic theorem is traditionally proved in the setting
of a measure-preserving invertible transformation T of a measure space (X, μ). We
use a theorem of Silva and Thieullen to extend the theorem to the setting of a not
necessarily invertible transformation, which is non-singular under the assumption that
μ and μ ◦ T have the same null sets. Using this, we are able to produce versions
of the Furstenberg–Kesten theorem and the Oseledeč ergodic theorem for products of
random matrices without the assumption that the transformation is either invertible or
measure-preserving.
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1. Introduction
The study of ergodic theorems is an important bridge between functional analysis and
probability theory. Originally proved by Birkhoff [4] in 1931, the Birkhoff ergodic theorem
has become the fundamental theorem in the study of measure-preserving transformations
of a measure space. The subadditive ergodic theorem, obtained by Kingman [10] in 1968,
is an important extension of this fundamental result, which has found many applications.
One important application is the Furstenberg–Kesten theorem [6], on the structure of
multiplicative cocycles from a measure-preserving transformation T of a measure space
(X, μ), with values in GL(d , R). The Furstenberg–Kesten theorem has been extended and
refined by the well-known Oseledeč ergodic theorem on the products of randomly chosen
matrices [11].

A statement of Kingman’s theorem is as follows.

THEOREM 1. (The sub-additive ergodic theorem) Let (X, B, μ) be a probability space,
and T : X → X an invertible and measure-preserving transformation. Let fn ∈ L1 be a
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sequence of functions satisfying the subadditivity condition: fm+n(x) ≤ fn(x) + fm(T nx)

for almost all x ∈ X. Then

lim
n→∞

fn(x)

n
= f (x) < ∞

exists μ-almost everywhere (a.e). Furthermore, f (x) is a T-invariant measurable function
over (X, B, μ).

There have been several proofs of this theorem since Kingman’s original version. See
[1] for a survey of these. Most of them have made the assumption that the measure μ

is invariant under the transformation T. However, [14, Theorem 3.4] is a version of the
subadditive ergodic theorem under the assumption that T is a Markovian transformation of
(X, B, μ).

Note that the theorem generalizes the following result in elementary analysis, which we
recover in the case where the fn are all constant functions.

LEMMA 1. If (fn) is a subadditive sequence then

lim
n

fn

n
= inf

n

fn

n
< ∞.

The aim of this paper is to use [14, Theorem 3.4] to extend the Furstenberg–Kesten
theorem and the Oceledeč theorem to the setting of non-singular transformations. The key
idea is to define subadditive sequences by

fm+n(x) ≤ fn(x) + ωn(x)fm(T nx)

where ωn(x) = (dμ ◦ T n)/dμ is the Radon–Nikodým derivative.
The non-singular version theorem of [14] allows us to conclude that

lim
n→∞

fn(x)∑n−1
i=0 ωi(x)

= f∗(x) < ∞

exists μ-a.e.
After some preliminary remarks and definitions in §2, we review [14, Theorem 3.4]

in §3. In §4 we state and prove non-singular versions of the Furstenberg–Kesten theorem
(Theorem 6) and the Oseledeč ergodic theorem (Theorem 7).

We expect these results to lead to new applications of these theorems in the non-singular
setting. One key application of the Oseledeč theorem in the measure-preserving case is the
calculation of Lyapunov exponents for random dynamical systems; see [2]. In future work,
we will extend this construction to non-singular random dynamical systems.

2. Preliminaries
The dynamical system (X, B, μ, T ) is said to be non-singular if the map T : X → X is a
non-singular transformation of (X, μ), that is, for any N ∈ B, μ(T N) = 0 if and only if
μ(N) = 0. Recall that the system is measure-preserving if μ(A) = μ(T A) for all A ∈ B.
By the Poincaré recurrence lemma, measure-preserving transformations are conservative.

