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Abstract. Let X be an arbitrary variety over a finite fieldand p = chark,n € N. We will
construct a complex of étale sheavesXmnogether with trace isomorphism from the highest étale
cohomology group of this complex onfy/ p"Z such that for every constructibig/ p” Z-sheaf on

X the Yoneda pairing is a nondegenerate pairing of finite groups.isfsmooth, this complex is the
Gersten resolution of the logarithmic de Rham-Witt sheaf introduced by Gros and Suwa. The proof
is based on the special case proven by Milne when the sheaf is constaktiarsimooth, as well

as on a purity theorem which in turn follows from a theorem about the cohomological dimension
of C;-fields due to Kato and Kuzumaki. If the existence of the Lichtenbaum complex is proven, the
theorem will be thep-part of a general duality theorem for varieties over finite fields.
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Introduction

Let X be a regular Noetherian scheme. In [Li] Lichtenbaum has conjectured the
existence of complexes of Abelian étale shed®és), r > 0 which are subject

to certain axioms and which are a coefficient system for a higher dimensional
arithmetic duality theory. For example one expects the following theorem to be
true.

CONJECTURE ([Mi-1], p. 264). Lel/ be a connected smooth proper algebkaic
scheme of dimensiodg over a finite fieldk. Then there is a canonical isomorphism

tr: HX+2(U, Z(d)) —=. Q/Z and for alli € Z and all constructible sheaves
on U the Yoneda pairing

H!\(U, F) x ExXC21(F , Z(d)) — H**2(U, Z(d)) =z
is a nondegenerate pairing of finite groups.

One of the axioms postulated by Lichtenbaum is the Kummer sequence. For
every natural numbern prime to the characteristip of k there is a distinguished

triangle Z(r) —— Z(r) — p® — Z(r) [1] in the derived categonyD(U) of
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étale Abelian sheaves di. Using this sequence, the conjecture above implies a
duality theorem for smooth varietids over a finite field analogous to Poincaré
duality (cf. [De-2]): For all constructible sheav&ssuch thain ¥ = 0 the Yoneda
pairing

H!(U, F) x Exg0(F, ud?) — HXYNU, p&) — Z/mZ

is a nondegenerate pairing of finite groups.

The above conjecture also considgrdgorsion sheaves. In [Mi-4], Milne has
proposed as an additional axiom the Kummesequence, i.e. the existence of
another distinguished triangle

Z0r) L Z(r) — v yl—r] — Z(r)[1]

in D). Herev, , = W,Q( .4 denotes the logarithmic de Rham-Witt sheaf
defined in [Il]. The conjecture then would imply:

THEOREM. Let U be a connected smooth separated algebkascheme of di-
mensiord over a finite fieldk. Then there is a canonical trace homomorphism

tr: HNU, v ) — Z/p"Z

such that for alli € Z and all constructibleZ/ p"Z-sheavesF on U the Yoneda
pairing

HI(U, F) x EX¢5(F vl o) — HIPYU ) — Z/p"L

is a nondegenerate pairing of finite groups.

In this paper we will prove this theorem using an étale version of resolution of
singularities obtained recently by de Jong ([dJ]). The trace homomorphism will be
an isomorphism, iV can be imbedded in a smooth progeschemeX. For the
remaining part of the introduction, we assume ttiat X is proper.

In [Mi-5], Milne proved the above theorem for the constant st#at Z/p"Z.

We prove the general case using induction on the dimensioharid proceed as
in [De-1] or [Sp]: Any constructible sheaf admits as a subsheaf the extension
by zero of a locally constant sheaf on an open subsstch that the quotient is
the direct image, § of a constructible shedf on the closed complemetitof U.
Using a purity theorem one gets the desired assertion, fofrom the induction
hypothesis.

Of course, the closed subschein¢hus obtained need not be smooth. In order
to proceed as described above, we also have to consider singular varieties. In this
case the sheaf? , has to be replaced by a complgf, of étale sheaves. In
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[GrSu-1], Gros and Suwa proved, in the case wheriss smooth the existence
of an exact sequence

00— v — @ Lx*vn o @ Lx*vn K(x)

xeX© xex@®

called the Gersten resolution of ,. We construct the complex? ,, for arbitrary
varieties using the theorem of Bloch and Kato (cf. also [KaCo]). A theorem of
Kato and Kuzumaki about the cohomological dimensioiC'efields then implies
the purity theorem. For a closed immersio¥ — X of pure codimensior one
has a canonical isomorphis“v’;f(;“[ c 2RI, in DY),

Finally we construct a trace homomorphismAr'*4(X, V¢, ) — Z/p"Z and
prove the following.

THEOREM. Let X be a connected proper-scheme of pure dimensiahover
a finite fieldk. Then the trace homomorphism H/*(X, V) — Z/p"Z is an
isomorphism, and for al € Z and all constructibleZ/ p"7Z-sheavesF on X the
Yoneda pairing

H (X, F) x Exl“ F) — HTHXLT) N 7P

is a nondegenerate pairing of finite groups.

Definitions and Notations

By an étale sheaf on a scherkiave mean a sheaf on the small étale siteXof F

is an étale sheaf ol (a complex of étale sheaves af), we denote byH7(X, F)
thegth étale (hyper-)cohomology group. More generally, for any left exact functor
f, we denote the hyperderived functors simply®4/f. We regard an object of an
Abelian category4 also as an object of the derived categ@yA). If f: X — Y

is @ morphism of schemes, we have the fungfofrom the category of Abelian
étale sheaves oX into the category of Abelian étale sheaves lorwhose left
adjoint we denote by~ (instead off*).

For a schemeX andd > 0 we denote byX® the points of codimensiod
and by|X| the set of closed points. For anye X, let:,: Speac(x) — X be the
canonical inclusion.

A morphism f: X — Y will be called pro-étale if there exists a filtered pro-
jective system(X;),¢; of étaleY-schemes and affine étale morphisms such xhat
is isomorphic to the limit limX; as a¥-scheme.

By a geometric point of a schen? we mean a morphisn®?: Spec? — X,
where( is a separable closure of the residue field of the image podfitP. The
strict Henselization of9x in P is defined to be the strict Henselization @f .
with respect to the imbedding(x) — €; it will be denoted byOx p. By (9X L we
denote the Henselization 6fy .
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For anyF ,-schemeX, let Q% denote the absolute de Rham complex, regarded
as a complex of Abelian étale sheavesXnMore generally, for any: > 1, let
W, Q25 denote thele Rham—-Witt compleas defined in [Il], (I. 1.3). It comes along
with the restriction R: W, 11Q% — W,Q%, which commutes with the exterior
product and the differential, as well as tierschiebung/: W, — W, 11Q%,
which is just a map of Abelian étale sheaves.

Forr,n > 1, let W,QY o4 be thelogarithmic de Rham-Witt sheate. the
subsheaf of¥, 2, generated étale locally by sections of the form

dfs/fin--Adf/ 1

fi, ..., fr € 0%, wheref € W,0x denotes the Teichmuller representativefof
for any sectionf of Oy.

Any morphism f: X — Y of F,-schemes induces a morphisi}, Q) —
f: W, of étaleW,@y-modules, which commutes with the exterior product, the
differential and the map®& and V. If f is pro-étale, then the adjoint morphism
7w, Q) — W,Q} is an isomorphism (cf. (loc. cit.), (I. 1.12.3)).

