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SUMMARY

A general model of linked genes or a part of a genome is proposed which
enables us to study various problems in molecular population genetics in
a unified way. Several formulae with special reference to the linkage
disequilibrium and genetic distance are derived for neutral mutations in
finite populations, based on the method of diffusion equations. It is argued
that the model and formulae are useful particularly when observations
are made in terms of DNA sequence.

1. INTRODUCTION

To understand the genetic construction of Mendelian populations, we have to
know the linkage disequilibrium or nonrandom association of genes between
different loci so that the study of linkage disequilibrium is one of the major subjects
in current population genetics. A number of papers have been published since the
early report of Haldane (1931). Among them, one line of study incorporating the
effect of random genetic drift on disequilibrium was begun by Robertson (1961),
Hill (1968) and Hill & Robertson (1968). Subsequently, Ohta & Kimura (1969a,
b; 1971) studied the problem of the two locus two allele model taking into account
mutation, and Hill (1974a, b) developed methods for computating linkage
disequilibrium among several linked neutral loci and obtained the variances and
covariances of disequilibria. He also investigated the total squared linkage
disequilibrium among multiple neutral alleles at two loci (Hill, 1975) where the
infinite allele model is assumed (Kimura & Crow, 1964). Note that attention in the
above studies, except that of Ohta & Kimura (1971), was paid mainly to linkage
disequilibrium between different loci.

However, recent developments in molecular biology, in particular the technique
of rapid DNA sequencing by Sanger, Nicklen & Coulson (1977) and Maxam &
Gilbert (1977), enable us to study the genetic make-up at the nucleotide level. In
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64 N. TAKAHATA

terms of population genetics, it is expected that we will soon know the genetic
structure of populations in terms of DNA sequence. Although many models have
been proposed to account for such data, each has its own range or condition by
which the application is limited (see, for example, Ewens 1979 for a review).
Therefore, it is desirable to develop a model reflecting the real structure of a gene
or a chromosome. Such a general model can be constructed by assuming that there
are multiple sites linearly arranged on a chromosome, and that each site can take
multiple states. For example, the model can be applied to a gene consisting of r
nucleotide sites each of which can be occupied by four bases.

Based on the above model, linkage disequilibrium between two sites is re-exam-
ined in relation to the work of Ohta & Kimura (19696) and Hill (1975). Assuming
more than two sites and complete linkage between them, we derive several
mathematical formulae with special reference to genetic distance (Nei, 1972) and
evolutionary distance (Jukes & Cantor, 1969; Upholt, 1977; Nei & Li, 1979). In
particular, we demonstrate how to estimate the evolutionary distance when
populations are polymorphic with respect to DNA sequence or restriction enzyme
maps in a particular region of the genome. The formulae are compared with those
obtained mainly from the infinite allele model.

2. MODEL AND ANALYSIS

Let us consider a random mating population of diploid organisms with effective
size Ne and r ' sites' linked on a chromosome in which the term ' site' may be a
nucleotide site, codon, cistron and so forth. We assume that the pth site consists
of Kp states, and that neutral mutation occurs with equal likelihood between those
states at a rate vp per site per generation. We also assume that recombination
occurs randomly at any one of r—1 joints of r linked sites at a rate c per generation.
Each chromosome with r such sites is specified by a vector i = (ilt i2,..., ir) and
designated by At where the element ip is an integer which takes the values
1,2,..., Kp. Let us denote by xt{t) the frequency of the ith chromosome within
a population at the tth generation. For convenience, we introduce the following
marginal functions of xi (t) defined by

Kp Kp
xi,p(t)= txdt)= 1 xiiui ir)(t),

xtP(t)= f1 ••• Z xt(t) and xf*p(t)= I, . . . 2* *«(«)•

Neglecting the higher order terms, the frequency xt(t+ 1) of At chromosomes due
to mutation is given by

r \ r K_

i'...«('), (2)= ( i - 2 vp)xt(t)+i 5f -jA-a*
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in which the first term of the right hand side corresponds to the probability of no
change and the second to the contribution coming from all chromosomes that can
produce Ai chromosome by a single step mutation. The amount of change in one
generation of xt(t), denoted by Ax^t), is

( r K v \
[ j (3)

T v ( r K v \
Ax,(<) = I -jr*--xttP(t)-[ I -iLJLjx

using the notation in (1).
Recombination also changes the frequency Ai and we have

r-i

Sxt{t) = c £ xfpxf* — c(r— l)xit (4)

where the first and second terms in the right hand side correspond to the amount
of addition and loss of xi due to recombination, respectively.

