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Deloopings of Hurwitz spaces

Andrea Bianchi

ABSTRACT

For a partially multiplicative quandle (PMQ) Q we consider the topological monoid
HM(Q) of Hurwitz spaces of configurations in the plane with local monodromies in
Q. We compute the group completion of HM(Q): it is the product of the (discrete)
enveloping group G(Q) with a component of the double loop space of the relative
Hurwitz space Hur, ([0, 1]2,0[0,1])%; Q,G)1; here G is any group giving rise, together
with @, to a PMQ—group pair. Under the additional assumption that O is finite and
rationally Poincaré and that G is finite, we compute the rational cohomology ring of
HurJr([Oa 1]27 8[07 1]2; Q, G)]l
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1. Introduction

In [Bia21, Section 2] we introduced the algebraic notion of partially multiplicative quandle (PMQ)
and the related notion of PMQ—group pair: roughly speaking, a PMQ is a set endowed with two
binary operations, called conjugation and product (the second being partially defined), subject
to axioms capturing the usual interrelations between conjugation and product in a group; and a
PMQ-group pair is a pair of a PMQ O and a group G, together with a map of PMQs @ — G and
an action of G on Q, satisfying axioms resembling the case in which Q is a conjugation-invariant
subset of G. In [Bia23a, Section 3| we defined a Hurwitz—Ran space Hur(X,Y; Q, G) associated
with a nice couple (X,)) of subspaces ) C X C H of the closed upper half-plane in C and with
a PMQ-group pair (Q,G). In the case ) = () the group G plays no essential role and we can
write Hur(X; Q) for the Hurwitz space: the reader may think of this as the absolute situation,
whereas the general case corresponds to the relative situation.

In this article, for a PMQ Q, we introduce a topological monoid HM(Q) arising from Hurwitz
spaces: an element of HM(Q) is a finite configuration P of points in a rectangle (0,¢) x (0,1) of
variable width ¢ > 0, together with a @-valued monodromy, defined on certain loops of C\ P.
The monoid product is defined according to a well-established principle, relying on the fact that
a rectangle of width ¢ + ¢’ can be regarded as the union of two rectangles of widths ¢ and ¢’ joined
along a vertical side. If Q is a PMQ with trivial product, then HM(Q) recovers the monoid of
Hurwitz spaces appearing in [EVW16, Subsection 2.6] and [RW19, Subsection 4.2].

1.1 Statement of results
Throughout the article we fix a PMQ-group pair (Q,G) = (Q,G,e,t) (see [Bia2l, Definition
2.15]) and assume that G is generated by the image of the map of PMQs ¢: Q — G.

In addition to the aforementioned topological monoid HM(Q), we will introduce in this
article an auxiliary topological monoid HM(Q, G). The two main theorems of the article, that
we briefly describe in this subsection, show together that a component of the group completion
of HM(Q) is equivalent to a component of the double loop space of a certain relative Hurwitz
space Hur ([0, 1]2,0[0,1]%; Q, G)1.

For present and future convenience of the reader, we recall that the index ‘+’ selects the
subspace of configurations with non-empty support in a Hurwitz space; the index ‘1’ selects the
subspace of configurations with trivial total monodromy 1 € G; an index given by a finite subset
of C, such as ‘551“, selects configurations whose support contains the given finite subset; and
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the index ‘G, G°P’ refers to a quotient of another Hurwitz space by a certain free action of the
group G x G°P. This notation is introduced in detail in [Bia23a].

In favourable cases, the rational cohomology ring of Hur, ([0, 1], 9[0, 1]%; Q, G)1 can be com-
puted explicitly solely in terms of the PMQ Q and one can then use standard rational homotopy
theory to access H*(Q2 Hur, ([0, 1]2,9[0,1]% Q, G)1; Q), which by the group completion theorem
is the ring of stable rational cohomology classes of components of HM(Q)

The first, main result of the article is the following theorem, describing the weak homotopy
type of the bar constructions BHM(Q) and BHM(Q, G) in terms of certain relative Hurwitz
spaces. The nice couples (3, 5<3H) and (o, 00) are explicitly given in Definition 2.23; for instance,
o is the closed rhombus with vertices 1/2, v/—=1/2, 1/2 + /=1 and 1+ /—1/2.

