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1 I n t r o d u c t i o n 

To a quantum chemist with no particular background in astrophysics or as­
tronomy, a brief glance at journals and textbooks in these fields shows at least 
three areas where computational quantum chemistry has had a valuable impact: 
Interstellar cloud chemistry; stellar atmosphere modelling; and chemistry in ex­
treme conditions, such as at the surface of a neutron star. The first two uses are 
particularly suitable, since standard methods are directly applicable. 

For such problems, good calculations of potential energy as well as expecta­
tion values and matrix elements of dipole and other operators appears to be in 
demand. Many electronic states may be involved, at least a broad range of prob­
lems involve fairly small molecules, often radicals, and conformation regions far 
from equilibrium. Such problems are addressed by three methods originated in 
our laboratory, and known by the acronyms RASSCF (Restricted Active Space 
Self-Consistent Field, Malmqvist et al. 1990), RASSI (RAS State Interaction) 
and CASPT2 (Complete Active Space Perturbation Theory to Second Order-
Complete Active Space Perturbation Theory to Second Order, Andersson et al. 
1990; Andersson et al. 1992). 

The first method is an extension of the well-known CASSCF (Complete Ac­
tive Space SCF) method (Roos et al. 1980; Roos 1980). The RASSI is a versatile 
analysis method, (an extension of CASSI; Malmqvist & Roos 1989), whereby 
separately optimized RASSCF wave functions can be used as basis functions, 
for computing transition moments, defining diabatic states, etc. Finally, the 
CASPT2 method uses a CASSCF wave function as a multiconfigurational ze-
roth order wave function, and corrects for dynamic correlation to second order in 
energy. In contrast to most conventional perturbation techniques, it works well 
for arbitrary spin and symmetry, for excited states, etc., without any particular 
demands on the electronic structure of the root function. 

A rough sketch of computational quantum chemistry methods will be given, 
and against this background the methods will be briefly described with demon­
stration applications. 
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1.1 The Basic Problem: The Adiabatic Electronic Structure 

Quantum chemical problems are concerned with some aspect of the solution of 
the Schrodinger equation applied to a system of nuclei and electrons. The elec-
trodynamic field is imposed only as an external field. Approximate relativistic 
effects, and nuclear size effects, are incorporated by modifying the interactions. 
Any more sophisticated effects are added as corrections computed by perturba­
tion theory. The time-dependent Schrodinger equation, with nuclear and elec­
tronic coordinates Q and q, resp., reads 

i&!p(q,Q,0 = # * ( q . Q . O 
H = fn + fe + Vnn + Vee + Ve 

where the second line simply sums the contributions from kinetic energy of nuclei 
and electrons, the interaction among nuclei, among the electrons, and between 
nuclei and electrons, respectively. Those terms may include relativistic correc­
tions, and are believed to account for the physics of this finite system to a pre­
cision well in excess of that needed for all chemical and almost all spectroscopic 
applications. 

Practical solution of this equation preceeds in two steps. The hamiltonian 
is split into H = Tn + He. All terms (including nuclear-nuclear repulsion) that 
commute with the nuclear position operators have been included in the elec­
tronic hamiltonian He(Q), which is thus an operator on electronic wave func­
tions as function of the nuclear positions. Expanding He(Q) in a complete set 
of electronic basis functions, which depend on the nuclear coordinates, the full 
Schrodinger equation takes a form that involves only nuclei. 

A complete basis is never available. However, a practical and almost always 
sufficient basis is provided by the few lowest eigenfunctions of He(Q); this is 
called the adiabatic basis, and the Schrodinger equation becomes 

-i^4^ (2) 

where $K{<\, Q) and XK(Q, i) are the electronic and nuclear wave functions. The 
potential energy functions for the nuclear motion are just the energy eigenvalues 
Of #e(Q). 

So far, the treatment is formally exact. If the two matrix elements involving 
derivatives with respect to nuclear coordinates are neglected, we obtain the Born-
Oppenheimer (BO) approximation. When this is not valid, the equation can in 
practice still be solved using a few selected adiabatic wave functions as basis. 