The structure of non-singular transformations is given by the Hopf decomposition
theorem, a proof of which can be found in [1].
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THEOREM 2. (Hopf decomposition) Let T be a non-singular transformation. There exist
disjoint invariant sets C, D ∈ B such that X = C � D, T restricted to C is conservative,
and D = ⊔∞

n=−∞ T nW , where W is a wandering set. If f ∈ L1(X, μ), f > 0, then C =
{x :

∑n−1
i=1 f (T ix)ωi(x) = ∞ a.e.} and D = {x :

∑n−1
i=1 f (T ix)ωi(x) < ∞ a.e.}

The set C is called the conservative part of T. If the non-singular transformation is
invertible, so that T and its inverse T −1 are measurable, then we have both μ ◦ T −1 ∼ μ

and μ ◦ T ∼ μ. However, we do not assume further the transformation is invertible.
We will denote the Radon–Nikodým derivative d(μ ◦ T i)/dμ by ωi . Note that the

Radon–Nikodým derivatives must satisfy the cocycle identity

ωi+j (x) = ωi(x)ωj (T
ix)

for almost every x and for every i, j ∈ Z. Clearly, T is measure-preserving if and only if
ωi(x) = 1 for almost every x for all i.

It follows that for every f ∈ L1(X, μ)∫
X

f (x) dμ(x) =
∫

X

f (T x)ω1(x) dμ(x) =
∫

X

f (T nx)ωn(x) dμ(x).

If fn = ∑n−1
i=0 f (T ix)ωi(x), n ≥ 1, where ω0(x) = 1, it is easy to show that

fm+n(x) = fn(x) + ωn(x)fm(T nx). The Hurewicz ergodic theorem [7] is a generalization
of the Birkhoff ergodic theorem to the setting of non-singular conservative transforma-
tions.

THEOREM 3. (Hurewicz ergodic theorem) Let (X, B, μ) be a probability space, and T :
X → X a non-singular conservative transformation. If f ∈ L1(μ), then

lim
n→∞

∑n−1
i=0 f (T ix)ωi(x)∑n−1

i=0 ωi(x)
= f∗(x)

exists μ-a.e. Furthermore, f∗(x) is T- invariant and∫
X

f (x) dμ(x) =
∫

X

f∗(x) dμ(x).

Note that if T is measure-preserving, the left-hand side becomes

lim
n→∞(1/n)

n−1∑
i=0

f (T ix),

and so we recover the Birkhoff theorem.

3. Non-singular Kingman theorem
Thus, let T be a conservative non-singular transformation of a measure space (X, B, μ),
and denote by ωi the Radon–Nikodým derivative (dμ ◦ T i)/dμ.

Definition 1. We say that {fn} in L1(X, μ) is a subadditive sequence for T if, for all
integers m and n,

fm+n(x) ≤ fn(x) + ωn(x)fm(T nx).
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It is easy to see that if f is integrable, then

fn(x) =
n−1∑
i=0

f (T ix)ωi(x).

is subadditive.
Similarly, we say that {fn} in L1(X, μ) is superadditive for T if, for all integers m and

n,

fm+n(x) ≥ fn(x) + ωn(x)fm(T nx).

Observe that fn is a superadditive sequence if and only if −fn is a subadditive sequence.
We now state the non-singular Kingman theorem,

THEOREM 4. (Non-singular Kingman ergodic theorem) Let (X, B, μ) be a probabil-
ity space, and T : X → X a non-singular conservative transformation. Let fn ∈ L1

be a sequence of functions satisfying the subadditivity relation fm+n(x) ≤ fn(x) +
ωn(x)fm(T nx) for almost all x ∈ X. Then

lim
n→∞

fn(x)∑n−1
i=0 ωi(x)

= f∗(x) < ∞

exists μ-a.e. Furthermore, f∗(x) is T-invariant and∫
X

f (x) dμ(x) =
∫

X

f∗(x) dμ(x).

This theorem follows easily from the following fact, which follows from the maximal
ergodic theorem:∫

X

lim sup
n→∞

fn∑n−1
i=0 ωi(x)

dμ ≤
∫

L dμ ≤
∫

X

lim inf
n→∞

fn∑n−1
i=0 ωi(x)

dμ

where L is

lim
n→∞

fn∑n−1
i=0 ωi(x)

.

Proof. Theorem 3.4 of [14] states that if {fn} is subadditive and {gn} is superadditive, the
limit

lim
n→∞

fn

gn

= limn→∞(1/n)Ehμ[fn/h|I]
limn→∞(1/n)Ehμ[gn/h|I]

for any positive μ-integrable function h (where I is the invariant σ -algebra). In our case,
we may take h = 1, since X is a probability space, and noting that gn(x) = ∑n−1

i=0 ωi(x) is
a superadditive sequence of non-negative functions, the result follows.

