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One-dimensional analysis of pressure variations
induced by trains passing each other in a tunnel
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In this study, the asymptotic solutions of the pressure variations induced by two
trains passing each other in a tunnel are theoretically investigated. The one-dimensional
inviscid compressible airflow is analysed, and two methods to obtain numerically exact
solutions and MH expansion formulas for approximate equations are presented, where MH
is the Mach number of the high-speed train. The pressure coefficient, corresponding to
the maximum value of the magnitude of the pressure, is expressed as |cp|max = |cp,min| =
[(R/(1 − R))(1 + α)2 + (R(1 − R)/(1 − 2R)2)(1 − α)2] + O[MH], where cp,min < 0,
α = UL/UH and UL and UH denote the speeds of the low- and high-speed trains,
respectively, and R is the cross-sectional area ratio of the train to the tunnel. The
theoretical results indicate the dependence of the speeds of the two trains on the pressure
distribution and that the maximum magnitude of the asymptotic pressure for a fixed
value of MH is obtained for α = 1 and α = 0 when R < Rc and R > Rc, respectively,
where Rc denotes the critical blockage ratio. Because the airflow along the side of the
low-speed train, induced by the low-speed train, is along the running direction of the
high-speed train and reduces the relative velocity of the high-speed train as the two
trains pass each other, |cp|max for α = 0 is larger than |cp|max for α = 1 when R > Rc.
It is theoretically demonstrated that, as conventional high-speed railway systems satisfy
R < Rc, a conservative pressure estimation can be established assuming α = 1.

Key words: flow–structure interactions, shock waves, aeroacoustics

1. Introduction

In railway tunnels, pressure variations are induced by trains entering, passing through
and leaving tunnels (Tollmien 1927; Yamamoto 1974; Vardy 1976; Woods & Pope 1981;
Glöckle & Pfretzschner 1988; Gawthorpe 2000; Baron, Mossi & Sibilla 2001; Saito, Iida
& Kajiyama 2011). The magnitudes of these variations significantly impact passenger
comfort, train stability, car body fatigue and infrastructure (Kobayashi et al. 1998; Sima
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2003; Qian et al. 2019). Thus, estimating the magnitudes of pressure variations in
high-speed railway tunnels is important and should be considered in railway system
design, for instance, when determining the required structural strengths and allowable train
speed limits.

Trains passing through a tunnel introduce transient pressure variations (Fujii & Ogawa
1995; Howe 2000; Hwang et al. 2001; Gilbert, Baker & Quinn 2013; Chu et al. 2014;
Li et al. 2017; Liu et al. 2017; Liu, Jing & Ren 2018; Lu et al. 2019); in particular, a
train entering and leaving a tunnel generates pressure waves (Hara 1961; Sugimoto &
Ogawa 1998; Howe et al. 2006). The pressure magnitude in a double-track tunnel is at
its maximum when the pressure variations generated by two trains passing each other
and the pressure wave generated by a train entering or leaving the tunnel superpose.
Therefore, numerous studies have addressed this phenomenon. However, research on two
trains passing each other in a tunnel remains limited compared with that on the generation
of pressure waves when a train enters or leaves a tunnel. This could be attributed to the
difficulty in performing model experiments of two trains passing each other. Although
moving model rigs have considerably contributed to experimental studies, most of these
rigs can only launch one train model, except in special facilities (Yang, Song & Yang 2016).
Therefore, researchers have generally performed only numerical studies in this context.

The Shinkansen line connecting the islands of Honshu (main) and Hokkaido in Japan
has been operational since March 2016. A key component of this route is the Seikan
tunnel, an undersea tunnel spanning 54 km. As high-speed trains (320 km h−1) share the
Seikan tunnel with conventional freight trains (110 km h−1), the high-speed trains must run
through the tunnel at a reduced speed of 160 km h−1, except under special circumstances
(Railway Gazette International 2021; Tsuru 2021). This mixed traffic scenario poses a
novel challenge for Japanese railway systems, particularly because freight trains lack the
streamlined and sealed design characteristic of high-speed trains. Consequently, allowing
an increase in the speed limit for Shinkansen trains along the Seikan tunnel would require
thorough investigation of several aerodynamic considerations specific to mixed traffic
operations.

Generally, mixed traffic includes trains operating at two different speeds: high-speed
trains (e.g. those with speeds over 160 km h−1) and conventional trains (e.g. those with
speeds less than 130 km h−1 in Japan). In emergencies, one train may run at a very
low speed or remain stationary in a tunnel, even in non-mixed traffic scenarios (typical
high-speed railway tunnels). Although numerous studies (Fujii & Ogawa 1995; Hwang
et al. 2001; Chu et al. 2014; Li et al. 2017; Lu et al. 2019; Qian et al. 2019) have been
conducted on the impact of train speed, train length, tunnel length and passing location
when two trains pass each other travelling at the same speed, few investigations (Howe
2000; Liu et al. 2018) have considered the case of the trains running at different speeds.
Available closed formulas for the maximum magnitude of the pressure wave generated
by a train entering a tunnel (Hara 1961) or passing through a junction of the main tunnel
and a branch (Miyachi, Fukuda & Saito 2014) are useful for structural design. In contrast,
except for the closed formula for the pressure rise of pressure waves when two trains pass
each other (Howe 2000), no analytical formulas are available to determine the pressure
distribution around two trains passing each other at the same or different speeds inside a
tunnel. In particular, we must evaluate the negative pressure in the region occupied by the
two running trains because it is much greater than the magnitude of the pressure variation
of the pressure waves generated by the two trains passing each other. In addition, the time
waveforms of the difference in pressure between the nose and tail, the left and the right
sides and the outside and inside of the trains are important because they are directly related
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to passenger comfort, train fatigue, train stability while in operation and the safety of train
freight.

Although the flow and pressure fields of trains passing each other are three-dimensional,
viscous, transient and compressible, their main component corresponds to that of
a one-dimensional inviscid flow. Additionally, because the use of three-dimensional
computational fluid dynamics (CFD) is still costly, the initial engineering design of
a railway tunnel system widely relies on the use of one-dimensional CFD tools (e.g.
ThermoTun software (Vardy 1976; Dundee Tunnel Research 2023)). Therefore, theoretical
formulas of asymptotic pressure solutions based on a one-dimensional flow analysis
remain highly valuable for railway engineers. Thus far, theoretical investigations on the
pressure field around two trains passing each other in a tunnel have not been conducted
because solving the one-dimensional compressible flow equations under such conditions
is difficult and assuming an incompressible flow is not applicable.