THEOREM A (Theorem 4.1). There are weak homotopy equivalences
BHM(Q) ~ Hur(8",33": 0, @)g.gor; BHM(Q,G) ~ Hur(o,80; Q, @) cov-

Now the space Hur(3", d; 0, G)a,gor admits the space Hur(3", d; 0, G) g as a finite cov-

ering space and the latter space is weakly equivalent to HM+(Q, G)1. Similarly, the space
Hur ([0, 1]%,0[0,1]%; ©Q, G) is weakly equivalent to a covering space of Hur(o, 9; Q, G) ¢ ger: see
§ 4.4 for more details. Passing to loop spaces and double loop spaces, we obtain a weak homotopy
equivalence

QBHM(Q) ~ G(Q) x Q2 Hur,([0,1]2,8[0,1]*; Q,G)1,

where G(Q) is the (discrete) enveloping group of Q.

Under the additional assumption that G is a finite group and Q is finite and rationally
Poincaré, the second, main result of the article computes the rational cohomology ring of
Hur, ([0, 1]2,0[0,1]%; Q, G)1 in terms of a certain algebra A(Q), that we briefly recall after the
statement.

THEOREM B (Theorem 6.1). Let (Q,G) be a PMQ-group pair with Q finite and rationally
Poincaré and with G finite. Then there is an isomorphism of rings

H*(Hury ([0,1]%,0[0,1)% Q,G)1) ; Q) = A(Q).

We recall that a PMQ is rationally Poincaré (or Q-Poincaré) if it is locally finite and
each component of Hur, ((0,1)%;Q) is a rational homology manifold [Bia23a, Definition 9.4].
The graded commutative Q-algebra A(Q) is defined as the sub-algebra of conjugation-invariant
elements of Q[Q], the rational PMQ-algebra associated with the PMQ Q (see [Bia21, Definition
4.26]). When Q is Poincaré we can consider Q[Q] as a graded Q-algebra, by putting the gen-
erator [a] € Q[Q] in degree equal to the dimension of Hur, ((0,1)?; Q),, for a € Q. The degree
of [a] agrees, in fact, with 2h(a), where h: Q@ — N is the intrinsic norm of Q (see [Bia23a,
Proposition 9.7]). This makes also A(Q) into a graded Q-algebra and then Theorem B gives an
isomorphism of graded QQ-algebras.

The rational cohomology ring of QOBHM(Q), i.e. the stable rational cohomology ring of
the components of HM(Q), can then in principle be computed by ‘looping twice’ the ratio-
nal cohomology of the space Hur, ([0,1]2,9[0,1]?; Q,G)1, using that the latter space is simply
connected. More precisely, this requires the computation of a minimal Sullivan model for the
space Hur, ([0, 1]2, 9]0, 1]%; Q, G)1. We conclude the article with an explicit computation, dealing
with the case in which Q is a finite PMQ with trivial product; this recovers, in particular,
[RW19, Corollary 5.4].
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1.2 Outline of the article

In §2 we introduce the topological monoids HM(Q) and HM(Q,G) and compute the
associated discrete monoids of path components mo(HM(Q)) and mo(HM(Q,Q)), see
Theorems 2.15 and 2.19.

In §3 we recall the simplicial space BsM associated with a unital, topological monoid M
and we distinguish between ‘bar construction’ BM and ‘thin bar construction’ BM, i.e. the
geometric realisations of B, M as a semisimplicial space and, respectively, a simplicial space. We
prove in Theorem 3.4 a homotopy equivalence HM+(Q, G) ~ QBHM(Q, G) and check that the
group completion theorem [MS76, FM94| applies to the topological monoid HM(Q)

The main result of §4 is Theorem 4.1, whose direct consequence is that the bar construc-
tions BHM(Q) and BHM(Q, G) admit covering spaces that are homotopy equivalent to the
Hurwitz spaces HM, (Q, @)1 and Hur, ([0,1]2,8(0,1]%; Q, G)1, respectively. The main applica-
tion is Theorem 4.22, computing the homology of the group completion of HM(Q) as the tensor
product of the group ring Z[G(Q)] and the homology of a component of the double loop space
0?2 Hur, ([0, 1)%,0[0,1]%; ©, G)1; here G(Q) is the enveloping group of Q.

In §5 we replace Hur, ([0,1]2,0[0,1]%; Q,G)1 by a smaller, homotopy equivalent subspace
B(Q+,G), assuming that Q is augmented. Assuming further that Q is a normed PMQ, we
prove that B(Q.,G) admits a norm filtration, whose strata are fibre bundles over the space
BG := Hur(9[0, 1]%; G)o.1; the space BG is, in turn, shown to be an Eilenberg-MacLane space of
type K(G,1).