Disregarding exceptional cases where non-BO effects must be included al­
ready from the beginning, we see that the problem has a very nice modularity: 
We first solve the electronic problem for relevant eigenstates. The result provides 
input for a number of other methods, which perform e.g. reactive scattering or 

(1) 
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ro-vibrational analysis. Such calculations have their own broad range of method­
ology and is also a part of the quantum chemistry repertoir. However, we will 
keep within the scope of electronic eigenstates. 

The basic requirement of quantum chemistry methods is then the ability 
to obtain, for any conformation of nuclei, the adiabatic electronic energy, and 
electronic matrix elements of various fairly simple operators, of any of the 
lower electronic eigenstates. The required differential accuracy depends on the 
problem, but is typically a few kJ/kmol in potential energy functions. Much 
higher accuracy can be demanded in spectroscopic applications, but may still 
be reached when errors cancel, or when matrix elements for small perturbations 
are wanted. Spectroscopy usually requires matrix elements of a broader range of 
operators. From a quantum chemist's viewpoint, the basic problems are similar. 

The general applicability, with a well-balanced description of different elec­
tronic structures, is a tall order. One cannot expect any single method to solve 
all problems. As a consequence, a large number of methods are used to obtain 
electronic energies. In the following, a brief overview is offered, on the under­
standing that it is not complete, and in some cases not well-informed as regards 
latest research status. 

2 Q u a n t u m C h e m i s t r y M e t h o d s in G e n e r a l 

Those methods which compute electronic eigenstate energies and properties can 
be subdivided into density functional and wave function methods, and the latter 
into configuration based methods (single- vs. multi-configurational) and explic­
itly correlated ("r12"-) methods. This subdivision is ordered by an increasingly 
detailed description of the system, and thus an increasing accuracy but also a 
rapidly increasing computation cost. 

Density functional theory expresses the minimum electronic energy for any 
specified electronic charge density function in the form of a so-called energy func­
tional. The exact functional is not known in any practically useful formulation, 
and its existence is just used as a justification for a variety of pragmatic approx­
imations. Recent improvements have made such methods useful for molecules, 
and since they are cheap and scale very favourably with molecular size, they 
may well be the only practical alternative for many problems. A number of use­
ful references can be found, e.g., in Clementi et al. 1991. A drawback is the lack 
of any systematic way to improve the result by larger calculations, and of a good 
indicator of the reliability of any specific result. 

Response and transition properties can also be computed by a range of other 
methods, which will only be mentioned in passing: In general, they use wave 
functions calculated by a specific wave function method, and use some of the 
theoretical and computational machinery of that method to obtain transition 
strengths and energies, ionization potentials etc. The accuracy in transition prop­
erties can surpass that obtained from simple matrix elements over the separately 
computed state functions. 
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The end result of methods described below is in general a set of potential 
energies and various electronic matrix elements, which are then expressed as 
parametrized functions of internal coordinates. 

2.1 Wave Function Methods 

Excepting density functional methods, we compute an approximation to the wave 
function. This is defined in terms of a large number of parameters, whose meaning 
are defined by some wave function model. The parameter values are optimized 
by requiring key properties of the exact wave function to be exactly represented 
in the model: usually the stationarity criterion for an energy eigenstate. The 
model should be able to reproduce the most important features of the exact wave 
function. A list of such features, in approximate order of diminishing importance, 
could be: 

1. A major part (overlapping by about 0.985", if n is the number of electrons, 
with the exact wave function) requires a few (typically 1-100) so-called de­
terminant functions, if those are properly chosen. At specific conformations, 
non-radicals may need only 1 (SCF). Dissociation or reaction paths require 
more. The entire chemistry, i.e. the set of all reaction and dissociation paths, 
for even a small number of atoms is rarely done, but may require thousands of 
determinants. A couple of hundred are needed to dissociate the Cr2 molecule. 
When more than one configuration is important, one speaks of static corre­
lation, or near-degeneracy effects. Other correlation effects are then called 
dynamic correlation. 

2. When an electron is close to a nucleus, the wave function has an electron-
nuclear cusp. 

3. When it is far away from the rest of the molecule, the wave function goes 
asymptotically to describe the ground state of the kation, properly symmetry 
coupled to an orbital with exponential tail describing the remote electron. 

4. The major effect of varying the position of one electron is to polarize the 
remaining electron system. This effect may be called dynamic polarization, 
or intramolecular dispersion. It affects most strongly the immediate vicinity 
of the electron, but is fairly long-range. It affects quite strongly also the 
core electrons, and the sigma skeleton of conjugated molecules, which are 
traditionally though of as rather inactive. 