In the following, we describe the stochastic process of xt(t) due to random
sampling of gametes by a diffusion approximation (Kimura, 1964). Combining (3)
and (4), the mean and covariance are as follows;

r v r"1 f r K v ) \
M(Sxi)= 2 - ^ j ^ . p + ci: xlPxt*-yL ^ z ^ + e(r-l)Jx,,

v- v (5)
2Ne

Xi u Xi '

where Su' = 1 only if ip = i'p for all p = 1,2,..., r, and is zero otherwise. From (5),
we get the multi-dimensional diffusion operator Lr for the Kolmogorov backward
equation multiplied by 4iVe,

< l-p-l p-l \ p - l

where 0p = 4:Nevp/(Kp—l) and C = 4iVec. The operator (6) governs the process of
change in chromosomal frequencies, and gives the moment equation

= E{LJ}' (7 )

in which E{ } stands for taking expectation, / is a continuous function of random
variables and T is measured in units of <kNe generations. However, it is not easy
to treat (7) in the general case so that we shall consider two special cases to study
the amount of polymorphism, linkage disequilibrium and genetic distance. One
case is c #= 0 but r = 2, and the other is r > 2 but c = 0.

3-2
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(i) Two locus multiple allele model (r = 2, c 4= 0)

Linkage disequilibrium in the two locus two allele model was investigated by
Ohta & Kimura (19696) incorporating the different rates between forward and
backward mutations at both loci. Hill (1975) studied the same problem assuming
that all mutant alleles differ from pre-existing ones, i.e. the infinite allele model at
both loci. Their results are rather similar when not more than two mutant alleles
are segregating. In this section, we shall see the relationship between them keeping
the number of states per site, Kp, finite. Any moment equation is easily obtained
by substituting a function of random variables xt for / in (7) with r = 2. For
simplicity, we consider the first two loci in (7) and denote £ ,̂£.i xi by xti for p = 2
and by xit for p = 1.

At equilibrium we readily obtain the moments of lower order

' E{xt} =

E{xiXii) =
(8)

Here and subsequently we suppress a symbol to indicate the equilibrium state. To
get the moments of higher order, let us represent the relevant equation in matrix
f O T m U + C -C 0 \ / E{xf} \ I a \

«,*!,} = 26 . (9)
E{x\x\} I \ 6 I •

In the above equation, the constants in the matrix and vector are, respectively,

a =

[(1 $2} + (l+62)K1

(10)

Accordingly, we have

\m
(11)
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where \M\ = a/?y + C{(y-4)C+(a+/?-2)y-4a}. Instead of (11), Ohta & Kimura
(19696) and Hill (1974a, 6,1975) formulated the following three quantities directly;

= Dt(l-2xtl){l-2xu), (12)

where D{ = zi — xii xia in the present notation. Using (8) to (11), we can obtain the
equilibrium values of those quantities in a straightforward manner. However, as
the calculation is rather tedious, we substitute (12) for (7) directly, and get

JXi- yj = A,

)Yt-8Ztl>=0,

E{Xt + Yt - (3 + C+Kx Bx + K2 d,)Zt} = 0,

where

= ! '}•

(13)

(14)

By solving (13), we have

E{Xt) =
\M'\

\M'Y

E{Zi) = Wv

(15)

in which

and

The standard linkage disequilibrium, <r% = E{Zi}/E{Xi^, becomes

All quantities treated above are concerned with a particular type of chromosome.
To obtain the expectation over all types of chromosomes, it is necessary to sum
over all i. However, the states of a site are all mutually equivalent so that the
procedure is simply to multiply by the number of states. Let us consider two sites
p and q which are \p — q\ steps apart in terms of site units. For instance, the expected
homozygosity at the pth site, Fp, is

? p
(17)
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\M\ = <x '{(y-4)C'

and the expectation of the product of the homozygosities,

Fp,q = 2 £ E{x%pxfQ},

from (10) to (12), where

and

(18)

= C\p-q\,

g), y =

-2)y-4a}.