Let X be a scheme such that there exists a pro-étale morphiss X’ to some
smooth algebraig-schemeX’, wherek is a perfect field. In this case we also write
v, x for the étale sheat, ', A morphismf: X — Y of schemes of the above

) - X,log*
type induces morphisms

r r -1 r r
vn,Y f*vn,X and f vn,Y vn,X’

if f is pro-etale, the second one is an isomorphismzsFerl we writevy := vj y.

1. The Gersten Resolution oby,

In what follows, letk be a perfect field of characteristie > 0, andn > 1 an
integer.

(1.1) Let us call an extension fiel of kK admissibleif it is separably generated
and of finite transcendence degree. In this case the étale sh¢gvaee defined. A
k-schemeX will be calledadmissibleif all of its residue fields are admissible ex-
tensions ok. If X — Y is a pro-étale morphism dfFschemes andf is admissible
then so isX.

(1.2) LetX be an excellent scheme. In [Ka-5] Kato has defined a complex

@ K (e (x)) — @ KM (e (x)) —> -+

xeX© xeX®

using the tame symbol and the norm map of MilnoKsTheory. We use this
complex and the following theorem of Bloch—Kato in order to define the Gersten
resolution ofv; . We do this by transferring the norm map and the tame symbol
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from K-theory to the logarithmic de Rham—-Witt sheaves, where these maps will
be called trace and residue map, respectively.

THEOREM ([BK], Thm. (2.1), Cor. (2.8)). There is a unique isomorphism
of Abelian groups d log: Kf/I(K)/p”—>vr’l)K(K), which maps the symbol
{x1, ..., x Jtodxy/xg A - A dx, /X,

(1.3) LetK’| K be afinite extension of admissible extension fields ahds: Spec

K’ — SpecK the corresponding morphism. Then there is a unique morphism of
étale Abelian sheaves on Speccalled thetrace map tr: w,v; . — v,  such

that for every finite separable field extensibpk and every point of the scheme
SpecL ®k K’ with residue fieldL’ the diagram

KM (L) —2 s KM (L)

dlog dlog

v k(L ® K') —T— V] (L)
commutes.

(1.4) Let X be a locally Noetherian admissible integral norrhedcheme. Ley

be the generic point ok andx € X. Then there exists a unique morphism of
Abelian étale sheaves of, called theresidue mapes ¢,.v;, ,, — LX*UZ;]('X) such
that for every étale morphisryi: U — X, every generic poing’ of U and every

pointy € f~1(x) N {xn’} the diagram

KM (e (7)) —2» KM 1 (k ()
{d log dlog

res -1
Uf’)’((n)(U’?) v:l,/((x)(Ux)a

commutes. Here, denotes the tame symbol corresponding to the valuation of
k(") defined byy.

(1.5) Now letX be an excellent admissiblescheme. Forl > 0,7 € X and

x € XD N {y} we will define a morphism of étale sheavesiresv; . —
r—=1 '

LexVy () After replacingX by the reduced subscherfy we can assume that
is integral with generic poing. Let 7: X’ — X be the normalization oX. For
x € XD let the morphism résbe defined by the diagram

r res r—1
Tabns Ve () by Ve (y)
ylx
ttr
r (—1ydred r—1
sV e () LoV e (x)
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where the upper morphism arises from applying the funeido the residue maps
corresponding to the poinise 7 ~(x) as defined in (1. 4) It is easy to see that one
gets a map from,,v; . into thesumof the sheaves..v; K(X), x € X9 N {n).

Taking the sum over al} € X9, one gets the differentials of the complex

~r . , ,
Vnx += @ LX*U” K (x) @ Lx*vn K(X) Tt

xex© xeX®

where the first sheaf is meant to be placed in degree zero.
If f:U — X is a pro-étale morphism of excellent admissiblechemes, then
the restriction ofi; , to U is equal tov,

(1.6) If X isk-scheme such that there exists a pro-étale map into a smooth algebraic
k-scheme, then the morphlsvgx — @pex0lyVy, () Obtained by functoriality
gives rise to a morphisny, , — v, , of complexes.

THEOREM ([GrSu-1], Cor. (1.6)).Let X be a smooth algebraik-scheme. Then
the sequence of étale Abelian sheavesion

O— v x — ED LoV () — @ ‘X*"»m(x) -

xeX© xex@®

is exact. In other words, the morphisifiy, — v, is an isomorphism i (X).
Proof. Since, for any étale morphisiii — X the restriction ofv; , to U is
v,y it is enough to prove the stronger assertion that the restriction of the above
sequence to the Zariski site is exact. However, the commutativity of the diagram
(4.21) in [GrSu-1] shows that this sequence agrees with the one in (loc. cit.)
Cor. (1.6). O

2. The Purity Theorem for ¥

As before, letc be a perfect field of characteristic> 0.

LEMMA (2.1). Let X be an affinek-scheme such that there exists a pro-étale
morphism into a smooth algebraicscheme. The#/?(X, v, y) = 0O for every

g=>2andallr >0,n > 1
Proof. If n = 1, we have an exact sequence of étale Abelian sheav&s on

c 1

0— vy — & @y /By — O,

whereC~1is the inverse of the Cartier operator aB denotes the sheaf of bound-
aries of the de Rham complex (cf. [Mi-2], La. (1.5)). Note that Milne’s definition of
v} agrees with the above by [ll], (2.4.1). Sing, andQ’,/ B}, are quasicoherent,
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the long exact cohomology sequence proves the assertion. We deduce the result for
n > 1 by induction using the exact sequence

m n
xp r R

r r
O l)n,X l)n—i-m,X l)m, O

X

for n,m > 1, which is shown to exist in [C0SS], Lemme 3. O

(2.2) On the other hand, the grodp'(X, v, x) is an interesting invariant, even if
X is the spectrum of a field. Recall that a fikdis calledC; if every homogenous
polynomial f € K[X4, ..., X,] of degreef has a nontrivial zero whenever> d'.

PROPOSITION.Leti > 0. If K is an admissible extension field/ofvhich isC;,
thenH(K, vi ;) = Ofor everyn > 1.

Proof. The groupH!(K, vi) is the cokernel of the map on global sections in-
duced byC™ — 1: Q. — Q& /B%. SinceQ}, andBi are quasicoherent, this map
agrees with the map defined in [KaKu], Definition 1. Therefore the assertion for
n = 1is part of (loc. cit.) Proposition 2 (2). Far> 1 we use the same sequence
as in the proof of (2.1). O

The crucial step in the proof of the purity theorem will be the following

PROPOSITION 2.3.Let X be an algebraick-schemeyx € X a point andd :=

dim{x}. We then hav&‘(,, v! ., =0, forall n > 1andg > 1.
Proof. ReplacingX by the normalization of the reduced subschefmg and
using the Leray spectral sequence, we can assumeXtigintegral and normal.
For every geometric poin® of X the stalk of the sheaf in question is
(Rt o) p = HI(Kp, vy ),
where K is the quotient field of the strict henselizatidry . Kp» contains the
algebraic closuré of k and is algebraic over the function fiekd(X) of X. There-
fore Kp|k is like K (X)|k an extension of transcendence degieelenceK» is a
C,-field from which the assertion follows, using (2.1) and (2.2).

THEOREM 2.4. Let X be an algebraick-scheme of dimensiathand¢: Y — X
aclosed immersion. Then the canonical morphisifi, — R:'D¢ , is an isomorph-
isminDY) forall n > 1.