5. Apart from this polarization, there is also an inter-electron cusp. This is of 
small importance to the energy, but affects some two-electron properties. 

In addition, it is usually quite important that dissociation gives asymptoti­
cally a properly spin- and symmetry-coupled sum of products, with factors that 
are energy eigenstates of the respective fragments (Size consistency). 

There are of course methods designed to solve one-, two-, or three-electron 
problems, which use specialized forms for the wave function. Excepting these, 
the universal ansatz is an expansion in Slater Determinant Functions (SDs) or 
Configuration State Functions (CSFs). The SDs are antisymmetrized products 
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of one-electron functions; the CSFs are linear combinations of SDs which have 
desired total spin and spatial symmetry. The expansion coefficients can be ex­
plicitly used as variation parameters, or implicitly defined as in Coupled Cluster 
or perturbation theory. 

On top of this expansion, correlation factors which depend explicitly on the 
interelectron distances can be used to introduce the interelectronic cusp, which 
improves the convergence rate of CSF or perturbation expansions, and which is 
crucial to sampling methods such as Quantum Monte Carlo. The latter type of 
methods are able to generate millions of electron positions statistically drawn 
from an ensemble that accurately represents the ground state wave function, and 
form a Monte-Carlo estimate of the energy. However, mainstream methods rely 
only on CSF expansions, where local features are very poorly represented, but 
where energies and most properties are obtained by integrals which are not very 
sensitive to these defects. 

2.2 Configuration Expansion Methods: Orbital Generation 

All methods considered here rely on a one-electron basis set, which must be 
able to reproduce the cusp and tail of items 2 and 3 above. This would seem 
to favor STO basis sets, with exponential functions similar to hydrogenic wave 
functions. However, contracted GTO bases, which are sums of gaussian functions 
instead, can easily fulfill these requirements in the C? sense, and are much easier 
to handle. For accurate pointwise evaluation of wave function (QMC) or density 
there is some justification for other bases in molecular problems, and then a 
better approach is to use some modifying factor times a standard gaussian basis 
set. The selected basis set, the "AO basis", is used to express molecular orbitals, 
or MO's. Modern basis sets are usually general contractions of the ANO type 
(Atomic Natural Orbitals, Almlof k Taylor 1987). 

Determination of suitable MO coefficients is done by SCF or MCSCF. One 
or more Slater Determinant functions (SD), or Configuration State Functions 
(CSF) are formed from the MOs. For any given such function, those MOs which 
are used to define it are called occupied, the other are unoccupied. The MO 
coefficients, describing the orbitals, are used as variational parameters. If more 
than one SD or CSF is used, there are in addition CI (Configuration Interaction) 
coefficients to express the wave function. The MO and CI coefficients are var­
ied to find a stationary energy expectation value. The usual orbital generation 
methods are: 

1. UHF ("Unrestricted" HF) . The spin-orbitals are restricted to have either 
spin up or down (a or /?). 

2. RHF (Restricted HF): All orbitals come in pairs, with a and /? spin but 
the same spatial dependence. They do not have to be occupied in pairs: 

3. High-Spin RHF: All singly occupied orbitals have a spin. 
4. OSHF (Open-Shell HF): A spin- and symmetry-coupled CSF is being 

optimized. This is rarely done nowadays, except in the High-Spin special 
case, where the CSF is a single SD. 
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5. MCSCF (Multi-Configurational Self-Consistent Field): A wave func­
tion composed of several or many CSFs is optimized. 

In a basis set approach, the orbital generator produces not only the set of 
occupied orbitals, but a complete set within the basis. Those which are doubly 
occupied in all configurations are inactive orbitals. Those that are never used 
are virtual, or secondary, orbitals. Those with varying occupancy in MCSCF, or 
open shells, are active orbitals. 