We would like to thank the referee for pointing out this elegant proof of the theorem.
Silva and Thieullen’s proof of their Theorem 3.4 uses a maximal function argument: their
Lemma 2.4 extends the maximal ergodic theorem to subadditive sequences. Using it, we
obtain the following maximal function estimate for non-singular actions.
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THEOREM 5. Suppose that (fn) is a subadditive sequence of functions satisfying the
integrability condition f +

1 ∈ L1, and that p ≥ 1 an integer. Define

A = {x ∈ X : fk(x) ≥ 0 for all 1 ≤ k ≤ p}
and

B = {x ∈ X : fk(x) > 0 for some 1 ≤ k ≤ p}.
Suppose further that for all integers n ≥ p and for almost every x ∈ X we have

fn ≤
n−1∑
i=0

f1 ◦ T iχA ◦ T iωi +
n−1∑

i=n−p

‖f1 ◦ T i‖ωi

and

f +
n ≤

n−1∑
i=0

f1 ◦ T iχB ◦ T iωi +
n−1∑

i=n−p

‖f1 ◦ T i‖ωi .

Then

inf
n≥1

(
1
n

) ∫
fn dμ = lim

n→∞

(
1
n

) ∫
fn dμ ≤

∫
A

f1 dμ,

0 ≤ lim
n→∞

(
1
n

) ∫
f +

n dμ ≤
∫

B

f1 dμ.

Many proofs of the Kingman theorem deduce it from a maximal inequality; see [8, 9].
There are other types of proofs [3, 15] which do not rely on a maximal inequality. One can
also follow these approaches, replacing the quantity 1/n with 1/�n(x), where �n(x) =∑n−1

i=0 ωi(x), to find an alternative proof of Theorem 4.
Note that in the measure-preserving case, we have �n(x) = n, which gives us back the

standard Kingman theorem, Theorem 1: our theorem shows how to replace the quantity
1/n with 1/�n(x), which is the key to proving the multiplicative ergodic theorem below.

In the case where the measure μ is non-singular and has critical dimension α ∈ [0, 1]
(see [5]), we have that �n(x)/nα is non-zero a.e., and the conclusion of Theorem 6 is
equivalent to limn→∞(fn(x)/nα) = f (x) < ∞.

4. The multiplicative ergodic theorem
We now introduce the notion of cocycles with values in GL(d) of a non-singular
transformation T of (X, B, μ); see [13]. A cocycle with respect to the action of T is a
function � : N × X → GL(d) satisfying �(n + m, x) = �(n, x)�(m, T n−1x).

Cocycles can be generated by choosing a (random) d × d matrix, A(x), for each x ∈ X,
and defining

�(n, x) = A(x) × A(T x) × A(T 2x) · · · × A(T n−1x).

It is easy to see that this formula defines a cocycle. We will say that A(x) is the generator
of �.
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The operator norm of a square matrix A of dimension d is defined as

‖A‖ = sup
{‖Av‖

‖v‖ : v ∈ R
d\{0}

}
.

It follows directly from the definition that the norm of the product of two matrices is less
than or equal to the product of the norms of those matrices. Thus

‖�(n, x)‖ ≤ ‖A(x)‖‖A(T x)‖ · · · ‖A(T n−1x)‖.

If T is measure-preserving, the Furstenberg–Kesten theorem is an application of the
Kingman subadditive ergodic theorem, applied to the subadditive sequence:

log ‖�(n + m, x)‖ ≤ log ‖�(n, x)‖ + log ‖�(m, T mx)‖.

In the non-singular case, we define a (non-singular) subadditive sequence by

log ‖�(n, x)‖ ≤
n−1∑
i=0

ωi log ‖A(T ix)‖.

We define singular values and exterior powers before we introduce the theorem.