Proof. It is enough to show that the compli‘a‘;{x consists of'-acyclic objects.
But from (2.3) one getR? 't vl () = R7(!'ts) v, for everyi > 0,x € X©
andg > 1, using the Leray spectral sequence. This group vanishes trivially, if
x €Y. If x e Y, theni,, is equal to the direct image functor corresponding to the
inclusion Spe (x) — Y. Another application of (2.3) completes the proof. O
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Let X be an equidimensional algebraischemeandY — X a closed immersion
of pure codimensior. Then we have canonicalryn‘f;”[—c] 'V . Thus the
above theorem gives.

COROLLARY. Let X be an algebrai&-scheme of pure dimensidrand:: Y — X
a closed immersion of pure codimensiomhen one has a canonical isomorphism
Vel > RV in D(Y), foralln > 1.

The following proposition is another important consequence of the theorem of
Kato and Kuzumaki.

PROPOSITION 2.5.Let X be a smooth algebraig-scheme of dimensiath and
f its structure morphism. Therf , — V¢, is an f,-acyclic resolution ob¢ , for
alln > 1.

Proof.Letn > 1,i > 0andg > 1. We have to show that? f,.(t,,v? K(x)) =0
forall x € X, Letk be an algebraic closure bf The above sheaf vanishes if and
only if its stalk at the geometric point given ltydoes. Using (2.3) we therefore
have to show thatf (« (x), VZlle ) = 0, for all pointsx of X x, k of codimension
i. This group vanishes fay > 2 since the cohomological-dimension of a field
of characteristicp is at most 1. Now lety = 1. Since dinix} = d — i, the field
« (x) is an extension of of transcendence degrée- i and therefore &,_;-field.

Now the assertion follows from (2.2).

3. The Cohomology Of"[u,x with Compact Support

We first recall some elementary facts about sheaves with supports (cf. for example
[Ha-1], Chapter IV).

(3.1) For any schemg, an Abelian étale she& on X and a closed subs&tc X

we denote by'y (X, F) = kern(F (X) — F(X \ Y)) the group of all sections
with support supp C Y. This gives a functor from the category of Abelian étale
sheaves into the category of Abelian groups, whgieright derived functor is
denoted byH, (X, ). For everyp > 0 we set

Fp(X, F) = {s € F(X)|codimy (supps) > p}.

If x € X is a point, we define the grodp, (¥) := lim - I'mnw (U, F), where
U runs through alZariskiopen neighbourhoods of It consists of the elements
of the Zariski stalk of at x, which can be represented by a local section with
support in{x}. Again we have a functo — TI',(F) from the category of
Abelian étale sheaves into the category of Abelian group. Its right derived functors
areH{ () = Ilmﬂ Hq} U, ).

(3.2) LetXx be'a IocaIIy Noetherian schemg, an Abelian étale sheaf oK,
p > 0andx € X?. Then the image of the canonical mBp,(X, ¥) — % is
contained i, () and it is easy to prove the following
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LEMMA. Let X be a Noetherian scheme atfd a flabby Abelian étale sheaf on
X. Then, for anyp > 0, the stalk maps induce an isomorphism

Cipi(X, F)/ Ty (X, F) — P Te(F)
xeX®
of groups.

PROPOSITION 3.3.Let X be a Noetherian scheme aifd be an Abelian étale
sheaf onX. Then there is a spectral sequence

E = @ HPY(OY ., F)= E"= H"(X, F),
xeXx®

which is functorial inF .
Proof. If # — I°*is an injective resolution, then the compl&X := I'(X, I*)
of global sections is filtered by the subcomplexes

FPK® =T, (X,I°) C (X, I°).
By (3.2) we have an isomorphism of complexes of Abelian groups
Cipy(X, 1%/ Ty (X, I = P Te(*).
xeX®

The cohomology groups of this complex can be identified with B¢ -terms
above. Therefore the spectral sequence associated to the filtered cdmdethe
desired one. O

(3.4) If X is a Noetheriar¥ ,-scheme of dimensiod = dim X and ¥ an étalep-
torsion sheaf, the#/?(X, ) = 0forallg > d + 1 ([SGA IV], exp. 10, Theorem
(5.1)). As an immediate consequencei is ad-dimensional Noetherian local ring
of characteristicp, x the closed point of Sped and # an étalep-torsion sheaf,
we have

HI(A,¥)=0 for g>d+1

COROLLARY (3.5). Let X be a Noetheriarf ,-scheme of dimensiahand # an
étale p-torsion sheaf orX. Then there is a canonical surjective homomorphism

P v X, F) — HTNX, F).

xeX@

Proof. For the spectral sequence (3.3) we ha’ = 0 for p > d, for
dimension reasons. Therefore there is an edge morpligm— E4*1. From
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(3.4) it follows thatE!’ = 0 for ¢ > 2, and therefore this edge morphism is
surjective. Since every point of codimensigrs closed, the excision theorem gives
HY X, F) = HIPYF). O

(3.6) A morphismA — B of local rings will be called arterated Henselizatian
if it is the composition of a sequence of morphisms

A= Ao Ay Ap1 A, =B,

where one has for eveiy EitherA; — A, 1 = A;, is the canonical map into the
localization at a prime ideal of A; or it is the canonical map; — A; ;1 = Af.'
into the Henselization.

Let X be a scheme. By dterated Henselization of we understand a Henselian
local ring R together with a morphism Spdt — X which factorizes over Spec
Ox , for somex € X, such that the induced morphisff , — R is an iterated
Henselization as defined above.

If R is an iterated Henselization &f, then the corresponding morphism Spec
R — X is pro-étale.

LEMMA (3.7). Let X be a Noetherian scheme of dimensibriLetp: # — G be
a morphism of étale-torsion sheaves. Suppose there is a dense open subset on
whichg induces an isomorphism. Further suppose that, for every iterated Hensel-
ization R of X with dim R = 1 the morphismH*(R, ¥) — HY(R, §) induced
by ¢ is an isomorphism. Theg induces an isomorphisnH¢*1(X, ) —
Hd+l(X, g)

Proof. We proceed by induction ath = dim X. If d = 0, ¢ is an isomorphism
by assumption. Now lei > 1. We first assert thgt induces an isomorphism on
the relative cohomology groups

H'"™Y (R, ¥) — H''Y(R, 9),

for every iterated HenselizatioR of X; herex is the closed point of Spek and

n = dimR. If n = 0, then SpeR — X factorizes over Spe®y ,, for some
generic pointy of X. Hence in this casey even induces an isomorphism of the
restrictions¥ |z — G|z. Now letn > 0 andV := SpecR \ {x}. The relative
cohomology sequence gives rise to a diagram

H'(R,F) — H"(V,F) — H'"'YR,F) — H"Y(R, ¥)

3 I
H"(R,$) — H"(V,$) — H/" (R, $) — H"'(R, 9)

with exact rows. Since the local ring is Henselian and is a p-torsion sheaf,
we haveH™Y(R, F) = H" Y (k, F|,.) = 0, wherex is the residue field oR.
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Therefore the objects on the very right of the diagram vanish, as well as the ob-
jects on the very left, ih > 1. If n = 1, « is an isomorphism by assumption.
Therefore it is enough to show thatis an isomorphism. BuV is a Noetherian
(n — 1)-dimensional scheme and— 1 < d. Now the restrictionp: |y — G|y
also satisfies the conditions of the lemma and therefore the induction hypothesis
concludes the proof of the above assertion.