Table 1. Dependence of £4.E{XJ, Lt #{!<}, ^EiZ^ and <r\ on the number of
possible states per site, K, obtained by using (15) and (16), assuming vx = v2 = v
and K1 = K2 = K

(The last column denoted by R represents the ratio of Z(E{Z(} to the identity excess.)

K

10

103

10

103

R

00
20

100

00
20

100

00
20

100

00
20

100

00
20

100

00
20

100

0-4430 x 10~3 01521 x 10~3

0-3983 x 10"3 0-5926 x 10~4

0-3755 xlO"3 01175 x 10"4

0-4625 x 10"
0-4133 x 10-
0-3888 x 10-

0-4650 x 10-
0-4152x10"
0-3905 x 10-

0-2216x10"
0-2127 x 10"
0-2061 x 10-

0-3012x10"
0-2827 x 10"1

0-2710 xlO-1

0-3141 x 10-
0-2937 x 10"
0-2812 x 10-

3 01629 x 10"3

J 0-6241 x 10"4

' 01224 x 10"4

3 01643 x 10"3

1 0-6282 x 10"4

1 01231 x 10"4

4:Nev = 0-2
1 0-4914 x 10-2

1 0-2400 x 10-2

1 0-5684 x 10"2

1 0-8166 x 10"2

0-3637 x lO"2

0-7947 x 10-3

0-8748 x 10"2

0-3844 x 10"2

0-8308 x 10-3

01932 x 10"3

0-9007 x 10-"
0-2960 x 10-4

0-2054 x 10-3

0-9431 x 10"4

0-3074 x 10"4

0-2070 x 10-3

0-9485 x 10-4

0-3089 x 10"4

0-7126 xlO- 2

0-4080 x 10"2

01535 xlO"2

01111 x lO- 1

0-5860 x 10-2

0-2075 x 10"2

01181 xlO"1

0-6150 x 10-2

0-2160 xlO"2

0-4362
0-2261
0-0788

0-4442
0-2282
00791

0-4452
0-2284
00791

0-3215
01919
00745

0-3690
0-2073
00766

0-3760
0-2094
00768

0-5643
0-6078
0-7198

0-5604
0-6044
0-7174

0-5600
0-6040
0-7171

0-6285
0-6648
0-7590

0-5996
0-6393
0-7418

0-5956
0-6358
0-7394

Likewise, the expectation of homozygosity of chromosomes with two specified sites
P and q, u K

* } „ . „ > =
K

S E{xj},
ig—l

where
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is F(pg) = -L[a^y + C'{b'C' + (2b' + a')7-ia'}l (19)

Appropriate measures of non-random association between linked sites other than
<T\ were considered by Hill (1975) and Ohta (1980), independently. They are

£ £ E{X(ipjQ)}/{(l-Fp)(l-Fg)} and F{p<q)-FpFq.

In particular, the latter, which Ohta called the identity excess, is closely correlated
to the expectation of total squared linkage disequilibrium, E{Dfp e)} = Ej E{Zt}. We
can show that the ratio R = E{D^p q)}/(F^p q) — FpFq) is limited to a narrow range
from | to 1 when recombination is absent. Although it was not verified that such
a simple relationship holds for any value of C, it is expected to be true and several
numerical calculations support this finding, (Table 1).