2.3 Correlation by CSF Expansion 

The SCF and MCSCF techniques give energies and properties which are often 
useful in their own right. In particular, for few-electron systems the MCSCF can 
include enough configurations to account not only for static correlation, but for 
intramolecular dispersion and some close-range dynamic correlation as well. The 
advantage is then that the orbitals are optimized together with the correlation 
treatment. To afford large-scale MCSCF for more than a few electrons, one 
must select the CSFs used as economically as possible. However, this is not easy 
when the selection is to be valid for several or many conformations and states. 
Moreover, such general MCSCF is plagued with existence of multiple solutions 
to the stationarity conditions. The most popular form of MCSCF is therefore 
the CASSCF (Complete Active Space) method, where all the CSFs possible 
with a given active space are included. Their number increases as a polynomial 
with the number of active orbitals, with leading degree equal to the number of 
active electrons. This dependence sets a sharp limit to the possibility of including 
dynamic correlation by merely increasing the active space. The CASSCF is thus 
followed by a calculation of remaining correlation energy by Cl-like or non-
Cl-like methods. With the former, I mean the well-known SDCI (Singles and 
Doubles CI) with single- or multi-configuration reference (MR-SDCI, or MRCI 
for short), and to methods which technically are simple modifications to SDCI: 
CPF and MCPF ([Modified] Coupled Pair Functional) in the single-configuration 
case, ACPF (Average CPF) in the multi-configuration case (Ahlrichs et al. 1985; 
Chong k Langhoff 1986; Gdanitz k Ahlrichs 1988). 

With these methods, wave functions are obtained in the CSF space generated 
by substituting at most two orbitals in the reference configuration(s). The SDCI 
is not size-consistent, so the modifications are preferred if many electrons are 
correlated. With the above methods, properties are easily obtained. Transition 
matrix elements are easily obtained only by the SDCI method, and assuming a 
common orbital basis for the states. 

With non-CI-like methods, there is a large difference between the single-
and multi-configuration treatments. In the single-configuration case, there is a 
wide range of different methods, with programs available and useful also for 
non-specialists. This is especially true for RHF-based methods for non-radicals 
(which could, technically speking, also be considered as CI-like). High-spin open 
shell cases can be treated as UHF, with some annoying loss of efficiency, while 
OSHF references are on their way but not yet firmly established. The most 
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important methods are MP2 (Second-order M0ller-Plesset), MBPT4 (Fourth-
order Many-Body Perturbation Theory), and CC (Coupled Cluster). The latter 
usually includes single and double excitations in its parameter space (CCSD), 
but unless the number of orbitals is large, triples can be included approximately 
or exactly (CCSD(T), CCSDT) to yield very accurate results, whenever a single 
closed-shell reference is adequate. A good application example with important 
references is the article by Watts et al. 1991. By contrast, the MP2 is a very 
popular method for larger molecules, since it is fairly cheap and can be used 
without storing the electron repulsion integrals. 

With a multi-configuration reference space, the only successful general scheme 
so far is to use a single reference function composed of many configurations, of 
the CASSCF type, as the root function of a perturbation expansion. 

3 T h e R A S S C F , R A S S I , a n d C A S P T 2 M e t h o d s 

3.1 RASSCF 

The major drawback of CASSCF is the steep increase in the number of CSFs 
with the number of active orbitals, except when very few electrons are correlated. 
With twelve active electrons, there is a limit at around twelve or thirteen active 
orbitals, which give 226 512 and 736164 singlet CSFs, respectively. There are 
many examples where such an active space is not sufficient for obtaining good 
CASSCF energies and properties, and quite a few examples where not even the 
CASSCF orbitals are good enough to be used in subsequent MRCI or similar 
methods. This happens when the dynamic correlation, lacking in the CASSCF, 
is important for determining the shape of the orbitals. A typical example is neg­
ative ions, where lack of dynamic correlation gives too diffuse orbitals, or when 
dynamic correlation alters the balance between competing electronic structures 
with large and different dipole moments. General MCSCF is not an attractive 
scheme, since it is difficult to preselect the important configurations, and to avoid 
multiple minima. 

The name Restricted Active Space was given by Olsen (Olsen et al. 1988) 
to a scheme where the active orbitals are subdivided into RAS-1, RAS-2, and 
RAS-3 orbitals. All CSFs are included, which have at most a specified number 
of electrons in the RAS-3 space, and at most a specified number of electrons 
taken out from the RAS-1 space. In RAS-2 orbitals, any occupation is allowed. 
The restrictions on RAS-1 and RAS-3 can cut down the number of CSFs quite 
drastically, thus allowing a larger active space, and are based entirely on an 
orbital selection which is easier and more natural than a general CSF selection. 