Now regard the spectral sequences (3.3) for the schérard the sheave§
and ¢ and the morphism of spectral sequences induceg.byor both spectral
sequences one h&? = 0 for p > d andg > 2. This glvesEdJrl ES The

above assertion implies thatinduces an isomorphism on tlﬁ’ -terms

@ Hp+l((9X x? ‘?) - @ Hp+1((9X x? 9’)

XEX(I’) XEX(I’)

for p = d — 1, d. Hencey also induces an isomorphism on tﬁé’l-terms which
concludes the proof. O

PROPOSITION (3.8).Let R|k be an excellent Henselian discrete valuation ring
such that there exists a pro-étale morphism from Spéato some smooth algeb-
raic k-scheme. Suppose the residue fielof R is an extension of of transcend-
ence degree d. ThenH?(R, v/ ') = Oforallg > 1,n > 1.

Proof. It is enough to show the assertion for= 1 since the general case
can be deduced from that by induction using the second exact sequence of the
proof of (2.1). LetF be the quotient field of® and j: SpecF — SpecR and
1: Speac — SpecR the canonical morphisms. Looking at the hypercohomology
spectral sequence we see that we have to show that the residue ny‘apj’,fés»
t,v¢ induces a surjective map on global sectidi®(F, vi™) — HOG, v?) and
an isomorphism on the first conomology groups

HY(R, jovith) — HY(R, 1.v)). (*)

The first assertion is clear. In order to proof the second assertion, we first show that
the higher direct imageR? j,v{*, ¢ > 1 are zero. The stalk of this sheaf at the
generic point vanishes trivially, and the stalk at the closed poisit R j,v4™); =
HI(F*", v4ih), whereF*" denotes the quotient field of the strict Hensehzaﬂtﬁh

of R at the pointc. Now R*" is an excellent strictly Henselian discrete valuation
ring with residue field«*®P. By hypothesis this field is &,-field. By [KaKul],
Proposition 2 (2) and Theorem 1 (4) it follows from this tiat(F*", v43h = 0,
arguing as in the proof of (2.2). Thus we have shown the above assertion and we
can view(x) as a homomorphism

HY(F, vi*Yy — H(k,vY),

which is equal to the homomorphism defined in [KaCo], (1.3) and, hence, an iso-
morphism by (loc. cit), La. (1.4), (3). O
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PROPOSITION (3.9)Let X be a normal algebrai&-scheme of dimensiahand
j U — X the inclusion of a dense open subset. Then the adjunctionj!mf@,p —
v¢ v induces an isomorphisH (X, je ) — HHX, ve ).
Proof. By Lemma (3.7) it is enough to show that, for every iterated Henseliza-
tion R of X with dim R = 1, the adjunction induces an isomorphism

HYR, jd ) — HYR, v ).

Since X is normal, R is an excellent Henselian discrete valuation ring. Léts
residue field. If the morphism Spdt — X factorizes ovelU, the assertion is tri-
vial. Otherwise we havejv! )|, = 0, henceH (R, jive ) = H*(k, (vl )le) =
0. Thus in this case we have to show tHat(R,v?,) = 0 as well. But the
pro-étale morphism SpeR — X leads to the open subsgt := X4 Of all
regular points ofX. Therefore the canonical mayf , — V¢, is the restriction
of Vn v = Y)'n v and, hence, an isomorphism M(Speck) by (1.6). This implies
that HY(R, v ) = HY(R, V). Letx € XU be the image of the closed point
of SpecR. Then the transcendence degree of the extengiBp s at mostd — 1.
Sincek |k (x) is an algebraic extension, we can apply (3.8) to obtain the desired
result. O

4. The Trace Homomorphism

PROPOSITION (4.1)Let k be a perfect field of characteristip > 0 and X be
a properk-scheme of pure dimensiehwith structure morphisny: X — Speck.
Then there is a unique morphism

tr: REV!y — Z/p"Z[—d]

in O (Spedk) whose composition with the canonical morphiﬁ;ﬁ;{x — Rf*inffx
is given in degre@ by the morphism of étale sheavesSpeck

fo D el "L — Z/p"L

xe|X|

defined by the trace maps corresponding to the finite extensionNs, x € | X|
(1.3).

Proof. If Y is a connected smooth proper curve okeandg is an element of
the function fieldK (Y) of Y we have th.e equatio[_ye‘y‘[x(y): k] - vy(g) = 0,
where we have denoted by the normalized valuation o (Y) corresponding to
y. Therefore the above morphism is actually a morphism of complﬁxgjéx —
Z/p”Z[ d] of étale sheaves on Spéc Since by (2.5) the canonical morphism
f*Vn,x — Rf*vn’x is an isomorphism i®D (Speck), the proof is complete. O
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In casek is a finite field we want to characterize the trace map by its values on
certain fundamental classes which are now going to be defined.

(4.2) LetX andY be algebraig-schemes of pure dimensidranddy, respectively,
and let;: Y — X be a closed immersion. By(Y, X) we denote the composition

~d
HOY (Y, 5%) — HIYX, 0y — HHX, 57y

where the first morphism is induced by the |somorph1§,‘ﬁg [do — d] — R/VY,

in H(Y) obtained from the purity theorem (2.4) and the second one is the canon-
ical morphism. The morphism(Y, X) has the following functorial property: If

Z — Y — X is a composition of closed immersions akidY andZ are of pure
dimensiond, dy andd’, respectively, then the diagram

Hd +l(Z, n . (/)(Z X) Hd+l(X
lw(z,w H
1 ~d, (YX) 1
Hdo+ (Y, n(;/ Hd+ (X
commutes.

(4.3) Now letk be a finite field angp its characteristic. LeX be an algebraié-
scheme of pure dimensiah If x € X is a closed point, we have just defined a
morphism

¢(x,X):Z/p"Z = H'(x(x), Z/p"Z) — HTNX, !y

which maps 1e Z/p"Z to an element denoted ky and called thdundamental
classat the pointx. We will show that, ifX is connected, the fundamental class
does not depend on the closed poirthosen. IfX happens to be smooth, then by
(1.6) we have an isomorphism

Hd+l(X, UZ))() i Hd+l(X, ’l‘)’ndx

in this case we view the fundamental clagsilso as an element ¢f4+1(X, vfj_X),

for every closed point of X. Corollary (3.5) tells us, thati“*1(X, v ;) is gen-
erated as an Abelian group by the fundamental classes of all the closed points
of X.

PROPOSITION (4.4).Let k be a finite field and its characteristic. LetX be a
properk-scheme of pure dimensiah Then there is a unique homomorphism

tr HNX, 5 ) — Z/p"Z

such thatr(e,) = 1 for every closed point € X.
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Proof. We first show the uniqueness of tr. Using (2.3) and the fact that the
cohomologicalp-dimension of a field of characteristjcis at most 1, the hyperco-
homology spectral sequence gives rise to an exact sequence

P A« vy ) — P L7 — HTHX T ) — 0,

xeX@-1 xe|X|

where the second map is given by the sum of the homomorphigmsX) defined
in (4.3). This means that/?*+%(X, T)‘f_x) is generated as an Abelian group by the
fundamental classes of the closed points of X.

To show existence, define tr to be the map induced olixthel)-st cohomology
groups by the trace map defined in (4.1), using the identificafdotk, Z/p"7Z) =
Z/ p"Z. Now letx be a closed point ak. We will show that tte,) = 1: We have a
morphism of complexes of étale sheawves,.Z/p"Z[—d] — T)‘,f{X, which is just
given by the inclusion of the-component of the direct sum on the right-hand side.
On cohomology it induces the morphism

o(x, X):Z/p"Z = H ™k (x), Z/ p"Z[—d]) — H" (X, 7y

defined in (4.3). Since the trace map defined in (1.3) corresponding to the finite
extensionk (x)|k coincides with the usual trace map given by the étale morphism
Speck (x) — Spedk, the composition off.. () with the trace map defined in (4.1)
induces the corestriction map on cohomology groups

cor. HY(k (x), Z/p"Z) — H'(k,Z/p"Z);

If both groups are identified witlZ/p"Z, this map becomes the identity. This
shows tfe,) = 1, as required. O

The main assertion of this chapter says that the trace map is an isomorphiém, if
is connected. IX is a smooth curve, we prove this fact by comparing it with the
trace homomorphism defined by Milne in [Mi-2]. In the general case we proceed
by induction on the dimension & using the purity theorem.