In this study, the pressure variation induced by two trains passing each other in a tunnel
is theoretically analysed for R < 0.35, where R is the cross-sectional area ratio of the train
to the tunnel. Quasi-one-dimensional (quasi-1-D) governing equations are introduced, and
M expansion formulas of asymptotic pressure solutions are presented by simplifying the
Hara method (Hara 1961), which is based on the perturbation method of pressure. The
remainder of this paper is organized as follows: § 2 presents the results of a 1-D inviscid
compressible airflow analysis. Section 3 interprets the results of two trains passing each
other using approximate equations. Section 4 discusses the results reported in §§ 2 and 3.
Finally, § 5 concludes the paper.

2. One-dimensional analysis of inviscid compressible airflows for two trains passing
each other

2.1. Train speeds and blockage ratios in Japanese railways
The train speed U and blockage ratio R (R = At/A0, where At and A0 denote the
cross-sectional areas of the train and tunnel, respectively) are key parameters for two trains
passing each other. In Japan, the speeds of high-speed (Shinkansen) and conventional
trains are less than 320 and 130 km h−1, respectively. For typical Shinkansen trains, the
blockage ratio is approximately 0.17 (less than 0.2). The blockage ratio of double-decker
Shinkansen trains is approximately 0.22; however, their maximum speed is 240 km h−1.
The blockage ratio of conventional freight trains in a double-track tunnel is less than 0.25,
and this ratio is expected to be less than 0.12 for maglev trains.

As the minimum cross-sectional area of the Seikan tunnel is the same as those of other
Shinkansen tunnels, the blockage ratios for both Shinkansen and conventional freight
trains are less than 0.2.

2.2. Governing equations and exact solutions
Figures 1 and 2 present the schematics of a high-speed train passing a low-speed train in
a tunnel. The x-axis is set from left to right. The high- and low-speed trains, H and L, run
at speeds of UH and UL in the negative and positive x-directions, respectively. The noses
of two trains meet at x = 0 and t = 0, where t denotes time. To simplify the analysis, the
blockage ratio and length of both trains are assumed to be equal. Stage A denotes the
period after nose–nose passing but before nose–tail passing; stage B indicates the period
after nose–tail passing but before tail–tail passing.
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Figure 1. Schematic of two trains passing each other after nose–nose passing but before nose–tail passing.
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Figure 2. Schematic of two trains passing each other after nose–tail passing but before tail–tail passing.

In stage A, two pressure waves, denoted I and II, are considered at the fronts of the two
trains. The area between the two waves is divided into six regions: 1, 2, 31, 32, 4 and 5.
Region 3, which is occupied by the two running trains, consists of subregions 31 and 32.
In region 0, the pressure and density are atmospheric, and the velocity is zero. In stage B,
two additional pressure waves, denoted III and IV, are considered in front of each of the
two trains, respectively. Regions A1 and A5 represent the states of regions 1 and 5 of stage
A, respectively. The area between the two secondary waves is divided into six regions, as
in stage A.

As pressure waves I and II are generated around the noses at the moment of nose–nose
passing, they propagate through regions 2 and 4, respectively. When they depart from the
train tails, the reflected waves return to the noses. In stages A and B, a steady state was
assumed after multiple reflections of the waves at the noses and tails for simplicity.

For the following calculations, we assumed a 1-D inviscid compressible flow. In front of
and behind each wave, three conservation laws (for continuity, momentum and energy)
were adopted. For all other regions, two consecutive regions were connected using
the continuity equation, energy equation and isentropic relationship with respect to a
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coordinate system fixed on each train. For each wave, we have the following relations:

ρ∗
f (mf − Ms) = ρ∗

b (mb − Ms) , (2.1)

Xf + ρ∗
f (mf − Ms)

2 = Xb + ρ∗
b (mb − Ms)

2 , (2.2)

γ

γ − 1
1/γ + Xf

ρ∗
f

+ 1
2
(mf − Ms)

2 = γ

γ − 1
1/γ + Xb

ρ∗
b

+ 1
2

(mb − Ms)
2 , (2.3)

where ρ∗ = ρ/ρ0 is the non-dimensional density, ρ is the density, ρ0 is the atmospheric
density, X = p/(γ p0) is the non-dimensional pressure, p is the acoustic pressure, p0 is
the atmospheric pressure, γ is the specific heat ratio, m = u/c0 is the non-dimensional
velocity, u is the air velocity, c0 is the speed of sound, the subscript f indicates the state in
front of a wave, the subscript b indicates the state behind a wave, Ms = cs/c0 and cs is the
speed of the acoustic wave (shock wave).

For the two consecutive regions, the continuity, Bernoulli and isentropic equations to be
solved are for i = 1, 2, 32, 4

ρ∗
i (mi − Mref )(1 − Ri) = ρ∗

i+1(mi+1 − Mref )(1 − Ri+1), (2.4)

γ

γ − 1
1/γ + Xi

ρ∗
i

+ 1
2
(mi − Mref )

2 = γ

γ − 1
1/γ + Xi+1

ρ∗
i+1

+ 1
2
(mi+1 − Mref )

2, (2.5)

ρ∗
i+1

ρ∗
i

=
(

1/γ + Xi+1

1/γ + Xi

)1/γ

, (2.6)

where Mref = Uref /c0 is the Mach number of the reference train, Uref is the reference train
speed (UH or UL ), R1 = R5 = 0, R2 = R4 = R, R3 = R31 = R32 = 2R and i is the index
of the region.

The boundary between the subregions 31 and 32 is assumed to be a contact surface. As in
x < u3t and x > u3t, the airflows are induced by pressure waves I and II, respectively; they
can have different density values. Therefore, we have the following continuity conditions
for the velocity and pressure, whereas the densities in these two regions are different:

m31 = m32 = m3, (2.7)

X31 = X32 = X3. (2.8)

The application of (2.1)–(2.8) to regions 1–5 yields 20 variables and 20 equations. This
implies that the systems of equations for stages A and B are fully ranked and solvable. It
should be noted that flow analysis without pressure waves or a contact surface cannot be
solved because the number of equations does not correspond with the number of variables.
‘Python scipy.optimize.minimize’ was used to solve (2.1)–(2.8). Although R < 0.25 in
Japanese double-track tunnels, as outlined in § 2.1, this study considers the range of 0 ≤
R ≤ 0.35. For this range, the calculation was stable when the initial guesses of Xi, mi,
ρ∗/ρ0 − 1 and Ms − 1 were set to zero because flow choking did not occur. Figures 3–5
present the exact solutions for the pressure in each region, calculated using (2.1)–(2.8),
where α = UL/UH is the ratio of the speeds of the trains. The difference between ρ∗

31 and
ρ∗

32 was negligibly small when Xi � 1.
As shown in figures 3–5, the maximum magnitude of pressure is observed in region 3,

when α = 1 in stage A for R = 0.2 and when α = 0 in stage B for R = 0.3. In addition,
although the magnitudes of the pressure waves in regions 1 and 5 are almost zero for
UH = 250 km h−1 and R = 0.2, they have increased (positive and negative) values for
larger values of R or UH .
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Figure 3. Exact solutions of the pressure distribution in each region: UH = 250 km h−1 and R = 0.2.
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Figure 4. Exact solutions of the pressure distribution in each region: UH = 250 km h−1 and R = 0.3.
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Figure 5. Exact solutions of the pressure distribution in each region: UH = 360 km h−1 and R = 0.2.