Definition 2. (Exterior power) Let V be a vector space with dimension r. For 1 < k < r ,
the k-fold exterior power of V is ∧kV , which is the vector space of alternating k-linear
forms on the dual space. The k-fold exterior power of a matrix A is ∧kA, which has the
following properties:

(i) (AB)∧k = A∧kB∧k;
(ii) (A∧k)−1 = (A−1)∧k;

(iii) (cA)∧k = c∧kA∧k , where c ∈ R.
The singular valued decomposition of exterior powers is ∧kA = ∧kV ∧k D ∧k U , where
∧kD is a diagonal matrix with entries {δi1δi2 · · · δik , 1 ≤ i1 ≤ · · · ≤ ik ≤ r}. The largest
singular value is δr−k+1 · · · δr , and the smallest value is δ1 · · · δk . The norm of ∧kA is
the largest singular value.

THEOREM 6. (Non-singular Furstenberg–Kesten theorem) Let � be a linear cocycle with
one side in discrete time over the non-singular dynamical system (�, F, μ, T ). Assume
that the generator A : X → Gl(d, R) of � satisfies

log+ ‖A‖ ∈ L1

Then the following statements hold.
(1) For each k = 1, . . . , d , the sequence

f k
n (x) = log‖∧k�(n, x)‖, n ∈ N,

is subadditive and f k+
1 ∈ L1(X, F, μ). That is,

f k
n+m(x) ≤ f k

m(x) + f k
n (T mx)ωm.
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(2) There is an invariant set �̄ of full measure and measurable functions γ k : X → R with
γ k+ ∈ L1(X, F, μ):

γ k(x) = lim
n→∞

log‖∧k�(n, x)‖∑n−1
i=0 ωi(x)

and

γ k(T x) = γ k(x), γ k+l(x) ≤ γ k(x) + γ l(x).

Let 
k be the function defined by 
k = γ k+1 − γ k , and let δk be the corresponding
singular value of �(n, x). Then


k = lim
n→∞

log δk(�(n, x))∑n−1
i=0 ωi(x)

.

Proof. Note that A(x) = �(1, x). For all k,

f k
n (x) = log‖∧k�(n, x)‖

is a subadditive sequence, and

f k
n+1(x) = log‖∧k�(n + 1, x)‖ ≤ f k

n (T x)ω1(x) + log‖∧kA(x)‖.

Hence subadditivity of f k
n (x) follows. By Theorem 4, we have

γ k(x) = lim
n→∞

log‖∧k�(n, x)‖∑n−1
i=0 ωi(x)

.

Since ‖∧k+l�(n, x)‖ ≤ ‖∧k�(n, x)‖‖∧l�(n, x)‖, γ k is a subadditive sequence. For
k = 1, . . . , d ,

log‖∧k�(n, x)‖ =
k∑

i=1

log δi(�(n, x))

where δi is the corresponding singular value of �(n, x).

We now consider the behaviour of ‖�(n, x)v‖ for v ∈ R
d as n → ∞. If A ∈ Md(R)

with transpose A∗, both A∗A and AA∗ are symmetric and positive semidefinite. Any
positive semidefinite and symmetric matrix S may be written in the form

S = C−1DC

where D is diagonal with non-negative entries in non-deceasing order and C is orthogonal.
The polar decomposition of a matrix A is

A = C(AA∗)1/2C′ = C′′(A∗A)1/2

where C′, C′′ are orthogonal matrices. Applying the polar decomposition to �(n, x) in the
theorem, we obtain

�(n, x) ≈ C′′
nAn(x)
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for some orthogonal matrix C′′
n . Since orthogonal matrices are isometries, we have

‖C′′
nv‖ = ‖v‖. Thus

‖�(n, x)v‖ = ‖An(x)v‖.

Returning to the symmetric matrix �(n, x)∗�(n, x), we know that �(n, x)∗�(n, x) =
C∗

nDnCn, and �(n, x) = Ln(Dn)
1/2Cn, and hence

lim
n→∞(�(n, x)∗�(n, x))1/2n = lim

n→∞ C∗
n(Dn)

1/2nCn.

If the limit exists, then there are an orthogonal matrix C = lim Cn and a diagonal matrix
D = lim D

1/2n
n . By Theorem 5, we see that limn→∞(log‖∧k�(n, x)‖/∑n−1

i=0 ωi(x))

converges for all k to −∞ or a finite limit. Hence limn→∞(log δi(�(n, x))/
∑n−1

i=0 ωi(x))

converges to a finite limit for every i. Now we can assume that D
1/2n
n converges as n → ∞.