From now onk denotes a finite field and its characteristic.

(4.5) Let X be a connected smooth propgescheme of dimensiod. In [Mi-2],
Milne has defined an isomorphismtrH?+1(X, v4) — Z/pZ which is uniquely
determined by the commutativity of the diagram

HY (X, Q%) — k

8 {tr

HY(X, v s 7/ p.
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Herer is the trace map of Serre duality (cf. [Mi-2], definition pf= tr preceding
(1.9)), § the connecting homomorphism arising from the first exact sequence of
the proof of (2.1), and the vertical arrow on the right is the trace of the finite field
extensionk|IF,,.

For the proof of the next proposition we need the following elementary result
from homological algebra:

LEMMA (4.6). LetX be a schemej: U — X the inclusion of an open subset of
X andY the complement df. Let¥ be an Abelian étale sheaf dnsuch that the
adjunction mapf — j,j~1F is injective. Then the diagram

H°(X, j.j*F) — H°(X, C) = HX(X, C)

HU, j71F)

8

H} (X, F)

is anticommutative, whei@ denotes the cokernel of the adjunction map, the lower
horizontal map is taken from the relative cohomology sequence &the con-
necting homomorphism induced by the short exact sequence which defines

PROPOSITION (4.7).Let X be a connected smooth proper curve okeihen
try (e,) = 1for every closed point € X, i.e. forn = 1the trace mayr defined in
(4.4) coincides with the trace map,, defined by Milne.

Proof.Letx € X be a closed pointA = Oy , andK = QuotA. Using excision
and the relative cohomology sequence for the closed sdibsef SpecA we get
an isomorphismH (X, Q1) = Q1 /QL. The composition

Res:Q} — Ql/Ql — HY(X, Q}) &

is just the Tate residue map (cf. [AK], Chapter VIII, Theorem (4.4)). On the other
hand there is add-linear map

k(x) — QF/Q%
a +—— adn/m,

independent of the choice of a prime elemerdf A. Now consider the diagram

K(x) —=~ HYNX, QY) — H'(X, Q}) — k
{tr B S tr (1)
7/ p7 —~ H*(X,vi) — H?(X,v}) - 7 pZ.

By construction of the Tate residue map the composition of the morphisms of the
first row is just the trace of the finite extensiarix)|k. Now the squares in the

162702.tex; 11/05/1999; 11:32; p.15

https://doi.org/10.1023/A:1000892524712 Published online by Cambridge University Press


https://doi.org/10.1023/A:1000892524712

138 THOMAS MOSER

middle and on the right commute. Once we have shown that the square on the
left commutes as well, we are done. We can assumeXhatthe spectrum of the
local ring A = Ox . Let j: SpecK — X and:: Speac(x) — X be the canonical
inclusions. Consider the following commutative diagram of étale sheaves

0 0 0
Y
0 vk Qf — ¢ .ol 0
Y
1-C .
0 vk % % 0
0 LZ)pL — j. Q%) QY — j.Q%/ Q% 0,
Y
0 0 0

whereC is the Cartier operator (which exists sinkeis smooth). The first row is
exact as shown in [Mi] Lemma (1.3). From this follows the exactness of the second
row since R'j,vx = 0. The first column is exact by (1.6). The two remaining
columns are exact, sinc@’, is a freeA-module. Finally, the last row is exact by
the snake lemma. From this we get an anticommutative diagram of connecting
homomorphisms

H(X, j.Q%/ Q%) — HX(X, Q%)

2
HYX, 1,2/ pZ) — H*(X,v}).

If we identify both groups of the upper row witd}. / Q%, the map between them
becomesmultiplication by —1, by the preceding lemma. Thé&-linear mapz,
defines a morphism of étatex-modules. O, ) — j.Q%/ Q% which gives rise to
a commutative diagram

1-F-1
0 L*Z/pZ L*(9K(X) L*(9K(X) 0
H . o1 1 1-F1 . 51 1
0 WL/ pL — jiQ [ Sy — J«Qk /L 0
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with exact rows. Heré": O, vy — O, (), s — s” denotes the Frobenius map. From
that we get another diagram of relative cohomology groups

H)?(Xa L*(gk(x)) - H)?(X’ ]*Q}(/Qi)

3
H}(X, 2/ pZ) == H}(X, .Z/ pZ),

where we can identify the morphism on the left with the trace map(t) —
7/ pZ. Matching the diagrams (2) and (3) together gives the square on the left in
(). This completes the proof. O

COROLLARY (4.8). Let X be a smooth connected proper curve overhen the
trace maptr: H3(X, Vi,x) — 7/ p"Zis an isomorphism, for every > 1.

Proof. Forn = 1 this is an immediate consequence of (4.7). The trace map is
obviously surjective for alh > 1. Forn > 1 the second exact sequence of the
proof of (2.1) gives an exact sequence

H*(X,vy_y y) — H*(X, vy y) — H*(X,vy)

Inductively, we conclude that the group in the middle has at mdstlements.
Therefore tr is an isomorphism. O

The next theorem states that the trace map is an isomorphism in the general case.
For its proof, which is based on induction on the dimension, we need some asser-
tions about the existence of appropriate closed subschemes.

LEMMA (4.9). Let K be an arbitrary field. LeX be a connected (resp. irreducible
guasiprojective) algebraidk -scheme of dimensiodimX > 1. If x and y are
closed points o, then there exists a connected (resp. irreducible) cdrve X,
which containsc and y.

Proof. It is enough to prove the statement in brackets. We can assumg that
is integral and projective. Further it is easy to see that we can assumg tisat
algebraically closed, in which case the lemma is well known. O

LEMMA (4.10). Let K be a perfect field and a reduced connected propéf-
scheme with the property that every irreducible componerX @ of dimension
> 2. Suppos¢ is a closed subset of which does not contain any irreducible com-
ponent ofX. Then there is a connected closed sulisef X of pure codimension
1 which containsZ and the complement of whichgmoothand affine

Proof. If X is a Noetherian reduced affine scheme Zraiclosed subset of pure
codimension 1, there is always a closed sulisetf pure codimension 1 which
containsZ and the complement of which is affine. In order to prove this assertion
we can assume th& is irreducible. LetA be the ring of global sections of

162702.tex; 11/05/1999; 11:32; p.17

https://doi.org/10.1023/A:1000892524712 Published online by Cambridge University Press


https://doi.org/10.1023/A:1000892524712

140 THOMAS MOSER

andp the prime ideal ofA defining Z. Since A is reduced, there is an element
f € p which is not a zero divisor oA. ThenY := Spe¢A/f A) has the desired
properties.

Now let X and Z be as in the hypothesis of the lemma. In every irreducible
component ofX we choose a nonempty smooth affine open subset, which does
not meetZ. Now if Z’ is the complement of the union of the open subsets thus
obtained,Z’ does not contain any irreducible componenkKaind we haveZ C Z'.
ReplacingZ by Z’ we can thus assume that the complemgéndf Z is smooth
and affine. By (4.9) is contained in a connected closed subigetf X of pure
codimension 1. By the first paragraph N V is contained in a closed subsétof
V of pure codimension 1 the complement of which is affine. The closure of every
irreducible component of’ in X intersectsZ, since it is a propek-scheme of
dimension> 1 which cannot be contained in the affine schevhdf we define
Y to be the union of the closure &f in X and the irreducible components Bf
which do not meeV, thenY has the desired properties.