2.3. Critical blockage ratio, Rc

Figures 6 and 7 present the relationship between p3, where the magnitude of the pressure
reaches its maximum, and α. Here, ‘1st order equation’ denotes the approximate solution,
explained in § 3.1. For a small value of R (e.g. R = 0.2), |p3(α = 0)|max < |p3(α =
1)|max, whereas for a large value of R (e.g. R = 0.3), |p3(α = 0)|max > |p3(α = 1)|max.
Here, |p3|max = max[|p3A|, |p3B|], and p3A and p3B are equal to p3 for stages A and B,
respectively.
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Figure 6. Relationship between p3 and α (U = 250 km h−1).
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Figure 7. Relationship between p3 and α (U = 360 km h−1).

The critical blockage ratio Rc is defined as the blockage ratio R that satisfies the
following condition:

|p3 (α = 0) |max = |p3 (α = 1) |max. (2.9)

Figure 8 presents the exact solution of Rc, solved numerically. The value of Rc decreases
with the train speed UH . The value of Rc is 0.26 when UH = 320 km h−1. This indicates
that the blockage ratio in conventional high-speed railway tunnels is smaller than Rc.
Consequently, in cases involving mixed traffic with UH = 320 km h−1, the conservative
worst-case scenario is two trains passing each other at identical speeds, that is, at α = 1.
Maglev trains (R < 0.2) also satisfy R < Rc because 0.18 < Rc < 0.22 for 500 km h−1 <

UH < 600 km h−1. Most railway tunnels (worldwide) are unlikely to allow the maximum
value of R to exceed Rc; thus, the conservative estimation would be expected to be valid
for these tunnels, considering only α = 1.

3. Approximate equations

In this section, we introduce approximate equations of (2.1)–(2.8) for a detailed analysis
of the results presented in § 2. Hara’s analytical method (Hara 1961), originally used for
analysing pressure waves generated by a train entering a tunnel with the assumption of
Xi � 1, was applied to solve (2.1)–(2.8).
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Figure 8. Critical blockage ratios at various speeds of the high-speed train.

3.1. The Hara method
Hara (Hara 1961) proposed a theoretical method to evaluate the pressure rise of the
compression wave generated by a train entering a tunnel, where the terms of X2 are
only neglected among the second-order perturbations of the equations representing the
compressible airflow, X2, m2 and (ρ∗ − 1)2. The results of model experiments and field
tests show that the formula obtained in this manner effectively predicts the pressure rise.
In the method, m2 and (ρ∗ − 1)2 are expressed by X and the terms X2 are neglected.
When we neglect all the second-order perturbations, the system equations become those
of linear acoustic theory (Howe 1998; Sugimoto & Ogawa 1998). In the Hara method,
as the terms of the order of X2 are neglected, the nonlinearity of pressure is ignored.
However, it takes velocity nonlinearities and the velocity–pressure cross-term into account.
Indeed, Miyachi (Miyachi 2019) showed that the Hara method considers the nonlinear
source terms.

As M ∼ 0.3 and R ∼ 0.2 as described in § 2.1, we consider MH � 1 and R � 1. The
pressure rise of the compression wave generated by a train entering a tunnel is a weak
shock given by X ∼ RM2 ∼ O[10−2] � 1. Therefore, it is regarded as O[X2

i = R2M4] =
O[10−4], which can be neglected. Furthermore, because weak shocks satisfy the isentropic
relation, (ρi/ρ0 − 1)2 = O[X2] can also be neglected. While m ∼ O[X = RM2] for the air
velocity accelerated by a weak shock, m ∼ O[M] for the air velocity around the train.
Therefore, m2 ∼ O[M2] = O[10−1] is considered.

The cross-terms between X and higher orders of M complicate the procedure. However,
all terms of X are considered, even if the coefficient is a higher order of M (e.g. M2X) in
the original Hara method. Miyachi et al. (Miyachi et al. 2014) applied the Hara method
to evaluate the pressure rise of pressure waves generated by a train passing a branch in a
tunnel and showed that the results obtained by neglecting the cross-terms for simplicity
are in agreement with the experimental results.

Each term of Xi is easily evaluated as Xi ∼ RM2
H , assuming the magnitude of the

pressure beside a train travelling in a tunnel. This implies that MH ∼ 0.3, R ∼ 0.2 and
Xi ∼ RM2

H for the train passing problem are the same as the tunnel entering problem.
Therefore, the Hara method can be applied to (2.1)–(2.8). For simplicity, the cross-terms
MHXi ∼ RM3

H ∼ O[10−3] and M2
HXi ∼ RM4

H ∼ O[10−3], respectively, are neglected in
§§ 3.3 and 3.4. Therefore, the analysis in this study is based on the MH expansion
of Xi.

988 A45-8

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

40
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.403


Analysis of pressure variations induced by trains passing

3.2. Approximation of governing equations
Here, we introduce an approximation of the governing equations for the approximate
equations by neglecting O[X2

i ]. First, we evaluate the equations for each wave. Equations
(2.1)–(2.3) yield the following equations:

γ (Xb − Xf )

1 + γ Xf
= 2γ

γ + 1

((
mf − Ms

cf /c0

)2

− 1
)

, (3.1)

ρ∗
b

ρ∗
f

= mf − Ms

mb − Ms
= (γ − 1) (1 + γ Xf ) + (γ + 1)(1 + γ Xb)

(γ + 1)(1 + γ Xf ) + (γ − 1)(1 + γ Xb)
, (3.2)

where (3.2) is the Rankine–Hugoniot equation.
Equation (3.2) gives

ρ∗
b

ρ∗
f

= mf − Ms

mb − Ms
= 1 + Xb − Xf + O[X2] =

(
1/γ + Xb

1/γ + Xf

)1/γ

. (3.3)

As this result is well known, the isentropic relationship between the pressure in front of
and behind a shock wave is obtained when O[X2

i ] is neglected. Therefore, we can consider
all the flow fields to be isentropic. Thus, we have

ρ∗
i = ρi

ρ0
=
(

1/γ + Xi

1/γ

)1/γ

= 1 + Xi, for i = 1, 2, 31, 32, 4, 5. (3.4)

Therefore

Ms = mf ∓
(

1 + γ + 1
4

(Xb − Xf ) + γ − 1
2

Xf

)
, (3.5)

mb − mf = ∓(Xb − Xf ), (3.6)

where the positive sign denotes the propagation of the pressure wave in the positive
x-direction.