By the monotonicity of 
i ,


r(x) ≥ · · · ≥ 
1(x).

There is a unique partition I, given by

I = {1 = i2 < i1 < · · · < ip < ip+1 = r + 1},
such that 
iq = 
iq+1−1 < 
iq+1 . This partition splits {1, 2, . . . , r} into finitely many
intervals [iq , iq+1 − 1]. If 
i = 
j , then they belong to same interval. Let �(I , q)(x)

be a vector subspace of R
r ; it is a union of the zero vector 0 and the set of all

eigenvectors corresponding to eigenvalues smaller than or equal to 
iq+1−1. It is easily
seen that �(I , 0)(x) is {0} and �(I , p)(x) is Rr . We see that C−1

n ei is an eigenvector of
(�(n, x)∗�(n, x))1/2 with eigenvalue δ2

i . We know that D
1/2n
n converges, but the question

is whether the vector space spanned by C−1
n ei converges. We will formulate a one-sided

multiplicative ergodic theorem which is based on Raghunathan’s version [12].

THEOREM 7. (Non-singular Oseledeč theorem) Let (X, S, m) be a probability space. Sup-
pose that T is a non-singular transformation and u : Z × X → M(r , R) is a measurable
cocycle over T such that log+ ‖�(1, )̇‖ ∈ L1(X, S, m). We set

B =
{
(x, v) ∈ X × R

r :
log ‖�(n, x)v‖∑n−1

i=0 ωi(x)
tends to a finite limit or − ∞

}

and

X′ = {x ∈ X|(x, v) ∈ B for all v ∈ R
r }.

Then there is a subset Y of X′ which has full measure and a sequence of functions 
1(x) ≤
· · · ≤ 
r(x) (taking values in R ∪ −∞) such that the following statements hold.

(i) Let I = {1 = i1 < i2 < · · · < ip < ip+1 = r + 1} be n + 1 tuples of integers.
Define Y (I) = {x ∈ X′|
i(x) = 
j(x) for iq ≤ i, j < iq+1 and 
iq (x) <


iq+1(x) for all q with 1 < q < p}. Then for all x ∈ Y (I), 1 < q < p,

�(I , q)(x) =
{
v ∈ R

r | lim
n→∞

log ‖�(n, x)v‖∑n−1
i=0 ωi(x)

≤ 
iq (x)

}

is a vector subspace of Rr with dimension iq+1 − 1.
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(ii) If �(I , 0) = {0} then

lim
n→∞

log ‖�(n, x)v‖∑n−1
i=0 ωi(x)

= 
iq (x)

for any vector v ∈ �(I , q)(x) − �(I , q − 1)(x).
(iii) For x ∈ Y , the sequence

A(n, x) = (�(n, x)∗�(n, x))1/2n

converges to a matrix A(x) ∈ M(r , R). The eigenspace of A(x) is the orthogonal
complement of �(I , q)(x) in �(I , q + 1)(x) corresponding to the eigenvalue
exp 
iq+1 .

LEMMA 2. Suppose that log+ ‖�(1, )̇‖ is a measurable function and T a non-singular
transformation. There is a set Y ⊂ X of full measure such that for every x ∈ Y , the
following statements hold.
(i) The sequence Sn = ∑

0≤q<n log+ ‖�(1, T q(x))‖/∑n−1
i=0 ωi(x) converges to a limit

a.e.
(ii) limn→∞ ‖�(1, T n(x))‖ = 0.

Proof. (i) This follows directly from the Hurewicz ergodic theorem.
(ii) By (i), the sequence Sn converges to a limit,

Sn =
∑

0≤q<n log+ ‖�(1, T q(x))‖∑n−1
i=0 ωi(x)

,

Sn−1 =
∑

0≤q<n−1 log+ ‖�(1, T q(x))‖∑n−2
i=0 ωi(x)

,

Sn =
∑n−2

i=0 ωi(x)∑n−1
i=0 ωi(x)

∑n−2
i=0 ωi(x)

∑
0≤q<n−1

log+ ‖�(1, T q(x))‖

+ log+ ‖�(1, T n(x))‖∑n−1
i=0 ωi(x)

.