In § 6 we assume that Q is a finite and Q-Poincaré PMQ and G is a finite group and compute
the rational cohomology ring of B(Q., G), using the Leray spectral sequence associated with the
filtration on B(Q4,G): Theorem 6.1 identifies H*(B(Q4,G); Q) with the ring A(Q) C Q[Q] of
conjugation G(Q)-invariants of the PMQ-ring Q[Q]. As an application, we compute the stable
rational cohomology of classical Hurwitz spaces, recovering, in particular, [RW19, Corollary 5.4].

Throughout the article we make heavy use of the results of [Bia21, Sections 2-6] and [Bia23a,
Sections 2-6|: we cite every time which specific fact we are needing, so that the reader does not
need to be familiar with all details of [Bia21] and [Bia23a].

1.3 Motivation
This is the third article in a series about Hurwitz spaces. Our main motivation to study gen-
eralised Hurwitz spaces comes from the relation between Hurwitz spaces and moduli spaces of
Riemann surfaces given by considering the family of PMQs &5, for d > 2: Theorems A and B
are applied in [Bia23b] to give an alternative proof of the Mumford conjecture on the stable
rational cohomology of moduli spaces of Riemann surfaces, originally proved by Madsen and
Weiss [MWOT].

Moreover, this article shows how generalised Hurwitz spaces can be useful also in the study
of classical Hurwitz spaces as topological monoids: the (double) delooping of the classical monoid
of Hurwitz spaces is described by Theorem A as a relative Hurwitz space.

2. Hurwitz spaces as topological monoids

We start by fixing some conventions to simplify the notation. We fix a PMQ-group pair
(Q,G) = (Q,G,e,t) throughout the article; recall that e: Q — G is a map of PMQs and t: G —
Autpmq(Q)°P is a map of groups, giving a right action of G on Q, see [Bia21, Definition 2.15].
We assume in the entire article that the image of ¢ generates G as a group. Two examples that
the reader may keep in mind are as follows:
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e (Gisagroup, Q4 C G is a conjugation-invariant subset and Q@ = Q4 LI {1o} with the adjoined
element 1o being the unit of Q; we put the trivial product on Q, we define ¢ by 1g — lg
and Q4 — G we let the action of G fix 1g and conjugate elements of Q. ;

e (G =06, is the dth symmetric group for some d > 2, Q = 6560 is the geodesic PMQ from
[Bia21, Subsection 7.1], obtained from &4 by restricting the product, ¢ is the identity of the
common underlying set and &, acts on 6560 by usual conjugation of permutations.

We usually denote by € = (X,)) a nice couple, i.e. a couple of semialgebraic subspaces of
the closed upper half-plane H C C, with Y closed in X: see [Bia23a, Definition 2.3]. In the entire
article, we abbreviate the Hurwitz space Hur(¢; Q, G), defined in [Bia23a, Section 3], as Hur(Z);
in particular, if Y = (), we abbreviate Hur(X’; Q) as Hur(X').

Recall from [Bia23a, Definition 2.9] that if € = (X,))) is a nice couple and if P C X is a
finite subset, we can define a PMQ Q¢(P) as the subset of &(P) := m(C\ P, *) of conjugacy
classes of small simple loops spinning clockwise around exactly one point of P among those
lying in &\ ) (together with the neutral element 1g(p); the inclusion Q¢(P) € &(P) and the
conjugation action of &(P) on Q¢(P) make (Qg¢(P), B(P)) into a PMQ-group pair.

Notation 2.1. Let Y C H be closed semialgebraic subspace. Then for every semialgebraic sub-
space X C H we obtain a nice couple € = (X,)) by setting J = Y N X; for all finite subsets
P C X we then have that Q¢(P) and Qg,y)(P) are the same subset of &(P).

We will abuse notation and abbreviate Q¢(P) as Q(P) also in certain situations in which
there may be some ambiguity on the nice couple € we are considering; we leverage on the fact
that all nice couples € that might reasonably be involved in the argument are obtained as above,
for a fixed and evident subspace Y C H, so that the fundamental PMQ Q¢ (P) is unambiguously
identified as a subset of &(P).

Notation 2.2. We usually denote by P = {z1,...,2;} a finite collection of distinct points in
H, for some k > 0. If a nice couple € = (X,)) is under consideration, we will usually assume
P C X and that there is 0 <[ < k such that zi,...,z are precisely the points of P lying in
X\ Y. We let x = —/—1 € C be our preferred choice of basepoint. If fi,..., fi is an admissible
generating set of &(P) = 71 (C \ P, ) (see [Bia23a, Definition 2.8]), then we usually assume that
fi is represented by a small simple loop spinning clockwise around z;.