From (3.4)–(3.6), by neglecting O[X2
i ], we obtain the following for stage A:

ρ∗
1 = 1 + X1. (3.7)

Ms,I = −
(

1 + γ + 1
4

X1

)
, (3.8)

m1 = −X1, (3.9)

and for stage B:

ρ∗
1 = 1 + X1, (3.10)

Ms,III = −
(

1 + γ + 1
4

(X1 + XA1)

)
, (3.11)

m1 = −X1, (3.12)

where X1A = −m1A is used (3.9).
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Finally, we can use the same expression m1 = −X1 for stages A and B, although the
values of X1 for the two stages are different. Similarly, we also have the following for
stages A and B:

m5 = X5. (3.13)

Equations (2.8) and (3.4) yield ρ∗
31 = ρ∗

32 when we neglect O[X2
i ]. Therefore, in this

section, we consider the five regions, 1, 2, 3, 4 and 5, shown in figures 1 and 2. The
equations for regions 2–4 are also simplified by neglecting O[X2

i ]. Substituting (3.4) into
the continuity and Bernoulli equations (2.4) and (2.5) generates the following equations:

(1 + Xi)(mi − Mref )(1 − Ri) = (1 + Xi+1)(mi+1 − Mref )(1 − Ri+1), (3.14)

Xi + 1
2 (mi − Mref )

2 = Xi+1 + 1
2 (mi+1 − Mref )

2. (3.15)

From these results, the following equations are obtained after neglecting O[X2
i ] for

stage A:
Regions 0 and 1:

X1 = −m1. (3.16)

Regions 1 and 2:

(1 + X1) (m1 − ML) = (1 + X2) (m2 − ML) (1 − R) , (3.17)

X1 + 1
2 (m1 − ML)2 = X2 + 1

2 (m2 − ML)2 . (3.18)

Regions 2 and 3:

(1 + X2) (m2 + MH) (1 − R) = (1 + X3) (m3 + MH) (1 − 2R) , (3.19)

X2 + 1
2 (m2 + MH)2 = X3 + 1

2 (m3 + MH)2 . (3.20)

Regions 3 and 4:

(1 + X3) (m3 − ML) (1 − 2R) = (1 + X4) (m4 − ML) (1 − R) , (3.21)

X3 + 1
2 (m3 − ML)2 = X4 + 1

2 (m4 − ML)2 . (3.22)

Regions 4 and 5:

(1 + X4) (m4 + MH) (1 − R) = (1 + X5) (m5 + MH) , (3.23)

X4 + 1
2 (m4 + MH)2 = X5 + 1

2 (m5 + MH)2 . (3.24)

Regions 5 and 0:

X5 = m5. (3.25)

We obtain the equations for stage B by replacing ML with −MH and MH with −ML
in (3.16)–(3.25). Although the speeds of the pressure waves differ for stages A and B
(cs,I /= cs,III), they do not explicitly appear in (3.16)–(3.25).
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Analysis of pressure variations induced by trains passing

3.3. First-order equations (equations of O[M2
H])

The approximations of (3.16)–(3.25) when O[X2
i ] and O[M3

H] are neglected for stage A are
as follows (see Appendix B):

cp1 = R2

(1 − R) (1 − 2R)
(1 − α2) ≥ 0, (3.26)

cp5 = −cp1 ≤ 0, (3.27)

cp2 = R2

(1 − R) (1 − 2R)
− R (2 − (4 − R) R)

(1 − R)2 (1 − 2R)
α2, (3.28)

cp4 = R2

(1 − R) (1 − 2R)
α2 − R (2 − (4 − R) R)

(1 − R)2 (1 − 2R)
, (3.29)

cp3 = −
[

R
1 − R

(1 + α)2 + R (1 − R)

(1 − 2R)2 (1 − α)2
]

. (3.30)

As the relative errors of (3.26)–(3.30) denote the order of MH (see Appendix B), these
equations are first-order equations. Owing to the symmetry of the pressure fields between
stages A and B, as shown in figures 1 and 2, replacing ML with −MH and MH with −ML
in (3.26)–(3.30) yields the equations for stage B. Thus, we have shown that cp3 for stage B
is the same as that for stage A. Similarly, cp1 for stage B is the same as cp5 for stage A.

From (3.26)–(3.30), we obtain the following pressure differences between two
consecutive regions:

�cp1 = X1 − 0
1
2 M2

H

= R2

(1 − R) (1 − 2R)
(1 − α2), (3.31)

�cp21 = �X21
1
2 M2

H

= X2 − X1
1
2 M2

H

= −R (2 − R)

(1 − R)2 α2, (3.32)

�cp32 = �X32
1
2 M2

H

= X3 − X2
1
2 M2

H

= −R (2 − 3R)

(1 − 2R)2

(
1 − R

1 − R
α

)2

, (3.33)

cp3 = X3
1
2 M2

H

= �cp1 + �cp21 + �cp32. (3.34)

Figures 9–11 present the relationships between α and �cp1, �cp21, �cp32 and cp3 for
various values of R for stage A.

In (3.31), �cp1 denotes the pressure rise of the pressure wave in front of train H. In
(3.32), �cp21 denotes the pressure drop beside train L (region 2) when it runs alone
through incompressible air before passing train H (see Appendix C). In (3.33), �cp32
denotes the pressure difference between regions 2 and 3 in an incompressible flow.
Therefore, in the first-order equation, the pressure field around the two trains is the linear
superposition of that of the incompressible flow and the pressure variation generated by
the pressure waves. As X1 + X5 = 0, the impacts of the two pressure waves cancel out
in region 3, and the two waves do not have any impact on this region. Moreover, in the
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Figure 9. Relationships between pressure coefficients and α for R = 0.2 (first-order equations).
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Figure 10. Relationships between pressure coefficients and α for R = 0.3 (first-order equations).
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Figure 11. Relationships between pressure coefficients and α for R = 0.35 (first-order equations).

first order of R, we have X3 ∼ X2 + X4 ∼ −RM2
H(1 + α2). This means that the pressure

between two passing trains is the approximate superposition of the pressure surrounding
each train running alone.

The term �X21 is proportional to α2M2
H , which is the dynamic pressure of the low-speed

train L. For 0 ≤ α ≤ 1 and 0 ≤ R ≤ 1/2, (3.32) indicates that �cp21 is a decreasing
function of α and �cp21 ≤ 0, implying that |�cp21| is an increasing function of α (as
shown in figures 9–11).