(ii) Completely linked multiple site model (r > 2, c = 0)

(a) Mean homozygosity and maximum identity excess

Hill (19746) studied the linkage disequilibrium in the case of three linked loci
by using a moment generating matrix. As pointed out there, however, it is not easy
to treat the problem through the diffusion equation method. This is mainly because
it is necessary to know all the moments of order lower than those of the quantities
to be obtained while Hill's method can obtain them rather efficiently. If we want
to consider many more sites simultaneously and the higher order linkage
disequilibrium between them (see, for example, Franklin & Lewontin, 1970;
Slatkin, 1972, for the effect of epistatic selection on the linkage disequilibrium),
the computations involved become prohibitive even under the neutral mutation
hypothesis. Therefore, let us consider a special case of multiple site models.

When the sites are completely linked, the diffusion operator (6) reduces to

£-. (20)
^X^

Lr = z{ £ 6pxUp- £ Kp6px\ £-+Y,<Zxt(*t1>-xt-)j£-.

We first study (7) in the case of f=2.ix%. Let us denote by F^12 r) the
expectation of S^xf and by F(12 p r ) that of Z^.. .Zj 24 . . -Ztra;| p. Then,
we have the recurrence equation

h2 r ) } , (21)

and at equilibrium r

1 + 2 @pF(l,2 p r)
*(.. . r ) = 2 = i r = • (22)

1+ S Kp6p
p-l
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We can determine Fil<2 T) from the equations of lower order than r successively.
In the case of Kp = K and dp = 6, (22) can be represented by a simple formula,

l i r)

where

-l) + b(r)b(r-l)a(r-2)+ ...

1 rO
a(r) = < , TS a a n d Hr) = - - » - f o r r ^ L

(23)

i+KrO "Vl l + Krd

Using (22) or (23), we can estimate the maximum identity excess for r sites, Ar,

as

P-I

Table 2. Dependence of the values of Fr = F^ 2 r), Hr and the
r obtained from (23), (24) and (25), assuming that K = 4 crod i; =

(24)

identity excess on
= 10~8 at all sites

105

106

107

1

0-9990
0-9990

0

0-9901
0-9901

0

0-9118
0-9118

0

0-9980
0-9980

9-9 x 10"7

0-9805
0-9804

9-5 x 10"5

0-8375
0-8333
00061

0-9970
0-9970

30 x 10"6

0-9710
0-9709

2-8 x 10""

0-7741
0-7692
00161

0-9960
0-9960

5-9 x 10"6

0-9617
0-9615

5-5 x 10"4

0-7195
0-7143
0-0284

6

0-9940
0-9940
1-5 xlO~

0-9436
0-9434
00013

0-6302
0-6250
00557

10

0-9901
0-9901

4-4x10"

0-9093
0-9091
0-0038

0-5044
0-5000
01074

100

0-9091
0-9091

5 00042

0-5004
0-5000
01295

00912
00909
00911

300

0-7693
0-7692
00283

0-2502
0-2500
01991

00323
00323
00323

Of particular interest is the relationship between formula (23) and that predicted
by the conventional infinite allele model of Kimura & Crow (1964) which has been
extensively studied and used from various statistical points of view. When a gene
contains r selectively neutral nucleotide sites, the expected homozygosity is

Hr =
1

1 + 42V, vr
(25)

at equilibrium based on the infinite allele model where v is the mutation rate per
site. This can be contrasted with (23) for K = 4 since each site consists of four kinds
of nucleotide bases, (see Table 2 and Discussion).

(b) Genetic distance and evolutionary distance

Let us consider the genetic distance and evolutionary distance between related
species. As shown in Table 2, the infinite allele model can predict the amount of
genetic variability at the nucleotide level fairly well, and therefore we may expect
that the genetic distance and evolutionary distance based on this model also
provide good approximations to nucleotide differences between related species.
However, the reality of the infinite allele model clearly depends on the number
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of nucleotide sites in question since each site can take only four states. Furthermore,
convenient detection of genetic variation within and between species is now made
by using various species of restriction enzymes. Most enzymes recognize 4 to 6
nucleotides in a DNA segment and cleave them. Therefore, to analyse the data
observed by such a technique, it is necessary that we construct a theory
incorporating the real situation of the genome.