A configuration ¢ € Hur(€; Q,G) is usually presented as (P,1, ), with P as above and
(Y, p): (Q(P),&(P)) — (Q,G) a map of PMQ-group pairs. Similarly, a configuration ¢ €
Hur(X; Q) is usually presented as (P, 1), with P as above and ¢: Q(P) — Q a map of PMQs.

2.1 Definition of the Hurwitz—Moore spaces
We first introduce notation for rectangles and horizontal strips in the plane.

Notation 2.3. For t > 0 we denote by R; C H the standard closed rectangle [0, ¢] x [0, 1] of width
t and height 1; we also denote R = [0,00) x [0,1] the half-infinite, closed strip and by Rg =
(—00, +00) X [0, 1] the infinite, closed strip.

For 0 < ¢ < +00 we denote by Ry = (0,¢) x (0,1) the standard open rectangle (or half-infinite
strip) of width ¢ and height 1 and by Rr = (—o0, +00) x (0,1) the infinite open strip. Also let
OR: =R \ Ry for all 0 <t < oo and ORg = Rg \ 7031[@, denote the boundary of R; and Rg,
respectively. We use the abbreviations (R, d) and (Rg,d) for the nice couples (R;, OR;) and
(Rr, ORR), respectively.

For 0 <t < 400 we denote by R; = (0,t) x [0,1] the standard, vertically closed rectangle
(or vertically closed half-infinite strip) of width ¢ and height 1 and by IR, = (0,¢) x {0,1} C R,
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FIGURE 1. Left: the rectangle 7031/2. Right: the nice couple (733/4, 57V€3/4).

the horizontal boundary of R. Similarly, we denote Rr = Rg and ORg = ORg = (—00, +00) X
{0,1}. We use the abbreviations (Rt,0) and (Rg,d) for the nice couples (R, 57% ¢) and
(RR, 8RR) respectively.

Whenever t = 1 we drop it from the notation, so we abbreviate R as R, Ry as R and Ry asR.
See Figure 1.

Note that 7u€o =0. For t <t the 1dent1ty of C restricts to an inclusion Rt - Rt/ and
induces an inclusion of Hurwitz spaces Hur(R;) C Hur(Ry).

DEFINITION 2.4. The open Hurwz'tz Moore space associated with the PMQ Q, denoted by
HM(Q) and abbreviated as HM in the entire article, is the subspace of [0, 00) X Hur(Roo) con-
taining couples (¢, c) such that ¢ € Hur(Roo) is a configuration supported on Rt, i.e. ¢ takes the
form (P, %) with P C Ry.

Similarly, the wvertically closed Hurwitz—Moore space associated with (Q,G), denoted by
HM(Q, G) and abbreviated as HM in the entire article, is the subspace of [0, c0) x Hur(Roo, d)
containing couples (¢, ¢) such that ¢ is supported on Ry, ie. ¢ = (P,v, ) with P C Ry

Note that, for fixed ¢ > 0, the slice of HM containing couples of the form (¢,¢) is homeo-
morphic to Hur(R;): thus, HM, as a set, is the disjoint union | |, Hur(R;). Similarly, HM is in
natural bijection with the set | |~ Hur(Ry, 9).

Notation 2.5. For a nice couple € we denote by (0, 1, 1) € Hur(¢; Q, G) the unique configuration
supported on the empty set, i.e. of the form (P, v, p) with P = (). The complement of {(0,1,1)}
is denoted by Hur, (¢; Q, G).

~ Note that (0,1,1) is the only point in the spaces I—{ur(?éo) and Hur(Rg,d), since
Ro = Ro = (. In other words, we have Hur, (Ry) = Hur; (R, 0) = 0.

Notation 2.6. We write HM as the disjoint union [0, 00) x {(0,1,1)} UHM_, where we set
HM, : = ([0,00) x Hury (Roe, d)) N HM C [0, 00) x Hur(Roo, d).
By the previous discussion, every couple (¢,¢) € HM+ satisfies t > 0.
LEMMA 2.7. The inclusions Hur(R) ¢ HM and Hur(R,d) ¢ HM are homotopy equivalences.

Proof. The proof is almost identical in the two cases, so we will focus on the second case, which
is slightly more difficult.
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For s > 0 the map As: C — C given by As(2) = (sR(z), 3(2)) is a morphism of nice couples
As: (Roo, 0) — (Roo, 0). Putting all values of s > 0 together we obtain a continuous map A: C x
(0,00) — C; by [Bia23a, Proposition 4.4] we obtain a continuous map

A, Hur(Rao, 8) x (0, 00) — Hur(Ruo, 9).