The term �X32 is proportional to m2
2H = (1 − (R/(1 − R))α)2M2

H , where m2H = (1 −
(R/(1 − R))α)MH is the relative air velocity of region 2 in the coordinate system fixed on
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Analysis of pressure variations induced by trains passing

train H. Here, m2 = −(R/(1 − R))αMH is the speed of the airflow in region 2 induced
by train L for incompressible flow. This implies that train L induces the airflow that
follows train H with the speed (R/(1 − R))αMH; this airflow that follows train H reduces
the relative speed of train H and the magnitude of the pressure variation for the two
trains passing each other. The effect of this reduction is more apparent as α increases;
no following wind is observed for α = 0. Equation (3.33) indicates that the vertex of
�cp32 is located at α = 1/R − 1 ≥ 1 for 0 ≤ R ≤ 1/2. Therefore, for 0 ≤ α ≤ 1 and
0 ≤ R ≤ 1/2, �cp32 is an increasing function of α, and �cp32 < 0. Thus, |�cp32| is a
decreasing function of α (as shown in figures 9–11).

The term X1 is proportional to (1 − α2)M2
H , which is the difference in dynamic pressure

between the two trains. Therefore, when the two trains pass each other at the same speed,
X1 = 0, that is, the compression wave generated by train H cancels out the expansion
wave generated by train L in front of train H. For 0 ≤ α ≤ 1 and 0 ≤ R ≤ 1/2, (3.31)
indicates that �cp1 is a decreasing function of α and �cp1 ≥ 0. Figures 9–11 indicate
that this term is relatively small compared with �cp21 and �cp32. For incompressible
flow, cp3 = �cp21 + �cp32 < 0. However, the compressibility contributes to |cp3| through
�cp1.

As �cp21 is a decreasing function of α, �cp21(α = 0) > �cp21(α = 1), whereas �cp32
is an increasing function of α, and �cp32(α = 0) < �cp32(α = 1). The magnitude of
�cp1 is relatively small compared with those of �cp21 and �cp32. For a small value of
R, as d�cp21/dα ∼ −2Rα2 is the dominant term, cp3 is a decreasing function, whereas for
a large value of R, as d�cp32/dα ∼ 4R2 is also considerable, cp3 is an increasing function
around α ∼ 0. The critical blockage ratio Rc, where the dominant term changes, satisfies
the following equation:

cp3 (α = 0) = cp3 (α = 1) . (3.35)

By solving the first-order equations (3.31)–(3.35), we have Rc = (
√

3 − 1)/(2
√

3 − 1) =
0.297 ∼ 0.3. Figure 8 presents a comparison between the first-order and exact solutions of
Rc. The first-order solution is constant as UH changes, whereas the exact solution decreases
with UH . A coarse estimation of the maximum magnitude of the pressure induced by two
trains passing through a tunnel is as follows:

|p3 (α = 1)| =
∣∣∣∣−1

2
ρ0U2

H
4R

1 − R

∣∣∣∣ , for R ≤ 0.3, (3.36)

|p3 (α = 0)| =
∣∣∣∣∣−1

2
ρ0U2

H
R

1 − R

(
1 +

(
1 − R
1 − 2R

)2 )∣∣∣∣∣ , for R ≥ 0.3. (3.37)

3.4. Second-order equations (equations of O[M3
H])

The approximate equations of (3.16)–(3.25) when O[X2
i ] and O[M4

H] are neglected for
stage A are as follows (see Appendix B):

c(2)
p1A = R2

(1 − 2R) (1 − R)
(1 − α2)
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− R2

1 − R
3
4

MH

(
(1 + α)3 +

4
3 R2

(1 − R) (1 − 2R)2 (1 + α)2 (1 − α)

− 1
1 − 2R

(1 + α) (1 − α)2

⎞
⎟⎠ , (3.38)

c(2)
p5A = − R2

(1 − 2R) (1 − R)
(1 − α2)

− R2

1 − R
3
4

MH

(
(1 + α)3 −

4
3 R2

(1 − R) (1 − 2R)2 (1 + α)2 (1 − α)

− 1
1 − 2R

(1 + α) (1 − α)2

⎞
⎟⎠ , (3.39)

c(2)
p3A = −

[
R

1 − R
(1 + α)2 + (1 − R) R

(1 − 2R)2 (1 − α)2
]

− R2

1 − R
3
4

MH (1 + α)3 + R2

(1 − 2R)3

(
1

1 − R
− 4

3
R
)

× 3
4

MH (1 + α) (1 − α)2 , (3.40)

c(2)
p2A − c(2)

p1A = −R (2 − R)

(1 − R)2 α2 − R3 (2 − R)

(1 − 2R) (1 − R)3 MHα(1 − α2), (3.41)

c(2)
p4A − c(2)

p5A = −R (2 − R)

(1 − R)2 + R3 (2 − R)

(1 − 2R) (1 − R)3 MH(1 − α2), (3.42)

where c(2)
piA is the pressure coefficient in region i when considering O[M3

H] for stage A.
As the relative errors of (3.38)–(3.42) denote the order of O[M2

H], these equations are
second-order equations. Replacing ML with −MH and MH with −ML in these equations,
we obtain the results for stage B, e.g.

c(2)
p3B = −

[
R

1 − R
(1 + α)2 + (1 − R) R

(1 − 2R)2 (1 − α)2
]

+ R2

1 − R
3
4

MH (1 + α)3 − R2

(1 − 2R)3

(
1

1 − R
− 4

3
R
)

3
4

MH (1 + α) (1 − α)2 .

(3.43)
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2 R = 0.2
R = 0.3

1

0

�
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3
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/
M

H

–1

–2

0 0.2 0.4
α

0.6 0.8 1.0

Figure 12. Pressure difference between stages A and B in region 3 (second-order equations).

The difference between the pressure in region 3 at stages A and B is as follows:

�c(2)
p3BA ≡ �c(2)

p3B − �c(2)
p3A

=
[

1
1 − R

(1 + α)3 − 1

(1 − 2R)3

(
1

1 − R
− 4

3
R
)

(1 + α) (1 − α)2
]

3R2MH

2
,

(3.44)

�c(2)
p3BA (α = 0) = −R2MH

2

2R
(

12
(

R − 2
3

)2 + 5
3

)
(1 − R) (1 − 2R)3 , (3.45)

�c(2)
p3BA (α = 1) = R2MH

2
24

1 − R
. (3.46)

Figure 12 presents the values of �c(2)
p3BA/MH for R = 0.2 and 0.3. For 0 ≤ R ≤ 1/2,

�c(2)
p3BA is an increasing function of α; and here, �c(2)

p3BA(α = 0) < 0 and �c(2)
p3BA(α =

1) > 0. Therefore, c(2)
p3B(α = 0) < c(2)

p3A(α = 0) < 0 and c(2)
p3A(α = 1) < c(2)

p3B(α = 1) < 0.
The maximum magnitude of the pressure as the two trains pass each other is observed in
stages A and B for α = 1 and 0, respectively, regardless of the value of R, as shown in
figures 3–5.