(4.11) The following easy counting lemma can be stated in tern%/ pf Z-divi-
sors. We quickly give their definition: IX is an algebraic curve over some fiéld
by aZ/p"Z-divisor D we mean an element of the fr& p"Z-module generated
by the closed points oX. By the degree ded of D we mean the sum of all of
its coefficients. Iff: X — Y is morphism of algebraic curves aidlis aZ/p"Z-
divisor onY, then theZ/p"Z-divisor f~1D or f|x is defined by the rule that
its coefficient at a closed point of X is the coefficent ofD at the pointf (x).
Conversely, ifD is aZ/p"Z-divisor onX, then £, D is defined to be th&/p"Z-
divisor onY whose coefficient at a closed poink Y is the sum of the coefficients
of D at all closed points of the fibré=1(y).

LEMMA. LetX = X, U---U X, be the decomposition of a connected algebraic
curve over some fiel@ into its irreducible components, and suppose that 1.
LetY = X1 U---UX;_1,Z = X;and p:YIIZ — X the unique morphism
whose restrictions t&@ and Z are the inclusions. 1D is a Z/p"Z-divisor on X
with deg D = 0, then there is &/ p"Z-divisor D’ on Y LI Z with p,D’ = D and
degD|y = degD|; = 0. O

THEOREM (4.12). Let X be a properk-scheme of pure dimensiah If X is
connected, then the trace mapH‘**(X, v ) — Z/p"Z is an isomorphism.

Proof. We can assume that is reduced. From the proof of (4.4) we know that
we have

HM (X, 5dy) = ker EB HY(k (x), vy () — @Z/pnz

xeX@-1 x€e|X|

162702.tex; 11/05/1999; 11:32; p.18

https://doi.org/10.1023/A:1000892524712 Published online by Cambridge University Press


https://doi.org/10.1023/A:1000892524712

A DUALITY THEOREM FOR ETALE p-TORSION SHEAVES 141

and that the trace is induced by the summation ®agx %/ p"Z — 7/ p"Z. For

d = 0 the theorem is trivial. Now lef = 1. First assume thaX is irreducible. Let

m: X' — X its normalization. The diagram in (1.5) gives a morphism of complexes
of étale sheaves, v}, — V. Itinduces the square on the left in the diagram

HYK(X"), vy xxy) — €D Z/p"2 — Z/p"Z 0
H xe|X/|
HY(K(X), v} k) — @ Z/p"7 — 7] p"Z 0

xelX|

where the right horizontal arrows are given by the trace maps ahdX. It is easy
to see that the vertical arrow in the middle is given by summation over the fibres of
m,i.e. equal tor, in the notation of (4.11). This implies that the square on the right
is also commutative. Now the upper sequence is exact by (4.8). It follows that the
lower sequence is exact as well which concludes the pro&fig an irreducible
curve.

In the general case of a curve we conclude the proof by induction on the number
r of irreducible components of. Letr > 1. LetY be the union of the first — 1
irreducible components df, Z therth component ang: Y 11 Z — X be the map
induced by the inclusions. SinééandY LI Z have the same normalization, there
is a commutative diagram

P H . vi) — D 2"z L)L L) p

nex© velY 1]zl

‘ ‘ lp* S

d
P H# . vt ) — P 2/p"2 —=— 72/p"Z,

nex© xe|X|

where maps aZ/ p"Z-divisor D to the pair with components ddg|y and deg

D|z, ands denotes the summation map. By induction hypothesis, the upper se-
guence is exact. Hence, using Lemma (4.11), we get that the lower sequence is
exact as well. This concludes the proof of the theoremifer 1.

For the general case we use inductiondotetd > 1 and letX be a reduced
connected proper algebratescheme of pure dimensiah. By (4.10) there is a
connected closed subschem& — X of pure codimension 1, the complement
U of which is smooth and affine. By (1.6) and (2.1) these propertidg whply

that the morphisnp (Y, X): H*(Y, 5, =L gAY, vd ) defined in (4.2) is

an isomorphism. For any closed pointe Y it maps the fundamental class to
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the fundamental class of viewed as a closed point df. This implies that the
diagram

HYY. 5 ——~Z/p"Z

lw(Y,X) H

H"M X)) —— Z/p'Z
commutes. The theorem follows by the induction hypothesis. O

(4.13) We finally extend the definition of the trace map to cohomology with com-
pact supports.

If U is a separated algebratescheme, by @ompactificationof U we under-
stand a dominant open immersiéh — X whereX is a properk-scheme. Such
a compactification always exists by [Na]. We c&llsmoothly compactifiablef
there exists a compactification into a smobthchemeX .

If £ is an étale Abelian torsion sheaf @handg > 0, thegth cohomology
group with compact support is defined B/ (U, ¥) := HI(X, j,¥), where
j:U — X is a compactification. By the proper base change theorem this is in-
dependent of the chosen compactification.

(4.14) LetU a smooth separated algebraiescheme of pure dimensiosh. Let
j:U — X be a compactification. lf € U is a closed point, the excision theorem
as well as (2.4) and (1.6) give isomorphisms

Z/p"Z = HMY U, v ) = HIPYU ) = HIPNX, jwd ).

Therefore we have a morphisfy p"Z — H™ (U, v¢ ), which does not depend
on the compactificatiory. The image of 1 will again be called tHendamental
classof x and denoted by,. The morphism

d+1 d d+1 ~d
HINU, vy ) — HOTHX0

induced by the composition of the adjunction nyagju — vff)x and the canonical
morphismv? , — V¢, maps this fundamental class to the fundamental class
already defined in (4.1). From (3.5) we get thaf (U, v¢ ) is generated as
an Abelian group by the fundamental classes of the closed poirifs (8.9) and
(4.12) imply

COROLLARY. LetU be a smooth separated algebrdiescheme of pure dimen-
siond. Then there is a unique homomorphistH (U, v¢ ) — Z/p"Z, which

maps the fundamental class of every closed point € U to 1. If U is connected
and smoothly compactifiable, théris an isomorphism.
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(4.15) Letf: U’ — U be afinite étale morphism of separated algebtaschemes
and# an étale Abelian torsion sheaf éh There is a cartesian diagram

i/

U/ J X/
v—~L1 +x

where; andj’ are compactifications anflis finite. Applying the functorj, to the
trace morphism trf, f 1 — ¥ and usingf.j = ji f., one gets a homomorph-
ism

tr HI(U', f'¥) — HIWU, F),
which does not depend on the diagram chosen. It is easy to prove the following

LEMMA. Let f:U’ — U be finite étale morphism of smooth separated algebraic
k-schemes. Then the diagram

HYYU v ) ——~ 2/ p"L

commutes.

5. The Duality Theorem

We will need the following theorem concerning resolution of singularities.

THEOREM (5.1) [dJ], Theorem (4.1)Let k be a perfect field an& an integral
separated algebrai¢-scheme. Then there is a smoothly compactifiable integral
algebraick-scheme/ and an étale morphisii — X.

From that we get the following statement: Lielbe a perfect fieldX a reduced
separated algebralescheme and& a constructible étale Abelian sheaf &nThen
there exists a dense open subBetc X and a surjective finite étale morphism
V — U such thatV is smoothly compactifiable an#f |, is a constant sheaf.