Define A: (0,00) X Hur(Roo, ) x (0,00) — (0, 00) x Hur(7:3oo,5) by the formula Alt,c;s) =
(ts, Ax(c,s)). We are now able to define a homotopy H": HM x [0, 1] — HM by setting

ts+1—s,Alc,(ts+1—s)/t forallt>0andc€HM;
HMt e 5) = {( (c. /1) +

(ts+1—s,(0,1,1)) for ¢ = (0,1,1) and all ¢ > 0.

Note that H*((1,¢), s) = (1,¢) for all ¢ € Hur(R, ), including (), 1,1) and all 0 < s < 1; more-

over, the map H(—;1) is the identity of HM, whereas the map H*(—;0) has image inside
Hur(R, 9). O

The reason for the name Moore in Definition 2.4 is that, as we will see in §2.2, there is a
natural structure of topological monoid on both HM and HM. In contrast, Hur(R) and Hur(R)
are only endowed with the structure of Ej-algebras in a natural way. The spaces HM and HM
play the role of the strictification of the Fj-algebras Hur(R) and Hur(R) to actual topological
monoids, just as the Moore loop space QM X of a pointed topological space X is a strictly

associative and strictly unital replacement of the Fq-algebra given by the usual loop space Q.X.

2.2 Topological monoid structure
In this subsection we define a topological monoid structure on HM and HM. For HM the basic idea
is to juxtapose two configurations ¢ € Hur(7°€t) and ¢ € Hur(ﬁt/) to obtain a larger configuration
supported on the rectangle 702t+t/; for HM the idea is similar, but using vertically closed rectangles
and juxtaposing also their horizontal boundaries.

In the entire subsection we focus on HM and write in parentheses the changes needed in
the analogous discussion about HM. Whenever we write Q(P) for a subset P C H, we use
Notation 2.1 with Y = () (respectively, Y = ORR, see Notation 2.3).

Notation 2.8. For t,t > 0 we denote by Ry + ¢ the space (t,t+t") x (0,1). Similarly, we denote
by (Ry,d) + t the nice couple ((t,t+t') x [0,1], (t,t + ') x {0,1}), compare with Notation 2.3.

For a finite subset P C H as in Notation 2.2 and for ¢ > 0 we denote by P + ¢ the subset
{z1+t,..., 2z, +t} CH.

Note that for P,t,t as in Notation 2.8, if P C Ry (respectively P C Ry), then P+t C
Rt/ + t C Rt+tl (I‘espectively7 P +t C Rtl "‘t C Rt—‘y—t/)'

DEFINITION 2.9 (Definition 6.7 in [Bia23a]). For ¢t € R we define a homeomorphism 7;: (C, %) —

(C, ) by
z if §(z2) < —1,
T(z) =< z+1t if (z) >0,
24+ (S(z)+ 1)t if —1<3(2) <0

Note that for ¢,¢ > 0 we have 7(Ry) = Ry + t (respectively, 7(Ry,d) = (Ry,d) +t).

Notation 2.10 (Notation 6.8 in [Bia23a]). For ¢ € R we denote by Cy>; C C the subspace con-
taining all z € C with R(z) > ¢. Similarly, we define Cy~, Cr<t, Cret and Cp—s, the latter being
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a vertical line. For all —oo <t <t < 400 we define a subspace Sy C C by

St = 1 (Cr>0) N 7 (Cr<o),
where we use the conventions 7_(Cp>0) = 0o (Cr<p) = C and 7_ o (Cr<0) = T4oo(Cr>0) = 0.

For all t,¢' > 0, we have that Sg;iy is contractible and can be written as the union of
the contractible spaces So,+ and St gt along the contractible space St+. Moreover, Rt - SOt
(respectively, R C So ), whereas Ry +tCS, ++t (respectively, Ry +tCS, +++)- Note also that
7¢ restricts to a homeomorphism Sg ; — Sy 144

Recall [Bia23a, Definitions 3.15 and 3.16]: if T C C is a contractible subspace containing
* = —/—1, then for any nice couple of subspaces Y C X C T we can give an alternative definition
of Hur(X,)), denoted by Hur" (X, ), using T instead of the entire C as ‘ambient space’: indeed,
for any finite set P C X, the fundamental group 7 (T \ P, %) is canonically identified with &(P) =

71(C \ P,*) and similarly for fundamental PMQs. We thus get an identification i%: Hur(X,)) 5
Hur®(x,).