Since n → ∞ and |Sn − Sn−1| → 0, we can conclude that

log+ ‖�(1, T n(x))‖∑n−1
i=0 ωi(x)

→ 0

for all x ∈ Y .

Now, given ε > 0, there exists N(ε, x) such that for all n > N ,

‖�(1, T n(x))‖ < exp
n−1∑
i=0

ωi(x)ε.

‖�(n, x)‖ satisfies the cocycle identity: �(n + 1, x) = �(1, T n(x))�(n, x).
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For a unit vector v ∈ �(I , q, n)(x),

‖�(n + 1, x)v‖ ≤ ‖�(1, T n(x))‖‖�(n, x)v‖,

‖�(n + 1, x)v‖ ≤ exp
( n−1∑

i=0

ωi(x)(
iq + 2ε)

)
.

Choose a unit vector v ∈ �(I , q, n)(x), and let v′ ∈ �(I , q, n + 1)(x) be the
orthogonal projection of v on �(I , q, n + 1)(x). The orthogonal complement of v′ in
�(I , q, n + 1)(x) has the form C−1

n+1
∑

i≥q+1−1 biei .

LEMMA 3. Given ε > 0, there exists N(ε, x), x ∈ Y , with the following property. There
is a unit vector v ∈ �(I , q, n)(x), for some number bi ∈ R and v′ ∈ �(I , q, n + 1)(x),
such that

v = v′ + C−1
n+1

∑
i≥iq+1

biei .

Then |bi | < exp{− ∑n−1
i=0 ωi(x)(
i − 
iq − ε)} for n ≥ N .

Proof. We have ‖�(n + 1, x)v‖ ≤ exp
∑n−1

i=0 ωi(x)(
iq + 2ε) by Lemma 2. Notice that

‖�(n + 1, x)v‖ ≥
∥∥∥∥

∑
i≥iq+1

|bi |�(n + 1, x)C−1
n+1ei

∥∥∥∥.

Now ‖bi�(n + 1, x)C−1
n+1ei‖ ≤ ‖ ∑

i≥iq+1
bi�(n + 1, x)C−1

n+1ei‖ as 
i is non-decreasing.
Hence

‖�(n + 1, x)v‖ ≥ ‖bi�(n + 1, x)C−1
n+1ei‖.

Now ‖�(n + 1, x)C−1
n+1ei‖ is the ith eigenvalue, since

‖bi�(n + 1, x)C−1
n+1ei‖ = |bi |‖Ln+1(Dn+1)

1/2Cn+1C
−1
n+1ei‖ = |bi |δi(�n+1(x)).

Let 
i be the limit of log δi(�n+1(x))/
∑n

i=0 ωi(x). It follows from the above that

‖�(n + 1, x)v‖ ≥ |bi | exp
(( n∑

i=0

ωi(x)

)
(
i − ε)

)
.

Thus 
i is in a bounded interval which is greater than 
iq , 0 < ε < 1. For large n, we may
assume

exp
(( n∑

i=0

ωi(x)

)
(
i − ε)

)
≥ exp

(( n−1∑
i=0

ωi(x)

)
(
i − 2ε)

)
.

Thus

|bi | ≤ exp −
( n−1∑

i=0

ωi(x)

)
(
i − 4ε − 
iq )

which completes the proof of the lemma.
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Lemma 3 shows that a vector in �(I , q, n)(x) can be combined with the projection on
�(I , q, n + 1)(x) and the orthogonal complement of �(I , q, n + 1)(x), that is,

C−1
n

iq+1−1∑
i=1

Kei = C−1
n+1

r∑
j=1

bj ej and vn = v′
m+1 + wm+1.

Now v′
m+1 is the orthogonal projection of vn onto �(I , q, n + 1)(x) and the norm of

v′
m+1 is given by

‖v′
m+1‖ =

∥∥∥∥vn − C−1
n+1

∑
i≥iq+1

biei

∥∥∥∥.

Since vn is a unit vector, we have the following upper and lower bounds for ‖v′
m+1‖:

1 −
∥∥∥∥C−1

n+1

∑
i≥iq+1

biei

∥∥∥∥ ≤ ‖v′
m+1‖ ≤ 1 +

∥∥∥∥C−1
n+1

∑
i≥iq+1

biei

∥∥∥∥.