Following Nei (1972), suppose that a population splits into two isolated
populations and thereafter no migration occurs between them, and assume that
the effective sizes of the two populations are equal and constant in time. An
appropriate diffusion operator denoted by Tr is then given by

(26)

In (26), we assumed that dp and Kp are constant and equal to 8 and K, respectively.
The frequency of At in one population is denoted by xt and that of At in the other
population by yt. The subscript p in xi and yi has the same meaning as in (1). The
probability of identity of homologous DNA segments with r sites sampled from
two populations is j r — Zj xi yt. From (7) and (26), we have the recurrence equation
for Jr = E{jr}

a ^ 1-KJr) (27)

for r ^ l under initial conditions for Jp(0), (p = 1,2, ...,r) and a boundary

condition of J0(t) = 1. Noting that the equilibrium value of Jp(oo) is equal to -—^

and that T = ——, we have as the solution for (27)
42V

Jr(t) = -^i \rCp\ I pCq[-
A p-0 L I. q-o

(28)

where rCp is the binomial coefficient. If the probability of identity within a
population is constant in time, Jr(0) is given by (23) in both populations. Thus,
the normalized identity is obtained by dividing (28) by </r(0) or F(12 r ), and
the genetic distance becomes

Gr=-\og(Jr(t)/Jr(0)). (29)

In particular, as K becomes indefinitely large Jr(t) = Jr(0) e~2rvt so that Gr = 2rvt.
This is equivalent to the formula originally demonstrated by Nei (1972). However,
if we regard a 'site' as a nucleotide site, the above limit has no biological meaning.
Thus the genetic distance in terms of nucleotide differences must be calculated by
(29), substituting (23) for Jr(0) and (28) for Jr(t), respectively (Table 3).
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On the other hand, if the initial population is monomorphic, i.e. </p(0) = 1
(p = 1,2,..., r) (28) reduces to

(30)

(31)

and the evolutionary distance Knuc defined by 2vt can be solved as

K-l.
**-nuc " is

Formula (31) is equivalent to that of the evolutionary distance given by Jukes &
Cantor (1969) if we set r = 1 and K = 4, and that devised for data obtained by
restriction enzymes (Aoki, Tateno & Takahata, 1981).

Table 3. Relationship between the degree of polymorphism, Fr, the evolutionary
distance, Knuc = 2vt and the genetic distance, Gr

(The degree of polymorphism is assumed constant in time since the divergence of
two isolated populations.)

0 {Ft

to-3

io-2

IO-3

io-2

4N.v Knuc = %

= 1) J*

(Ft = 0-9960) JA

(Ft = 0-9617) J4

= 1) •/.