If, moreover, £: (C, %) — (C, ) is a semialgebraic and orientation-preserving homeomorphism
of the plane preserving the upper half-plane H and if T’, X/, )’ are three other subspaces of C as
above such that ¢ maps T — T, X — X’ and Y — ), then ¢ induces a map &, : Hur' (X,)) —
Hur™ (X, ).

There is finally a ‘disjoint union’ map — L —: Hur™'(Xy, ) x Hur'2(X5, )0) —
HurT1VT2 (X1 U Xy, Y1 U )s), defined when Ty N Ty is contractible and disjoint from both Xy, A>
(in particular, this implies that X} and A5 are disjoint).

DEFINITION 2.11. For ¢,¢ > 0 we define the maps ju; 4 : Hur(?ozt) X Hur(70€t/) — Hur(?oth/) and
g Hur(?ét, 5) X Hur(ﬁt/, 5) — Hur(']\ét_i'_t/, 5) as the following compositions:

G

)
Hur(R;) x Hur(Ry) — 2 Hue (Ry) x Huror' (Ry)

Hur®ot (R,) x HurStt+¢ (Ryr 4 1) ———— Hur™o+' (R, U (Ryr + 1))
/

C 1
(lso,urt’)

Hur%ot++' (Ry4y/) Hur(Ry410):

.C .C
o (igy ;i )

Hur(R¢,d) x Hur(Ry, d) SN Hure (Ry, 0) x Huro#' (R, 0)

y

Hur®t (R, ) x HurStt++' (Ry +t,0) ———— HurSo+' (R, U (Ry +t),9)

/
Hur%o.o+' (Ryqpr, 0) Gy

S0, 14t/

Hur(fQH_t/ y é) .

DEFINITION 2.12. Recall Definition 2.11. We define a map of sets
p: HM x HM — HM  (respectively, : HM x HM — HM)
by the formula p( (¢,¢), (t',¢')) = (t +t', peyp(c,¢’)). See Figure 2.
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FIGURE 2. Left: two configurations in Hur§°=1/2(7v€1/2,5) %’Hur(f%l/g,é) C HM. Right: their

product in Hur®t (R, d) = Hur(R, d) C HM.

ProrosiTION 2.13. The map u: HM x HM — HM (respectively, p: HM x HM — HM) is
continuous and makes HM (respectively, HM) into a topological monoid, with unit (0, (0, 1,1)).

The proof of Proposition 2.13 is in Appendix A.1.

Recall the notion of total monodromy from [Bia23a, Definitions 6.1 and 6.3]: for a generic
nice couple (X,)) we have a map w: Hur(X,)) — G sending a configuration (P, v, ) to the
value of the monodromy 1) at the ‘large loop’, i.e. the element of &(P) represented by a simple

loop spinning clockwise around all points of P.
the PMQ Q, as in [Bia21, Definition 2.19]. Concretely, O can be defined as the free, non-unital

If Y = (), one can lift this to a total monodromy w: Hur(X) — Q, where Q is the completion of
monoid generated by elements a for a € Q, satisfying ab = bab for all a,b € Q and satisfying
ab = ab for all a,b € Q such that the product ab is already defined in @. The non-unital monoid
O happens to have a unit, namely 1 and a natural binary operation of conjugation can be defined
on it, so that it becomes a PMQ with complete product; there is a natural inclusion of PMQs
Q — Q, which is the universal map from O to a complete PMQ. In the lift © of w we need o)
rather than Q as target because the large loop in G(P) is not, in general, an element of the

fundamental PMQ Q(P) (unless P is a singleton), so we cannot directly evaluate v on it; but
we can factor the large loop as a product of elements in Q(P), evaluate ¢ on the factors and

compute in O the corresponding product of elements of Q.
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Notation 2.14. For (t,¢) and (#,¢') in HM (in HM) we denote by (¢, ¢) - (¢, ¢') the configuration
u((t,c), (', ). . . }
We denote by w: HM — Q (respectively, w: HM — G) the composition

HM C [0, 00) x Hur(Reo) —— Hur(Roo) —2— Q

o v

(resp. HM C [0, 00) x Hur(Reoo,d) —— Hur(Roo,d) —2= G),

where the first map is the projection on the second component and O denotes the completion of
the PMQ Q.

2.3 Computation of mo(HM)
In this subsection we study the discrete monoid of path components of HM. We will prove the
following theorem, which is similar to [Bia23a, Proposition 6.4].