Now letk again be a finite field ang = chark.

(5.2) Let X be a propelik-scheme of pure dimensiah and £ an étale Abelian
7./ p"Z-sheaf. Then the composition of the Yoneda pairing with the trace map
(4.12) is aZ-bilinear map

H'(X, F) x EXtgO/(F, 58 ) — HNX V) — Z/p"L.
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It induces a homomorphism of groups
o (X, F):H' (X, F) — Exty 7 (F.5 0",

whereA* = Hom(A, Q/Z) denotes the dual group of any Abelian grodpby
Ext‘)’(,pn (¥, ) we denote theth derived functor of the functor Hof#%", ) from
the category of étalg&/ p"Z-sheaves oKX into the category of groups.

If U is a separated algebratescheme of pure dimensiah and £ an étale
7./ p"Z-sheaf, there is a unigue pairing

H{(U, F) x Ext; 7 /(F vl ) — HIPNU )
such that for every compactificatign U — X the diagram

H{(U,F) x Ext;"7/(F . v ) —— HINU, v )

H' (X, jF) xEX 5 (iF  jvd ) — HNX, vl )

commutes.

We first prove the duality theorem for constant sheaves. Milne has shown (cf.
[Mi-1], Chapter Il, (7.12)) that ifX is a smooth proper connected algebraic
scheme of dimensiod andn > 1, the Yoneda pairing

H' (X, F) x Ext{ 7 (F vl ) — HN X, vl ) = 2/p'Z

is a nhondegenerate pairing of finite groups for the skfeat 7Z/p"Z. In order to
get the assertion for the constant shea¥es= Z/p"7Z,m < n we prove some
easy facts from homological algebra:

(5.3) Let X be a scheme. For every > 1 the categonS(X, Z/p"Z) of étale
7/ p"Z-sheaves oiX is an Abelian category with enough injectives. hor< n
the inclusion functoS(X, Z/p™7Z) C S(X, Z/p"Z) is exact but does not preserve
injectives. It is left adjoint to the functor

tn,m:S(Xv Z/an) — S(X, Z/me)
‘,/-:.f — pm\r]"v,

where,» ¥ is the kernel of the multiplication witp™. The functor, ,, is left exact
and preserves injectives. We now calculate its derived functors¥Lie¢ an étale
7/ p"Z-sheaf and¥ — I°* an injective resolution ir§(X, Z/p"Z). By applying

the functor Hond__, 19), ¢ > 0, to the exact sequence

0— 2/p" "7 2% 7)p" 0 —~ T)p"7 — 0O
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we get an exact sequence

m

. o P .
O pm I I pn—m I I 0

of complexes of étal&./p"7Z-sheaves orX. The corresponding long exact co-
homology sequence yields an exact sequence

m

p

lrod lrod lrod 1 lrod
O pmf‘ F pn—mj‘ _— R tn,mf _— O

and isomorphism&?t, ,,_,, ¥ = R*1t, ,F of Abelian étale sheaves, for> 1.

LEMMA (5.4). LetX be a smooth algebraik-scheme. Let > 0,n > 1andm <
n. Then the morphisnx p"~™ defined in[CoSS], p. 778 Equation (20) mduces
an isomorphismx p"~":v!  — t, wV; x = pnvy, o, and forallg > 1 we have
Rty mvy x = 0.

Proof. The commutative diagram

r xptm r R™ r
O l)m,X l)n,X 1)nfm,X O
r id r
0 v, x v, x — 0

has exact lines (cf. proof of (2.1)). Regarding the induced morphism on kernels
proves the first assertion. It follows that the composition
Rm r Xpm

— ) E——

v;,X n—m,X P"_mv;,X
is surjective. On the other hand, by definition »fp™ this composition is the
multiplication by p™. By (5.3) we therefore geR's, ,,v; y = 0, for allm < n.

The second assertion follows by inductiongn O

PROPOSITION (5.5)Let X be a connected smooth progescheme of dimension
d andn > 1. Then for everyn < n the composition of the Yoneda pairing with the
trace map

H'(X,Z/p"Z) x Ext{ 72/ p" L, vi ) — HNX v y) — Z/p"Z

is a nondegenerate pairing of finite groups.

Proof.If m = n, this is just the assertion of [Mi-1], Chapter Il, (7.12). Now let
m < n. By the preceding lemma we have an |somorph|z,j“r3( = Rtnmvn y in
D (X, Z]p"7Z); sincet, ,, is right adjoint to the inclusion functd¥(X, Z/p™Z) C
S(X,Z/p"Z), one has isomorphisms

Extt)](!pn (Z/me, VZI,X) — EXt?(!pm (Z/me’ Rt,l,mvf)x) = EXI‘;{!pm (Z/me, l);ll)x),
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for all ¢ > 0. In the commutative diagram

H'(X, Z/ p" L) x EXt 7 (Z ) p" L, v ) — HPHX, vl y)

T

H'(X, Z) p" L) x EXt 0 (Z) p" T, v ) — HTHX, vl 4)
a is induced by the morphisnx p”"~™. The lower line is a nondegenerate pair-
ing, hence also the upper line, if we can show thds injective. The short exact
sequence used in the proof of (2.1) induces an exact sequence

HMY (X v ) — HYN(X vl ) — BN X, ) — 0
where we have used (3.4). Since by (4.12) the gradp*(X, v¢ ) = Z/p*Z has
p* elements, this implies the injectivity of. O

THEOREM (5.6) Letk be afinite field angh = chark. LetX be a propek-scheme
of pure dimensiorl. Then for every: > 1 and every constructibl&/ p"7Z-sheaf
F the composition of the Yoneda pairing and the trace homomorphism

HI (X, F) x EXH(F, 50 — HONX, ) = 2/p'2,

is a nondegenerate pairing of finite groups.

Proof. Let n > 1. We have to show that’(X, ) is an isomorphism for all
proper equidimensional-schemesX, all constructibleZ/p"7Z-sheavesf on X
and alli € Z. We will do this in several steps.

(a) Let X be a properk-scheme of pure dimensiah Let

0 F' F F 0

be an exact sequence of étalgp"Z-sheaves oX. If o’ (X, §) is an isomorphism
for two of the sheave$ € {F, F', £”} so it is for the third.

(b) Let X be as in (a) and¥ an étaleZ/p"7Z-sheaf onX. Then we have for
everyi € Z: The mapx’ (X, ) is an isomorphism if and only if' (X eq, F) is.

By [EGA V], (18.1.2) the functorU +— U xyx Xq IS an equivalence of
topologies. Ifi: X,eg — X denotes the inclusion, tharm! and, are mutually
guasi-inverse equivalences of the categories of &al¢ Z-sheaves oX and X eg.

(c) Let X and ¥ be as in (b). IfX4, ..., X, are the connected components of
X, then we have for evelye Z: The mapx’ (X, ) is an isomorphism if and only
if all the o (X,, F) are isomorphismsy = 1, ..., s.

The intervening cohomology groups as well as the Ext-group are direct sums of
the corresponding groups for the componentsand the trace mafg ¢+ (X, D‘;{X
— 7/ p"Z is the sum of the trace maps of the components.
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(d) Let X be a smooth propek-scheme of pure dimensieh Thena' (X, )
is an isomorphism for all constant constructitilg p"Z-sheavesF on X and all
i €Z.

This follows from (5.5) using (a) and (c).