(Fe = 0-9940) J6

(F6 = 0-9436) J ,

y< 00001

0-9996
00004

0-9956
00004

0-9613
00004

0-9994
00006

0-9934
00006

0-9430
00006

0001

0-9960
0-0040

0-9920
0-0040

0-9578
0-0041

0-9940
0-0060

0-9881
0-0060

0-9379
0-0061

001

0-9609
00399

0-9570
00399

0-9241
00399

0-9419
00599

0-9363
0-0598

0-8889
00597

3. DISCUSSION

002

0-9234
00797

0-9197
00793

0-8882
00795

0-8873
01196

0-8820
01195

0-8375
01193

004

0-8531
0-1589

0-8497
01586

0-8208
0-1584

0-8360
01791

0-8311
01790

0-7893
01786

01

0-6749
0-3932

0-6723
0-3930

0-6499
0-3919

0-5544
0-5899

0-5513
0-5895

0-5242
0-5878

0-2

0-4620
0-7722

0-4603
0-7719

0-4455
0-7695

0-3140
1158

0-3123
1160

0-2975
1154

Linkage disequilibrium

The two site (locus) multiple state (allele) model was studied to reveal the
relationship between the previous work of Ohta & Kimura (19696) and Hill (1975)
by using the diffusion equation method. The present formulae are similar to those
derived in Ohta & Kimura but nevertheless different even if we substitute
vp/(Kp— 1) (p = 1 and 2) for the backward mutation rates in their formulae. This
is because the quantity given in (14) depends upon the number of possible states
(or alleles). One exception is, however, the standard linkage disequilibrium (16)
which can be obtained directly from their formula through the above substitution.
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In contrast, we can easily obtain the formulae analogous to (10) of Hill (1975) if
we take the limit of Kp to infinity in (15) after summing over all the possible states.
The slight difference is due to the different methods used, but the agreement
between the two sets of values is again satisfactory as pointed out in the case of
the two locus two allele model (Ohta & Kimura, 19696). Formulae are tabulated
in Table 1 to show their Kp dependence, assuming that the values of 4:Nev and
4Ne c are given. We can see that unless 4Ne v is very small, the total squared linkage
disequilibrium Z4 E{Zt} increases as K(K1 = K2) becomes large particularly when
linkage is weak, whereas Zj^{XJ is rather insensitive to changes of K. As a result
or directly from (16), <r| increases with K. A most marked difference between the
values of <T\ for K — 2 and for K = 103 is shown in the case of 4Nev = 02 and
4Nec = 0-0. The latter is therein about 1-17 times larger than the former. (Note
here that the looser the linkage, the smaller the discrepancy between the above
two opposite cases.) In other words, recombination can, in general, break down
linkage disequilibrium more easily when K is greater than 2 than in the case of
K = 2. This finding is consistent with our intuition though the difference is not
large.

In Table 1, the ratio of the total squared linkage disequilibrium to the identity
excess, R, is also presented. Most values are very close to | or a little greater,
irrespective of the value of K and 4Nec. In addition, preliminary Monte Carlo
experiments indicate that the above relationship holds true even under a multiple
site model. Therefore, we can conclude that the identity excess is closely correlated
to the total squared linkage disequilibrium and this in turn suggests that we can
use it as an appropriate measure for linkage disequilibrium.

Next, let us examine the results for the completely linked multiple site model
in relation to the infinite site and infinite allele models (Kimura & Crow, 1964;
Kimura, 1969; Watterson, 1975; Li, 1977; Ewens, 1979 and others). If we regard
a 'site' as a nucleotide site in a cistron or a small part of genome, then the
assumption of complete linkage between sites is realistic but if a 'site' is referred
to as a gene, then the assumption may be unrealistic. Henceforth we will use the
term to indicate a nucleotide site and therefore Kp can be regarded as 4 for any
site. Watterson (1975) studied the distribution for the number of segregating sites
at stationary state using a model which is quite similar to the present one. But
they are different from each other in the sense that he assumed that cistrons each
contain infinitely many sites and that at each site there are only two possible
nucleotides. The difference is not important when 4:Nev is small, although the
present model is the real one. The assumption of no recombination between sites
is common to our models. In this context, of particular importance is his criticism
of the assumption of independence of sites employed by many authors (Watterson,
1975). The infinite allele model is more appropriate, however, when we wish to
consider a certain region of the genome since it takes into account complete linkage
between sites. The fact can be checked partly by comparing F(l 2 r), Fr in short,
in (23) with Hr in (25). From Table 2, we can see that there is no significant
difference between the two without regard to the value of r when 4:Nev is small.
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Since the mutation rate per site is very small, presumably 10~8 or less, and it is
unlikely that the effective population size Ne is much greater than 108 in most
organisms, we can expect that the infinite allele model predicts quite satisfactorily
the amount of genetic variation observed at the nucleotide level. This fact does not
necessarily rule out the possibility that some other quantities may depend heavily
on the number of sites in question.

Table 2 also contains various values of identity excess, which tends to be equal
to Fr as r increases since the product of identity probability per site, F[, decreases
rapidly. Furthermore, the identity excess provides an upper limit to the expected
total squared linkage disequilibrium in r linked sites under the neutral mutation
hypothesis. Clearly, the assumption of independence of sites is not warranted in
a situation where the identity excess differs significantly from zero.