THEOREM 2.15. Recall Notations 2.6 and 2.14. The map &: mo(HM) — Q is a map of unital
monoids and it restricts to a bijection mo(HM,) & Q.

Notation 2.16. We denote by z. = 2 + r € C the centre of R.

DEFINITION 2.17. For all a € Q we define a configuration ¢, = ({zc},%q) € Hur(R), where 1,
sends the (unique) element f. in Q({z.}) \ {1} to a.

For a space X we denote by mp: X — my(X) the map assigning to each point of X its path
component. We denote by - the product of the discrete monoid mo(HM).

LEMMA 2.18. The monoid mo(HM) is generated by mo(0, (0,1, 1)), which is the unit and by the
elements of the form my(1,¢,), for a € Q. Moreover, the following equalities hold in 7wo(HM):

e ifa,be Q, then mo(1,¢,) - mo(1, ¢p) = mo(1,¢p) - mo(1, cpp);
e ifa,b € Q and the product ab is defined in Q, then my(1,¢,) - mo(1, ¢p) = mo(1, cap).

The proof of Lemma 2.18 is in Appendix A.2.

Proof of Theorem 2.15. First we prove that &: HM — Q is a map of monoids. Let (¢, ¢), (¢, ¢) €
HM and use Notation 2.2: we can choose simple loops v C S_ ¢ and 7' C S; 40, spinning clock-
wise around P and P’ + ¢, respectively; the product [y] - [y/] € &(P U (P’ 4 t)) is represented by
a simple loop spinning clockwise around P U (P’ + t). Denoting (¢,¢) - (¢, ¢) = (t + ¢/, (P",¢")),
by definition of " we have

O((t0) - (¢, ) =" (] - VD) = () - ' ([V]) = &t ) - o(t'd) € Q.

Note that @((0, (9,1,1))) = 1, so & is a map of unital monoids; moreover, &(1,¢,) = a € Q for
all a € 9, so that @: Wo(HM) — O hits the generators of O and is thus surjective.

By Lemma 2.18, the corresponding relations among the elements m(1,¢,) € 7T0(HM) hold,
so that the assignment & — (1, ¢,) defines a map of non-unital monoids Q: Q — mo(HM); note
that, though both the source and the target of Q2 are indeed unital monoids, mo(1,¢;) = Q(1) is
not the unit of mo(HM), so that € is not a map of unital monoids.

In fact €2, as a map of sets, is a right inverse of @, i.e. @ o €} is the identity of Q. Moreover, {2
hits all elements of m(HM) of the form (1, ¢,) and by Lemma 2.18 every element of o (HM., )
can be written as a product of one or more elements of the form m(1, ¢,). It follows that €2 is a
bijection between Q and mo(HM, ) and this concludes the proof. O
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FIGURE 3. The nice couples (R, d) and (3%, ).

2.4 Computation mo(HM)

We conclude the section by computing TrO(HVM). Recalling Notations 2.5 and 2.6, it suffices to
compute o (HM+) The canonical structure we have on this last set is that of non-unital monoid,
since the multiplication p of HM restricts to a map HM+ X HM+ — HM+. The total monodromy
gives again a morphism of non-unital monoids

w: mo(HM,) — G.

THEOREM 2.19. Recall the map of PMQs ¢: Q — G, which is part of the PMQ-group pair
structure on (Q,G). Suppose that the image ¢(Q) C G generates G as a group. Then the map
w: mo(HM,) — G is bijective.

In other words, the unital monoid m(HM) is isomorphic to G L {1}, where the extra element
1 plays the role of the monoid unit and the old unit 14 € G still satisfies 1g-g =g -1g = g for
allge G, but 1-1g=1¢"-1=1¢.

We observe that the hypothesis that G is generated by ¢(Q) is necessary in Theorem 2.19:
if, for instance, Q = {1} and G is any non-trivial group, then mo(HM) can rather be identified
(as a set) with G x G and w with the product map G x G — G.

The rough idea of the proof of Theorem 2.19 is the following: given a configuration (¢, c¢), we
can shrink or stretch it until we have ¢t = 1; we can move points of ¢ to either horizontal side of
7V€, reducing to a configuration ¢ supported on 5; we can let all points on either component of d
collide with each other, reducing to a configuration ¢ supported on at most two points lying on
d; finally, we can use that ¢(Q) generates G to ‘trade’ factors of the total monodromy from one
component of d to the other, reaching a configuration ¢ supported on a single point.