The RAS expansion space is closed under deexcitation, which is a technically 
important property. It ensures that any matrix elements expressed by spin-free 
second quantization formulae can, after minor rearrangement, be expressed by 
means of vector transformations within the expansion space. This makes it effi­
cient to regard the application of a linear operator as a programming primitive. 
Our RASSCF code first used the Split-Graph GUGA method for operations on 
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the CSF expansion (Malmqvist et al. 1990). In a later version such operations 
are performed by temporarily reexpanding in SDs and, after the operations, 
transform back to CSFs. 

Leaving out any technicalities, the program is simple: Given a set of starting 
orbitals, the CI equations are solved for the state of interest. For this given CI 
expansion, the orbitals are refined so that the energy is stationary. If this scheme 
is repeated as it stands, convergence may suffer from neglect of the coupling 
between the CI- and the orbital-optimization steps. However, this coupling is 
introduced in all subsequent iterations by a correction, which is refined at each 
iteration. A number of variants are possible, such as a weighted optimization of 
several states simultaneously. The end result is orbitals, wave functions, density 
matrices, properties and matrix elements for the RASSCF states. 

3.2 RASSI 

Since its CSF space is closed under deexcitation, a RASSCF wave function 
can also be reexpressed in any new orbital set, provided that the transforma­
tion matrix is triangular (or even block-triangular with the subdivision into 
inactive,RAS-1, etc. orbitals). The CI expansion coefficients are easily and ef­
ficiently recomputed to express identically the same wave function in the new 
orbital set. The new orbitals will no longer be orthonormal. The RASSI program 
puts this to use by accepting as input two different RASSCF wave functions, 
each with different orbitals, and proceeds by performing such non-orthogonal 
orbital transformations that the resulting two new orbital sets {ipfi} and {ipf} 
are biorthonormal: 

« | < } = ^ , Vp,«. (3) 

The point is that with such orbitals, any matrix element can be computed by 
standard methods: If an operator is expressed by a second quantization formula 
with integrals over the mixed new basis, the expression for its matrix element 
between states A and B is identical to the form it would take in an common 
orthonormal basis. 

The RASSI program is extensively used just to compute standard one-electron 
matrix elements of e.g. the dipole operator, for oscillator strengths (See the de­
scription of its precursor, CASSI, in Malmqvist fc Roos 1989). With state-specific 
orbitals, such matrix elements cannot be obtained from dynamic correlation 
post-RASSCF programs, and the RASSCF values computed by RASSI is then 
our only source of oscillator strengths. When the states have the same symme­
try, the RASSCF states may well be non-orthogonal and interacting. However, 
the RASSI program can simply solve the Schrodinger eigenvalue problem in the 
basis of any provided RASSCF wave functions, thus yielding oscillator strenghts 
for orthogonal and non-interacting RASSI states instead. The difference may be 
quite important, when two RASSCF states have different permanent dipole mo­
ment: The transition dipole, if evaluated for the RASSCF states, is contaminated 
by the product of the overlap with the difference in dipole moment. 

The RASSI program is also very helpful in a variety of situations: Even if 
the RASSCF is simpler than general MCSCF, it is sometimes difficult to select 
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orbital subspaces properly. Two putative different solutions may actually be 
misrepresentations of the same physical state, if the optimization has resulted 
in correlation of either of two bonds for instance, when the subdivision of the 
active space prevent them from being treated democratically. Occasionally, there 
are even problems with spontaneous symmetry breaking. This type of problems 
may be resolved by simply giving all the available RASSCF states as input to 
RASSI and solve the Schrodinger equation in the space they span. The result 
will in general be a number of reliable RASSI states, and their natural orbitals 
will be excellent start orbitals for new state-specific calculations, while their 
natural occupancies will indicate how to pick the new active orbitals. The original 
RASSCF wave functions will be reexpressed in the orthonormal, non-interacting 
RASSI states, which indicates in which way the states have perturbed each other. 