Similarly, the pressure variations induced by pressure waves I and III, �cp,I and �cp,III ,
respectively, are expressed as follows:

�c(2)
p,I = c(2)

p1A − 0

= R2

(1 − 2R) (1 − R)
(1 − α2)
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Figure 13. Pressure variations induced by pressure wave I: UH = 250 km h−1 and R = 0.2.

− R2

1 − R
3
4

MH

(
(1 + α)3 +

4
3 R2

(1 − R) (1 − 2R)2 (1 + α)2 (1 − α)

− 1
1 − 2R

(1 + α) (1 − α)2

)
, (3.47)

�c(2)
p,III = �c(2)

p1B − c(2)
p1A = −2

R2

(1 − 2R) (1 − R)
(1 − α2)

+ R2

1 − R
3
2

MH

(
(1 + α)3 − 1

1 − 2R
(1 + α) (1 − α)2

)
. (3.48)

Figures 13–16 present the pressure variations induced by pressure waves I and III. In
the first-order equations, pressure waves I and III are always compressive and expansive,
respectively. In particular, for α = 1, the pressure variations of these waves are zero.
However, in the exact solutions or in the second-order equations, the variations are zero at
α = αcri < 1, where αcri is the value of the zero pressure variation. As shown in the exact
solutions in figures 13–16, αcri is close to one. Solving each of �c(2)

p,I = 0 and �c(2)
p,III = 0

in the expanded form with 1 − α and R yields the same solution as follows:

αcri = 2 + 6R + 3 (1 + R) M
2 + 6R + 9 (1 + R) M

. (3.49)

For α > αcri, pressure waves I and III are expansive and compressive, respectively, and
vice versa. Figures 13–16 also show that the values of αcri and the exact solutions are in
good agreement.

Replacing MH and ML with ML and MH , respectively, in (3.47) and (3.48) yields �cp,II
and �cp,IV . Figures 17 and 18 show the pressure variation induced by pressure waves II
and IV. Figures 17 and 18 indicate that pressure waves II and IV are always expansive
and compressive, respectively. It is easily shown that �cp,I(α = 1) = �cp,II(α = 1) and
�cp,III(α = 1) = �cp,IV(α = 1).
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Figure 14. Pressure variations induced by pressure wave III: UH = 250 km h−1 and R = 0.2.
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Figure 15. Pressure variations induced by pressure wave I: UH = 360 km h−1 and R = 0.2.
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Figure 16. Pressure variations induced by pressure wave III: UH = 360 km h−1 and R = 0.2.

4. Discussion

In summary, we proposed three types of solutions for the pressure distribution generated
when two trains pass each other in a tunnel: numerically exact solutions and solutions
obtained using first- and second-order equations. It should be noted that the first-order
equations are useful for rough estimations and qualitative understanding. The solutions
proposed in this study enable the calculation of not only the maximum pressure
magnitudes but also the time waveforms outside the trains, although they cannot provide
the transient (or local) pressure variations around train noses and tails. The variation in
the time waveforms is equivalent to the pressure difference between adjacent regions, such
as �cp21.
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Figure 17. Pressure variations induced by pressure waves II and IV: UH = 250 km h−1 and R = 0.2.
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Figure 18. Pressure variations induced by pressure waves II and IV: UH = 360 km h−1 and R = 0.2.

In real-world scenarios, the pressure around two trains is superposed with that induced
by pressure waves and friction. While employing 3-D CFD has proven effective for such a
complicated problem, as reported in numerous studies (Fujii & Ogawa 1995; Hwang et al.
2001; Chu et al. 2014; Li et al. 2017; Lu et al. 2019; Qian et al. 2019), some limitations
persist. For instance, Liu et al. (2018) noted that, owing to computational constraints, their
calculations were restricted to cases involving short tunnels (less than one kilometre).
Additionally, if all possible values of all parameters were considered, the application of
3-D CFD to scenarios involving two trains passing each other in a long tunnel, like the
Seikan tunnel, would become challenging and impractical. Therefore, except for field
tests, we must explore alternative approaches such as 1-D CFD, model experiments or
theoretical analyses. Among these, conducting model experiments with two moving trains
is difficult and theoretical solutions for two trains passing each other are yet to be derived.
Therefore, 1-D CFD is the only practical method for addressing real-world scenarios.
However, no means exist, other than field test data, to validate 1-D CFD analyses including
two trains passing each other. This study not only facilitates the validation of 1-D CFD
results but also extends the theoretical solutions (William-Louis & Tournier 2005) that
simply aggregate amplitudes of pressure waves, pressure fields around trains and pressure
induced by friction.

The main objective of this study is to estimate the negative pressure between two trains,
X3. When we simply sum the pressure surrounding the trains running at MH and ML
assuming incompressible flow conditions, which are respectively equal to �cp45 and �cp21
as stated in § 3.3, the pressure �cp21 + �cp45 is calculated using the first-order equation
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Figure 19. Comparison of p3 and p2 + p4, stage A.
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Figure 20. Comparison of p3 and p2 + p4, stage B.

as follows:

�cp21 + �cp45 = �cp21 + �cp45 + �cp1 + �cp5 = cp2 + cp4 = −R (2 − R)

(1 − R)2 (1 + α2),

(4.1)

because �cp1 + �cp5 = 0. As stated in § 3.3, in the first-order equation of R, cp2 + cp4 ∼
cp3. Figures 19 and 20 compare p3 with p2 + p4. Here, p2 + p4 of the first-order equation is
also a good approximation of the exact solutions. Although when compared with the exact
solutions, the relative error of p3 of the first-order equation varies with α and depends
on the stage, that of the second-order equation is consistently small. Although an exact
solution can be obtained in only a few seconds, the second-order equations are useful
because of their simplicity. The first-order equation presents an effective understanding
of the physical phenomena that prevail when the trains pass each other, as described
in § 3.3.

The pressure waves that are generated by two trains passing each other, expressed as
pressure waves I and II in this study, can cause micro-pressure waves when propagating to
the ends of the tunnel. Howe (Howe 2000) presented a mathematical analysis of two trains
passing each other at different speeds for stage A. In this analysis, the two trains were
expressed as monopole source terms. Based on Howe’s analysis, X1 can be expressed as
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Figure 21. Relationship between p1 and UH for α = 0 and R = 0.17.