Genetic distance

Usually, the genetic distance of Nei (1972) and others is applied to allele
frequencies in related species observed by electrophoresis while the evolutionary
distance is calculated by comparison of homologous nucleotide sequences. The
former is based on polymorphism in both populations, whereas the latter tacitly
assumes monomorphism or ignores polymorphism by regarding the two nucleotide
sequences, each randomly sampled from individuals, as representative for each
species (Jukes & Cantor, 1969; Kimura, 1980, 1981; Takahata & Kimura, 1981).
Therefore, unless we assume the infinite allele model, as does Nei (1972), both
distances do not coincide and the relationship seems rather obscure since one might
suspect that they are different measures based on different assumptions. In
addition, several authors have recently devised evolutionary distance for data
obtained from application of restriction enzymes (Upholt, 1977; Nei & Li, 1979).
In this case, new models incorporating the real situation for DNA sequence are
required to study the distance because we are usually dealing with at most a
hexanucleotide.

Although the above measures were studied independently according to the
characteristics of methodology used, they can be represented by a single formu-
lation. To do so, we make use of the definition of genetic distance given by Nei (1972)
based on the present multiple site model. The identity probability between the two
isolated populations is a key quantity to be formulated. The formula at any time
is given in (28) in terms of the initial condition, the number of sites and the number
of states per site. As mentioned earlier, (28) reduces to the formula obtained by
Nei as an increase of the number of states while it is equivalent to those obtained
by Jukes & Cantor (1969) and Aoki et al. if we assume that the initial population
before splitting was monomorphic, and that K = 4. Thus, all measures concerning
distances can be connected with each other through (28).

Assuming that Jr(0) is equal to the expected identity probability at equilibrium,
Fr, the theoretical relationship between the genetic distance (29) and the evol-
utionary distance Knuc = 2vt for r = 4 and 6 is given in Table 3. First, when Knuc
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is small, the genetic distance Gr is approximately equal to rKnuc which is the
expected value from the infinite allele model. In addition, Gr is surprisingly stable
to the change of the degree of polymorphism. In other words, for a given value
of Knuc it can predict almost the same value even if Fr is greatly changed, and
this is a desirable property for a measure of evolutionary distance. But Gr is, in
general, smaller than rKnuc because of back mutations at each site, the extent of
which depends not only on Knuc but also on Fr.

Where we want to estimate the distances from the values of Fr and Jr, Table
3 can be looked at slightly differently. We note that the estimated distances are
strongly affected by the level of polymorphism within populations when two
populations compared are closely related. For example, for a given value of J4,
say 0-961, we would estimate Knuc (G4) as 0-01 (0-04) if we assume that populations
have been monomorphic. In contrast, for the same value of «/4 we would estimate
Knuc (G4) as 0-0001 (0-0004) if we take some polymorphism into account, say
Ft — 0-961. Thus, it is very important to know how to incorporate the degree of
polymorphism into the theory correctly, otherwise we will grossly overestimate the
distances. After there have been many nucleotide substitutions, however, the
problem of polymorphism is, in accord with intuition, not critical.

The restriction enzyme technique is now applied mainly to mitochondrial DNAs
in closely related populations, and Brown (1980) revealed that human mitochondrial
DNA is polymorphic even within a race (see also Avise et al. 1979a, b and Shah
& Langley, 1979). For a theoretical analysis of the extent of genetic variability
maintained in extranuclear genome, see Takahata & Maruyama (1981). Although
no observation of this kind has yet been made with respect to nuclear DNA, we
can expect the same situation as in mitochondrial DNA, unless populations are
quite small, and apply the present formulae to such data.

In conclusion, the present model is general for linked genes or a part of the
genome and has the possibility that various problems can be formulated in a unified
way. Although in the future a slight modification may be necessary with respect
to the mutation scheme or crossing over, the simple multiple site multiple state
model treated here is worth detailed investigation from various points of view.
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