3.3 CASPT2 

When RASSCF does not give sufficient dynamic correlation, the preferred ad­
ditional procedure is MRCI, if it can be afforded. If more than a few electrons 
are correlated, it must be corrected for size consistency or replaced by its cousin 
ACPF. However, it is necessary that the reference selection of CSFs is large 
enough. It must contain a large fraction of the wave function, and a similar frac­
tion for all states and conformations. It must be realized that when going from 
CASSCF or RASSCF to MRCI, we are not just adding a large number of im­
portant configurations, but also deleting by selection, and perhaps more severe: 
One part, with a weight of e.g. around 85%, of the CASSCF wave function, is 
now improved by dynamic correlation; 15% is not. These two parts may differ 
considerably in ionizity, dipole moment etc, and are not treated in a balanced 
way, which will affect the result. In fact, whenever possible, the best procedure 
is to use several references, and extrapolate the results, as function of a selection 
threshold. For more than a few atoms, or when large references are necessary, 
MRCI may be too expensive. The CASPT2 method was developed to account 
for extra-CAS dynamic correlation, when a satisfactory MRCI treatment is too 
expensive (Andersson et al. 1990; Andersson et al. 1992). However, it is not an 
approximation to MRCI, but a (size-consistent) perturbative approximation to 
Full CI, and uses the complete CASSCF wave function as reference. 

The CASPT2 program solves the traditional first-order Rayleigh-Schrodinger 
perturbation equations with a M0ller-Plesset splitting of the Hamiltonian: 

#(o) _ E(o) _ Q(p _ c o n s t . ) Q 

F — zZpq FpqEpq 

where Q is a projector onto the interacting space of \p(°\ which is a CASSCF 
wave function. The Fock-like matrix Fpq is defined such that it gives the usual 
Fock matrix for a closed-shell reference function, and fulfills Koopmans' theorem 

(4) 
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for ionization energy and electron affinity in an average sense for the active 
orbitals. The equation is solved by expanding in the interacting space: 

pqrs 

and the correlation energy is obtained to second order as 

£(2) = _($Ki)|//(o)aKi)) (6) 

In these equations, Epqrs is an excitation operator, which effects a spin-
coupled excitation of two electrons from orbitals q and s to orbitals p and r. 
For a CASSCF reference, the meaningful excitations are those where q and s 
are inactive or active, p and r are active or secondary, but all four indices are 
not active. Of the eight different cases, the most expensive terms arise from the 
semi-internal excitations, where three of the orbital indices pqrs refer to active 
orbitals. To solve the resulting equations requires then essentially the three-
body density matrix elements for active orbitals, which are reasonably easy to 
compute but gives equation matrices of the size n 3 xn 3 , This causes a calculation 
bottleneck for more than about n = 12 active orbitals. The calculation then 
scales as fast as n9 in the present algorithm, which is the main reason why 
the method has not yet been worthwhile to append to RASSCF rather than 
CASSCF. 

It should be noted that the present implementation is completely independent 
of the number of CSFs, apart from the initial, rapid evaluation of the density 
matrix elements. It has been used with equal ease for single configuration root 
functions as with CASSCF wave functions with a hundred thousand configura­
tions. The interacting space can easily comprise billions of CSFs; the number of 
variational parameters still scale quite modestly, and is slightly larger than with 
a similar closed-shell MP-2 calculation. 

4 D e m o n s t r a t i o n E x a m p l e s 

4.1 RASSCF 

Ethene V state. The first singlet 7T7r* state of ethene, the so-called V state, 
is an example where a meaningful orbital optimization must include dynamic 
correlation. The state is dominated by two valence-bond structures, each with 
one positive and one negative methylene ion. It has been much studied as a 
prototype example of high ionicity states. Unless enough dynamic correlation 
is included, the orbitals will be too diffuse. Table 1 illustrates the very rapid 
growth of the number of CSFs in an ill-advised attempt to obtain good orbitals 
by CASSCF (In the original study, another approach was taken, of course: MRCI 
with iterated natural orbitals). 

By contrast, in the last line is a RASSCF calculation with 29 active orbitals, 
requiring a very modest number of CSFs. The total energy is much lower, of 
course, but this is a dangerous quality measure in this case. The fourth column 
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Table 1. RASSCF demonstration example: Ethene 

Calculation 

CAS (10<r,27r) 
CAS (10<7,3TT) 

CAS (10<r,4x) 
CAS (10<T, 5TT) 

RAS (5,2,22) 

# CSFs 

28 848 
92 406 

268 800 
716523 

4 704 

Energy 
(a.u.) 