(e) Let K|k be a finite field extensiony = SpecK and ¥ a constructible
7 p"Z-sheaf onX. Thena! (X, ) is an isomorphism of finite groups, for alle
7.

The assertion follows from (d), i is constant. Lef be arbitrary and.|K a
finite extension such that~1# is constant, whergf: Spec. — Speck denotes
the induced morphism. Consider the commutative diagram

H(L, f7*F) x Ext . (f'F, 2/ p"Z) — HNL,Z/p"Z) —— L/ p"Z

= = cor H
H' (K, f. [ 2F) XXt L (fuf 2F 2/ p"2) — HNK.Z/p"Z) —~ Z/p"L,

fori = 0, 1. Since the upper line is a nondegenerate pairing of finite groups so is
the lower. It follows thai’ (SpecK, £, f~1¥) is an isomorphism for all € Z.

We now prove the following assertion by descending induction:dror every
constructibleZ/ p"Z-sheaf on Spek the mapa’(Speck, F) is surjective. This

is trivial for i > 1. Now leti < 1. For a given sheaf we choose a morphism
f:Specl. — SpecK such thatf~1¥ is constant. The trace mafy f 1 — F

is surjective and therefore gives rise to an exact sequence

0— XK — fif ¥ — ¥ — 0

using the abbreviation&9(4) := HY(K, 4) andE‘(4) := Ext}gzn(g,Z/p”Z)*
we get a commutative diagram

H (fef 1) — H'(F) — HTHH) — HTH S f 70 F) — HIYY(F)

F | l g |

EN(fuf71F) E'(F) EFYx) — EF(flE) — BN ).

Applying the induction hypothesis to the sh&fé@fthe diagram shows that the map
o (Speck, F) is surjective. Similarly, using descending inductionipane shows
thata' (Speck, ¥) is injective, which concludes the proof of (e).

Now we prove the theorem by induction @n Ford = 0 the assertion fol-
lows from (e) using (b) and (c). Now let > 0 and assume that' (X, ) is
an isomorphism for all propéet-schemesX of pure dimension dinX < d, all
constructibleZ/ p" Z-sheavesF on X and alli € Z.

() Let X be a properk-scheme of pure dimensieh ¢: Y — X a closed im-
mersion of pure codimensiohand g a constructibleZ/p"Z-sheaf onY. Then
a' (X, 1,4) is an isomorphism for all € Z.
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This follows from the induction hypothesis using the commutative diagram

H(Y,§) x Ext.(§.745H) —— HIY 5N —s 2/p"2
x~ l; oY, X) H

H'(X,1.9) x EXt 071 (1§, V) — HHX, v y) — 2/ p"Z.

The isomorphism of the Ext-groups is obtained from the purity theorem (2.4).

(g) Let X be a smooth propéet-scheme of pure dimensiah Let j: U — X be
the inclusion of an open subset afid a constant constructibl&/p"Z-sheaf on
U.Thena! (X, j ) is an isomorphism for all € Z.

We can assume that is connected. The constant étale sheakotorrespond-
ing to the Abelian group which defings will be also denoted by . The cokernel
C of the injective adjunction map¥ — ¥ is the direct image of the constant
étale sheaf* on the complement df . Enlarging this complement if necessary we
see that® is also the direct image of a constructible sheaf on a closed subscheme
of pure codimension 1. Now the assertion follows from (d), (f) and (a).

(h) Let V be a smoothly compactifiabkescheme of pure dimensiahand§ a
constant constructibl&/ p"Z-sheaf onV. Then the composition

H(V,§) x Extd+ ‘g, vey)) — HINV, ) . 7/p"z

is a nondegenerate pairing.

In view of the definition of this pairing in (5.2) this is an immediate consequence
of (9).

(i) Let X be a propelk-scheme of pure dimensian j: U — X an open immer-
sionandf: V — U afinite étale morphism such thetis smoothly compactifiable.
Let £ a constructibleZ/ p"Z-sheaf onJ, whose restriction td is constant. Then
ol (X, jifo f~1F) is an isomorphism for all € Z.

One has a commutative diagram (cf. [Mi-3], p. 171)

H(V, 1) x Ex1d+ frEE) —— BNV v ) —— 7/ p"Z

0
HI(U, fiof " F)XEXGT (fof 2F v ) — HIPNUL v ) —— Z/p"Z

Hence the assertion follows from (h).

() Let X be a properk-scheme of pure dimensiah Thena! (X, ) is injective
for all i € Z and all constructibleZ/p"Z-sheavest on X.

We will prove this assertion by induction enif i < 0, there is nothing to show.
Now leti > 0. We can assume tha&tis reduced. By (5.1) there is a dominant open
immersionj: U — X and a surjective finite étale morphisfh V. — U such
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that V is smoothly compactifiable anff'|, is constant. Shrinkind/ if necessary
we can assume that the complem&nof U in X is of pure codimension 1. Let
F' := ¥ |y andC the cokernel of the injective majpF’ — ji f. f~1F'. Thus we

have two exact sequences

0— jF — jifef ' ¥ —C— 0
and

0 nF' F iFly — 0.

They induce commutative diagrams with exact lines

H N fuf ) — HTHC) — H'(WF) — H'(jifof TF) — H'(©)
L

ETNuf* ST —— ETHO) —— E'GF) —— E'(jfsfTIF) — E'(C)

and

HY0,i*F) — H'(jF') — H(F) — H'(i,i*F) — H'GiF")

. o

E7Nii*F) — E'(jiF) — E'(F) — E'(i,i*F) — ET'(jiF)),

1125

RS

where we have used the abbreviations
HY(§) = H1(X.§) and E’(§):=Ext{ (4. 7)".

If we apply the induction hypothesis to the shéaand use (i) as well as the first
diagram we see that (X, j,¥') is injective. From that we conclude using (f) and
the second diagram that(X, %) is injective as claimed.

(k) Let X be properk-scheme of pure dimensieh Thena! (X, ¥) is an iso-
morphism for alli € Z and all constructibleZ/ p"Z-sheavesF on X .

We prove this last assertion by descending induction. &fori > d + 1 there
is nothing to show. Now let < d + 1. We definegj: U — X and f: V — U
as in (j) and set agai¥’ := F|y. If X is the kernel of the surjective morphism
JifefTYF — jiF', we again get two exact sequences

0— K — jfef 'F —= jF' — 0
and

0 WF' F L:Fly — 0,
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which induce commutative diagrams with exact lines

H GifofYF) — H'G\F) — HTYK) — BTG fuf71F) — HITGF)

Foool [ |

E'GifufTIF) — ElGiF) — ETY(K) — EFYGifs i) — EFFLGF)
and

H Y0 i*F) — H (jF) — H'(F) — H'(isi*F) — H' T 7))

R R

ETYii*F) — E'(jF) — ENF) — El(ixi*F) — E1(F),

where we have used the same abbreviations as in (j). If we apply the induction hy-
pothesis to the shedf and use (i), we get from the first diagram thétx, jiF') is
surjective, hence an isomorphism. From that we deduce, using the second diagram
and (f) thato’ (X, ) is an isomorphism. This concludes the proof of (k) and of the
theorem. a

COROLLARY (5.7). Letk be a finite field angp = chark. Let U be a smooth
separated algebrai&-scheme of pure dimensiah Then for every» > 1 and
every constructibl& / p"Z-sheafF the composition of the Yoneda pairing and the
trace map

HI(U, F) x EXG5(F vl ) — HIPNUNE ) — 2/p"Z

is a nondegenerate pairing of finite groupsUfis smoothly compactifiable, then
the trace map is an isomorphism. O
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