We want to show that ‖vn+1 − vn‖ ≤ 2r exp{−(
∑n−1

i=0 )ωi(x)(
iq+1 − 
iq − ε)}.
LEMMA 4. If vn+1 ∈ �(I , q, n + 1)(x) is a unit vector and vn ∈ �(I , q, n)(x) satisfies
the conditions of Lemma 3, then

‖vn+1 − vn‖ ≤ 2r exp
{

−
( n−1∑

i=0

ωi(x)

)
(
iq+1 − 
iq − ε)

}
.

Proof.

‖vn+1 − vn‖ = ‖vn − vn+1‖ = ‖vn − v′
n+1 + v′

n+1 − vn+1‖
and

‖vn − v′
n+1 + v′

n+1 − vn+1‖ ≤ ‖vn − v′
n+1‖ + ‖v′

n+1 − vn+1‖.

It follows that

‖vn − v′
n+1‖ =

∥∥∥∥C−1
n+1

∑
i≥iq+1

biei

∥∥∥∥.

On the other hand, let v′
n+1 = avn+1, and we have 1 − ‖C−1

n+1
∑

i≥iq+1
biei‖ ≤

‖v′
m+1‖ ≤ 1 + ‖C−1

n+1
∑

i≥iq+1
biei‖. Thus

1 −
∥∥∥∥C−1

n+1

∑
i≥iq+1

biei

∥∥∥∥ ≤ a ≤ 1 +
∥∥∥∥C−1

n+1

∑
i≥iq+1

biei

∥∥∥∥.

Now ‖v′
n+1 − vn+1‖ = ‖(a − 1)vn+1‖, which is smaller than ‖C−1

n+1
∑

i≥iq+1
biei‖. We

thus have

‖vn+1 − vn‖ ≤ 2
∥∥∥∥C−1

n+1

∑
i≥iq+1

biei

∥∥∥∥.
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It follows that∥∥∥∥C−1
n+1

∑
i≥iq+1

biei

∥∥∥∥ ≤
∑

i≥iq+1

‖biei‖ ≤ r|biq+1 |

≤ r exp
{

−
( n−1∑

i=0

ωi(x)

)
(
iq+1 − 
iq − ε)

}
.

This completes the proof.

We will show that ‖vn+k − vn+l‖ is a Cauchy sequence. In fact, the sequence∑∞
i=l r exp{−(n + i)(
iq+i − 
iq − ε)} is the sum of a geometric series. Thus

‖vn+k − vn+l‖

≤
∞∑
i=l

‖vn+k − vn+l‖

= 2r
1

1 − exp{−(
iq+1 − 
iq − ε)
exp

{
−

( n−1∑
i=0

ωi(x) + l

)
(
iq+1 − 
iq − ε)

}

= C exp
{

−
( n−1∑

i=0

ωi(x) + l

)
(
iq+1 − 
iq − ε)

}
.

This shows that vn is a Cauchy sequence, as claimed.

LEMMA 5. Let {v1
n, v2

n, . . . , vi
n} be a collection of vectors which is a basis for

�(I , q, n)(x), where 0 ≤ i < iq+1. The sequence {�(I , q, n)(x)} has limit �(I , q)(x).
Furthermore,

‖vn+k − vn+l‖ ≤
k∑

i=l

‖vn+k − vn+l‖ ≤
∞∑
i=l

‖vn+k − vn+l‖.

Proof. By Lemma 4, we see easily that

‖vi
n+k − vi

n+l‖ ≤ C exp
{

−
( n−1∑

i=0

ωi(x) + max(k, l)

)
(
iq+1 − 
iq − ε)

}

for iq ≤ i < iq+1. Moreover,

‖vi
n − vi‖ ≤ C exp

{
−

( n−1∑
i=0

ωi(x)

)
(
iq+1 − 
iq − ε)

}

where vi is the limit of vi
n. The sequence {vi

n} converges to a linearly independent set
of vectors as n → ∞. �(I , q, n)(x) is the space spanned by {v1

n, v2
n, . . . , vi

n}. Thus
�(I , q, n)(x) → �(I , q)(x) as n → ∞.