-77.8993 
-77.9239 
-77.9341 
-77.9433 
-78.0484 

<*2> 
(a.u.) 

22.8 
23.4 
23.0 
21.9 
20.8 

CPU 
(s) 

15 
60 

227 
878 
68 

is the expectation value of Y2zf- ^s ^ r u e value is believed to be around 15 a.u., 
and the excess is primarily due to the 7r* orbital which is forced to be too diffuse. 
All calculations correlate the 12 valence electrons. The basis set is of ANO type, 
with 6s, 5p, 3d and 2f functions on carbons, 3s and 2p functions on hydrogens. 
The CPU time is for an IBM 3090-17S computer. 

The radiative lifetime of SH + A3II. Here, the potential and transition 
dipole functions of the ground XlS+ and the A3II states have been computed 
by RASSCF (Gonzalez-Luque et al. 1992). The spectroscopic constants derived 
for the twostates are presented in Tabs. 2 and 3, compared to experiment (Rostas 
et al. 1984). 

Table 2. The SH+ X3E~ state. 

Normal Deuterated 
Quantity 

Re 
De 
Do 
Ue 
UeXe 
Be 
Cte 

RAS 

1.367 A 
3.46 eV 
3.30 eV 
2540 cm-1 

51.7 cm-1 

9.24 cm-1 

0.30 cm-1 

Exp 

1.364 
3.70 
3.54 
2548 
49.3 
9.28 
0.28 

RAS 

1.367 
3.46 
3.35 
1824 
26.8 
4.76 
0.11 

Exp 

-
-
3.59 
1830 
25.4 
4.79 
0.11 

The end results for the life time is 1.07±0.13^s and 1.14±0.13ps, in excellent 
agreement with one experiment but in disagreement (but within error bars) 
with another. For details, we refer to the original article which also quotes other 
similar examples. 
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Table 3. The SH+ A3II state. 

Quantity 

Re 
De 
Do 
U>e 
UleXe 
Be 
tte 

Te 

Normal 
RAS 

1.502 A 
1.64 eV 
1.53 eV 
1660 cm-1 

49.1 cm-1 

7.65 cm-1 

0.40 cm-1 

30 595 cm-1 

Exp 

1.501 
1.78 
1.68 
1672 
47.6 
7.66 
0.36 

30 345 

Deuterated 
RAS 

1.502 
1.64 
1.56 
1194 
26.6 
3.95 
0.15 
-

Exp 

-
-
1.71 
1201 
24.5 
3.95 
0.13 

30 356 

4.2 RASSI 

The routine use of the RASSI program is for calculation of transition moments 
and similar quantities, such as the life times reported above. However, the pro­
gram is very useful in a number of less standard contexts. In a recent study of 
0\, a strong symmetry-breaking tendency (giving O2 + 0} even in symmetric 
conformations) was handled by simply using the two symmetry-broken solutions 
as quasi-diabatic states and computing the hamiltonian coupling elements by 
RASSI. Rather than reproducing the relevant figures here, we refer the inter­
ested reader to the original article (Lindh & Barnes 1993). 

4.3 CASPT2 

Apart from the two benzene examples presented below, there is a rapidly ac­
cumulating body of experience showing that CASPT2 may be one of the most 
powerful methods to emerge for many years. The interested reader should see 
also e.g. Roos & Andersson 1993 or Roos et al. 1993. 

Benzene pilot study. The valence electronic spectrum of benzene has been 
used for a very long time as a test of ab initio methods. Only recently has 
reliable results been obtained with an overall accuracy of better than 1 eV. 
The key problem is the large variation in ionicity among the valence states, 
with a resulting variation in the dynamic correlation, primarily in the form of 
intramolecular dispersion interaction between the ir electrons and the <r skeleton. 
The following pilot study demonstrates the problem (Andersson k, Roos 1993). 
A common misrepresentation is to regard these excited states as primarily single 
excitations, with an open-shell Hartree-Fock structure. However, in reality, the 
structure varies strongly, with the lE2g state as a rather extreme case. In Tab. 4, 
note that the multi-excited character of the wave functions would be much more 
pronounced if e.g. ground state Hartree-Fock orbitals were used. The figures 
here apply to state-specific optimized CASSCF orbitals. In the second part of 
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Table 4. Pilot study: Singlet excited valence states of benzene. 