0.2

0

–0.2

0 0.2 0.4

R = 0.17, UH = 320 km h–1

p 1
 (

k
P

a)

0.6

α
0.8 1.0

Exact
Howe
1st order equation
2nd order equation

Figure 22. Relationship between p1 and α for UH = 320 km h−1 and R = 0.17.

follows:

X1 = (1 + α)

[
1

(1 + αMH)2 (1 − M2
H)

− α

(1 − α2M2
H) (1 − MH)2

]
R2 1

2
M2

H (4.2)

∼ R2(1 − α2)
1
2

M2
H. (4.3)

This formula corresponds with the main term of (3.26) for a low Mach number
approximation. An analysis using monopole terms without nonlinear source terms neglects
the higher terms of R (e.g. Howe 2000; Miyachi 2019), as explicitly observed in (3.38) and
(4.3).

Figure 21 shows the relationship between p1 and UH for α = 0 and R = 0.17, and
figure 22 shows the relationship between p1 and α for UH = 320 km h−1 and R = 0.17,
where ‘Howe’ denotes the pressure obtained using (4.2). The parameters were set for a
typical Japanese high-speed railway tunnel. These figures indicate that the results obtained
using (3.38) are more accurate than those obtained using (3.26) and (4.2). The values of
p1 are negative for larger values of α, although p1 ≥ 0 for 0 ≤ α ≤ 1 in the first-order
equation. This indicates that considering the high-order terms of R in (3.38) is important
when analysing real-world high-speed railways. Although Howe’s analysis can predict the
waveforms of pressure waves, it is fairly complicated. In contrast, the analysis considered
in this study is simple, although it can only be used to predict pressure magnitudes.
Moreover, Howe’s analysis can be modified by multiplying the ratio of (3.38) and (4.2).
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Figure 23. Relationship between the exact solution of |pmin| and α when UH or UL is fixed for R = 0.12.
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Figure 24. Relationship between Uref and the maximum magnitude of the pressure for R = 0.17.

Figure 23 illustrates the relationship between the exact solution of |p3,min| and α when
either UH or UL is fixed, where p3,min is the minimum value of p3. When UL is fixed,
|p3,min| is a decreasing function of α. Conversely, as depicted in figure 23 and discussed
in § 3.1, when UH is fixed, |p3,min| is an increasing function of α for R < Rc. When UL is
fixed, the maximum value of |p3,min| decreases with α because UH decreases.

Figure 24 depicts the maximum magnitude of the pressure when either UH or UL
is fixed for R = 0.17. This figure presents three situations encountered in high-speed
railway tunnels: (i) UH is fixed at 320 km h−1 and UL = Uref (0 ≤ Uref ≤ 320 km h−1);
(ii) UL is fixed at 110 km h−1 and UH = Uref (UL = 110 km h−1 ≤ Uref ≤ 320 km h−1);
and (iii) UH = UL = Uref (0 ≤ Uref ≤ 320 km h−1).

In situation (i), because R = 0.17 < Rc = 0.26 for 320 km h−1, the maximum
magnitude of the pressure is lower at UL = 0 than at UL = 320 km h−1. In situation (ii), the
maximum magnitude of the pressure increases with UH . The maximum magnitude of the
pressure for the Seikan tunnel for (UL, UH) = (110 km h−1, 160 km h−1), which applies
to the current operation, corresponds to that for (UL, UH) = (138 km h−1, 138 km h−1)
in situation (iii). When UH increases to 320 km h−1, the maximum magnitude of the
pressure for (UL, UH) = (110 km h−1, 320 km h−1) corresponds to that for (UL, UH) =
(253 km h−1, 253 km h−1) in situation (iii). Therefore, increasing the speed limit in the
Seikan tunnel to 320 km h−1 would require systems of freight cars to have approximately
the same pressure air tightness and sealability as high-speed trains passing each other at
253 km h−1; the current system does not have such air tightness and sealability. Moreover,

988 A45-21

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

40
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.403


T. Miyachi, Y. Noguchi and Y. Yamauchi

when UH = 320 km h−1 and UL ≤ 110 km h−1, the worst case is the case for (UL, UH) =
(0, 320 km h−1) corresponding to that for (UL, UH) = (263 km h−1, 263 km h−1) in
situation (iii). It should be noted that the maximum magnitude of the pressure
for (UL, UH) = (0, 320 km h−1) is greater than that for (UL, UH) = (110, 320 km h−1).
Therefore, requiring freight trains to remain stationary in the tunnel until the high-speed
trains running at 320 km h−1 have passed is not necessarily the best solution.

5. Conclusion

In this study, we theoretically investigated asymptotic solutions of the pressure distribution
in a tunnel when two trains pass each other running at different speeds. The
following conclusions were drawn from the 1-D inviscid compressible steady airflow
analysis.

(i) We proposed a method to obtain numerically exact solutions of the asymptotic
pressure distribution around two trains passing each other in a tunnel while travelling
at different speeds.

(ii) Theoretical formulas to predict the asymptotic pressure distribution when two trains
pass each other at different speeds were obtained (first-order equations (3.26)–(3.30)
and second-order equations (3.38)–(3.42)). The maximum values of the magnitudes
of the pressures in the region occupied by the two trains were observed after
nose–nose passing but before nose–tail passing, and after nose–tail passing but
before tail–tail passing, when α = 1 and 0, respectively.

(iii) When the speed of the high-speed train was fixed, the magnitude of the pressure was
an increasing function of α for R < Rc, and the maximum magnitude of the pressure
was obtained when the two trains passed each other at the same speed. However, for
R > Rc, the maximum magnitude of the pressure was obtained when one train was
stationary in the tunnel.

(iv) When the speed of the low-speed train was fixed, the maximum magnitude of the
pressure was a decreasing function of α for R < Rc .

(v) As a coarse estimation, Rc ∼ 0.3. When considering the effect of the speed of the
train, Rc decreases with UH . The exact values of Rc for UH = 320 km h−1 and UH =
600 km h−1 were 0.26 and 0.18, respectively.

(vi) Pressure waves I and III, generated in front of the high-speed train after nose–nose
and nose–tail passing, respectively, were expansive and compressive for α > αc,
whereas pressure waves II and IV, generated in front of the low-speed train after
nose–nose and nose–tail passing, respectively, were always expansive.

Therefore, for Japanese double-track tunnels, such as the mixed traffic Seikan tunnel,
a conservative engineering estimation for two trains passing each other is obtained by
assuming that both run at the same speed, with α = 1 and R < Rc.