Writing the matrix B = CnC
−1
n+k , a vector in the space �(I , q, n)(x) has the form

C−1
n ei which we can split into an orthogonal projection in �(I , q, n + 1)(x) and its
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orthogonal complement in �(I , q, n + 1)(x)⊥. By Lemma 3, C−1
n ei = C−1

n+1
∑r

j=1 bj ej .
Hence |Cn+1C

−1
n | = |bj | as ei is the standard basis. The inverse of Cn+1C

−1
n is CnC

−1
n+1.

Thus we have a similar decomposition of a vector in �(I , q, n + 1)(x), namely,

v = v′ + C−1
n

∑
i≥q+1

bi∗ei ,

where v′ ∈ �(I , q, n)(x) and C−1
n

∑
i≥q+1

bi∗ei ∈ �(I , q, n)(x)⊥. We set ai =
exp(
i − iε), and note that |CnC

−1
n+1| = |bi∗|. It then follows that

|bi∗| ≤ C exp −
( n−1∑

i=0

ωi(x)

)
(
i − 
iq − rε),

since we have a cycle of length r.

LEMMA 6. If vi ∈ �(I , q)(x), then log ‖�(n, x)(vi
n)‖/�(x) ≤ λiq (x).

Proof. Firstly, we can see that

lim sup(log ‖�(n, x)(vi
n)‖/�(x)) = lim

n→∞(log δi(�(n, x))/�(x)) = 
i .

If i < iq+1, we have lim sup(log ‖�(n, x)(vi
n)‖/�(x)) ≤ 
iq .

On the other hand, vi − vi
n = w + C−1

n

∑
i≥q+1

bi∗ei . For w ∈ �(I , q, n)(x),

lim sup(log ‖�(n, x)(w)‖/�(x)) ≤ 
iq . Hence

lim sup
log ‖�(n, x)C−1

n

∑
i≥iq+1

bi∗ei‖∑n−1
i=0 ωi(x)

≤ lim sup
log{C exp −(�(x))(
i − 
iq − rε) × δi(�(n, x))}

�(x)

= −
i + 
iq + rε + 
i = 
iq + rε

for i ≥ iq+1.
The triangle inequality implies that

‖�(n, x)(vi)‖ ≤ ‖�(n, x)(vi
n)‖ + ‖�(n, x)(vi − vi

n)‖ ≤ 2 exp
( n−1∑

i=0

ωi(x)

)
(
iq + ε),

and thus lim sup(log ‖�(n, x)(vi)‖/∑n−1
i=0 ωi(x)) ≤ 
iq .

LEMMA 7. If the vector vi is not in �(I , q − 1)(x), for large n, the projection vi′ belongs
to �(I , q − 1, n)(x) with ‖vi′‖ > c > 0. Then

lim inf
log ‖�(n, x)(vi)‖∑n−1

i=0 ωi(x)
≥ 
iq (x).

Proof. This proof is quite straightforward. We take a unit vector vi which is not in
�(I , q − 1)(x). There is a δ ∈ V such that vi + δ ∈ �(I , q − 1)(x). When n is large
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enough, the vector vi
n has projection vi′ in �(I , q − 1, n)(x) and orthogonal complement

vi ′′ ∈ �(I , q − 1, n)(x)⊥. We take the difference ‖vi − vi′‖ ≥ δ/2, obtaining

‖�(n, x)(vi)‖ ≈ ‖�(n, x)vi
n‖

≥ ‖�(n, x)(vi − vi′)‖

≥ δ

2
exp

( n−1∑
i=0

ωi(x)

)
(
iq (x) − ε).

Combining Lemmas 6 and 7, we can conclude that

lim(log ‖�(n, x)(vi)‖/
n−1∑
i=0

ωi(x)) = 
iq (x),

for vi ∈ �(I , q)(x) \ �(I , q − 1)(x). We now see that the eigenspace is C−1
n ei → C−1ei

and the eigenvalue is 
k(x) = limn→∞(log δk(�(n, x))/
∑n−1

i=0 ωi(x)), so that the limit
matrix A(x) = limn→∞(�(n, x)∗�(n, x))1/2n exists.
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