Weight of excitations from leading conf. 
Exc. type 1Alg

 1 5 2 u
 1 Biu l1 Em 21 Em 

Singly 
Doubly 
Triply 

Excitation 
Method 

80% 
15% 
2% 

energies, eV. 
A\g B2u 

92% 
3% 

5iu 

87% 
5% 
2% 

1 E\u 2 E\u 

E29 

48% 
42% 

3% 

E29 

CAS(6) 5.0 7.9 9.3 - 8.1 
+PT2 4.6 5.9 6.5 - 7.7 
CAS(12) 4.9 7.4 8.8 7.7 8.1 
+PT2 4.7 6.1 7.1 7.7 7.8 
Exp 4.9 6.2 6.9 7.6 7.8 

Dynamic correlation contributions, eV. 
Corr. type 1 Alg

 1 B2u
 a5iu l1 Elu 21 Elu

 lE2g 

aa 12.6 12.7 12.8 12.8 - 12.7 
ax 7.7 8.0 8.8 9.6 - 8.0 
TTTT 0.9 1.0 1.8 1.8 - 1.0 

the table, it is seen how CASPT2 is able to correct for most of the occasionally 
large errors in the CASSCF energies. Only the six 7r-electrons are active. Two 
active spaces are used: The first comprises the valence w orbitals, while the 
second is twice as large. Note the small improvement to the lB\u and \lE\u 

states with the larger active space, and how CASPT2 acts to correct them. Note 
also how, with the larger space, we begin to see Rydberg intruders (The 21E\U 

state). In the last part of the table, the dynamic correlation energies have been 
broken up into different contributions. The second line can be interpreted as 
the contributions from the instantaneous response of the sigma electrons to the 
charge of the IT electrons; naturally, the effect is larger (by up to 2 eV!) for the 
states with predominantly ionic structures. 

Benzene application example. We finally offer a recent application example: 
Table 5 presents some of the results of a recently conducted study of singlet and 
triplet excited states of benzene up to about 7.9 eV (64000 cm - 1 ) (Lorentzon 
et al. 1993). The basis set was basically our standard basis set of ANO type 
(Widmark et al. 1990), but augmented with a specially prepared one-center ba­
sis to represent the Rydberg orbitals correctly. As can be seen in the tables, the 
accuracy in vertical excitation energies is generally about 0.1 eV. 

Acknowledgements. I wish to thank the organizers of this conference for the 
kind invitation. To me, it seems that this kind of inter-disciplinary symposia is 
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Table 5. CASPT2 singlet excitation energies for Benzene. 

State EcAS 
(eV) 

Valence 1mr* 

l1B2u 
llBlu 

1 E\u 

2'E2g 

4.83 
7.33 
8.45 
7.96 

Rydberg 'JTI* 

2 Eiu 
2Ml 9 

l1E2g 

l1A2g 

6.48 
7.19 
7.11 
7.10 

Rydberg 1jr<r* 
VElg 
lM 2 u 

1 E2u 

l M i , 
^B2g 

^Blg 

2'Elg 

3 Elg 

6.56 
6.68 
6.81 
6.77 
7.30 
7.30 
7.34 
7.39 

<*2> 
(a.u.) 

30.1 
31.9 
35.1 
29.8 

79.1 
88.3 
88.3 
88.2 

46.2 
44.7 
45.1 
45.4 
64.9 
65.2 
63.5 
52.4 

EpT2 
(eV) 

4.82 
6.28 
7.09 
7.86 

7.17 
7.76 
7.77 
7.82 

6.34 
6.85 
6.95 
6.99 
7.54 
7.54 
7.54 
7.54 

Exp. 
(eV) 

4.90 vert 
6.20 vert 
6.94 vert 
7.86 vert 

7.41 
7.81? 
7.81 
7.81 

6.334 
6.932 
6.953 
-
7.460? 
7.460? 
7.535 
-

a fruitful idea. The RASSCF, RASSI and CASPT2 methods reported in this 
contribution results from work within a joint study contract with IBM Sweden, 
and supported by the National Research Council of Sweden. They are part of 
the MOLCAS program package described by Andersson et al. 1991. 
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