However, this study neglected the impacts of the pressure waves generated by a train
entering or leaving a tunnel, boundary layer and friction, stagnation pressure around the
nose and tail of a train, transient variation and three-dimensionality. The results of this
study enable us to consider superposition of the pressure waves generated by two trains
entering a tunnel and the pressure field around two trains passing each other.
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Research Institute for helpful discussions and technical support, respectively.
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Appendix A. Application to other stages

In this appendix, we illustrate the application of the method to other stages in which the
trains pass each other. Figure 25 shows stage A0, where pressure waves I and II propagate
beside the trains. In this case, we can use (3.5) and (3.6) for pressure waves I and II and
(3.14) and (3.15) for regions 0 and 2, I and 3, 3 and II and 4 and 0.

We have the same first-order equation of cp3 as (3.30) for stage A0. However, the
second-order equation is obtained as follows:

c(2)
p3A0 = −

[
R

1 − R
(1 + α)2 + (1 − R) R

(1 − 2R)2 (1 − α)2
]

− R2

(1 − R)2
3
4

MH (1 + α)3 + R2

(1 − R)2
3
4

MH

×
(

1
1 − 2R

+
2
3 R (2 − 3R)

(1 − 2R)3

)
(1 + α) (1 − α)2 . (A1)

Thus

|c(2)
p3A0| − |c(2)

p3A| ∼ 1
4 MHR3[3 (1 + α)3 + (1 + α) (1 − α)2]. (A2)

This denotes that, before stage A, p3 has a larger magnitude than (3.40), after which it
approaches (3.40) asymptotically.

As described here, the values of p3 slightly depend on the positions of pressure waves I
and II. For simplicity, only the asymptotic state is analysed in this study.

Similarly, we can consider stage B0, which is the stage after nose–tail passing but before
the waves move away from the trains, as shown in figure 26. In this stage, we need to
consider six waves. Waves I and II are generated by nose–nose passing. Waves III-a–VI-b
are newly generated by nose–tail passing. Waves III-a and IV-a propagate in the negative
and positive x-directions, respectively. Thereafter, waves III-a–VI-b move away from the
trains, and the stage asymptotically changes to stage B. Therefore, in stage B, we need to
consider the six waves to be more exact than the treatment in § 2, as shown in figure 27.
In this study, for simplicity, pressure wave III is considered as one wave consisting of
two subwaves III-a and III-b, and wave IV is also considered as one wave. Although
the wavelengths of waves III and IV are equal to the train length, when Xi � 1, this
assumption does not affect the closed formula as all fields can be regarded as isentropic,
and they negligibly affect the exact solutions.

Appendix B. Equations of O[M2
H ] and O[M3

H ]

The equations of O[M2
H] presented in § 3.1 are introduced here. First, when using the

continuity equations (3.17), (3.19), (3.21) and (3.23), and neglecting O[X2
i ] = O[(RM2

H)2]
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3
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Figure 25. Schematic of two trains passing each other after nose–nose passing but before the waves move
away from the trains.
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Figure 26. Schematic of two trains passing each other after nose–tail passing, stage B0.
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Figure 27. Schematic of two trains passing each other after nose–tail passing, stage B.

and O[MHXi] = O[RM3
H], we have

X1 = −X5. (B1)
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From (3.17)–(3.20), by neglecting O[X2
i ] = O[(RMH)2] and O[MHXi] = O[RM3

H], we
obtain

X2 − X1 = −R (2 − R)

(1 − R)2
1
2

M2
L, (B2)

X3 − X2 = −R (2 − 3R)

(1 − 2R)2
1
2

(
− R

1 − R
ML + MH

)2

. (B3)

These results are the same as those obtained using the equations for incompressible flows.
Similarly, using (3.21)–(3.24), we obtain

X4 − X5 = −R (2 − R)

(1 − R)2
1
2

M2
H, (B4)

X3 − X4 = −R (2 − 3R)

(1 − 2R)2
1
2

(
− R

1 − R
MH + ML

)2

. (B5)

From (B2)–(B5), we have

X5 − X1 = − 2R2

(1 − 2R) (1 − R)

1
2
(M2

H − M2
L). (B6)

Thus, we obtain the following equations in the expanded form of MH:

X1 = R2

(1 − 2R) (1 − R)

1
2
(M2

H − M2
L) + O[M3

H]

= R2

(1 − 2R) (1 − R)

1
2
(M2

H − M2
L) (1 + O [MH]) , (B7)

cp1 = X1
1
2 M2

H

= R2

(1 − 2R) (1 − R)
(1 − α2) + O [MH] . (B8)

Finally, (3.26)–(3.30) and the solutions of the velocities are introduced below

m1 = −X1 = −m5, (B9)

m2 = − R
1 − R

ML − X1

1 − R
, (B10)

m3 = − X1

1 − 2R
+ R

1 − 2R
(MH − ML) , (B11)

m4 = R
1 − R

MH − X1

1 − R
. (B12)

When we consider the terms of the order of O[MHXi] = O[M3
H], for stage A, we have
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0 0s

x

R
U

Figure 28. Schematic of one train running alone in a tunnel.

X5 + X1 = − 6R2

1 − R

(
MH + ML

2

)3

+ 6R2

(1 − R) (1 − 2R)

(
MH + ML

2

)
(MH − ML)2 ,

(B13)

X3 − X1 = −R (2 − 3R)

(1 − 2R)2
1
2

(
− R

1 − R
ML + MH

)2

− R (2 − R)

(1 − R)2
1
2

M2
L

− R (2 − R)

(1 − R)2 MLX1 + R (2 − 3R)

(1 − R) (1 − 2R)2

(
− R

1 − R
ML + MH

)
X1, (B14)

X3 − X5 = −R (2 − R)

(1 − R)2
1
2

M2
H − R (2 − 3R)

(1 − 2R)2
1
2

(
R

1 − R
MH − ML

)2

− R (2 − R)

(1 − R)2 MHX5 + R (2 − 3R)

(1 − R) (1 − 2R)2

(
− R

1 − R
MH + ML

)
X5. (B15)

Equations (B13)–(B15) yield

X1 = R2

(1 − 2R) (1 − R)

1
2
(M2

H − M2
L) − R2

1 − R
3
8

(MH + ML)

×

⎛
⎜⎝(MH + ML)2 +

4
3

R2

(1 − R) (1 − 2R)2 (M2
H − M2

L) − 1
1 − 2R

(MH − ML)2

⎞
⎟⎠ .

(B16)

Appendix C. Pressure variation around a train running alone in tunnel

Figure 28 shows a schematic of one train running alone in a tunnel. From § 3.2, we have
the following equations:

M = (1 + Xs) (ms + M) (1 − R) , (C1)
1
2 M2 = Xs + 1

2 (ms + M)2 . (C2)
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From these equations, by neglecting O[X2
s ] and O[M2Xs], we obtain

Xs = −1
2

M2 R (2 − R)

(1 − R)2 . (C3)

This equation is the same as that for incompressible flow.
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