The rest of the subsection is devoted to the proof of Theorem 2.19. We replace HM by the
homotopy equivalent space Hur(?é, 5), see Lemma 2.7.

Notation 2.20. We denote by R the horizontally closed square [0,1] x (0,1) C H and by ORI =
{0,1} x (0,1) the union of the vertical sides of R'. We abbreviate the nice couple (R, JR) as
(R, d). See Figure 3.

We fix once and for all a semialgebraic homeomorphism £™: C — C which fixes the basepoint
* = —y/—1 and restricts to the homeomorphism R 5 R given by the 90° clockwise rotation
around z. (see Notation 2.16).
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By functoriality we have a homeomorphism &2°': Hur(R",d) — Hur(R,d). We will prove
Theorem 2.19 by classifying connected components of Hur, (R, d); from now on we will focus
on the latter space.

LEMMA 2.21. Let ¢ € Hur(ﬁlr, é), then ¢ is connected to a configuration ¢’ supported in ORI,
To prove Lemma 2.21 we will use the following family of homotopies of C.

DEFINITION 2.22. For all 0 <t <1 we define homotopies H},H}: : C x [0,1] — C by the
following formulas:

z if R(z) <0or R(z) > 1,
Hi(z,5) =47~ sR(z) if 0 < R(z) <t,

- (1—1375 “1)(1-R(:) <R <

z if R(z) <0or R(z) > 1,
Hi(zs) = d 2+ (ﬁ S1)R(:) HO<RE) <t
z+s(1—R(z)) ift <R(z) <1

Roughly speaking, H,l5 collapses the vertical strip [0,¢] x R to the vertical line Cyp—o and
expands the vertical strip [¢, 1] X R to the vertical strip [0, 1] x R; similarly H;} collapses [¢,1] x R
to Cp—1 and expands [0,¢] x R to [0,1] x R. Both homotopies restrict at each time s to an
endomorphism of the nice couple (7%“, 5), so they induce homotopies

(HD), (HY)s : Hur(R™,9) x [0,1] — Hur(R", d).

Proof of Lemma 2.21. Let ¢ € Hur(7é1r, 5) and use Notation 2.2. Let 0 < t < 1 be close enough
to 1 so that for all z € P we have R(z) = 1 or R(z) < t. Then H}(—; 1) sends P inside R and,
therefore, (H}), induces a path in Hur(R", d) from ¢ to a configuration ¢’ := (H}).(c, 1) which is
supported in IR U

The following rhombus will help us to define a homotopy of C that squeezes the two segments
in 0 to the two central points.

DEFINITION 2.23. We define ¢ as the closed subspace of H given by
o={zeH: ‘%(z)—%}—l—‘%(z)—%‘ < %}

Geometrically, ¢ is a closed rhombus centred at the point z. (see Notation 2.16). The boundary
0o contains points z for which equality holds in the formula above. The corners of ¢ are denoted
by z<1> = @, zy =1+ @, zy = % ++/—1 and zg = % We denote by 3™ the subspace of © given
by

8" = (o\ Do) U{z, 24}

we use the notation 98" = {2, 22}y =3 n JOR™ and we abbreviate the nice couple (3, 55“) as
(8", 9); compare with Notation 2.3 and see Figure 3.

We have an inclusion of nice couples (3, d) C (R',d), inducing an inclusion Hur(3",9) c
Hur(R", ).

LEMMA 2.24. The inclusion Hur(3",d) ¢ Hur(R",d) is a homotopy equivalence.

Before proving Lemma 2.24 we define a suitable homotopy of C.
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DEFINITION 2.25. For z € C let 2°(2) = min{|R(z) — 1|; 3}. We define a homotopy H°: C x
[0,1] — C by the following formula:

z —s0°(2)y/—1 if §(z) > 1,
Ho(z,s) =47 250°(2) <%(z) — ) V=1 if0<S(2) <1,

Cx
z—|—s<\$(22)+00(z))\/—1 if (z) <0.
The homotopy H® satisfies the following properties:

e for all 0 <s <1, the map H®(—;s): C — C induces an endomorphism of the nice couple
(7':’,“, 5) and an endomorphism of the nice couple (5lr, 5)7

e H°(—;0) is the identity of C;

e H°(—;1) sends RY onto 3" and IR onto JS.

Proof of Lemma 2.24. By [Bia23a, Proposition 4.4] the homotopy H°® induces a homotopy
HS: Hur(R",d) x [0,1] — Hur(R¥,d) starting from the identity and ending with a map
Hur(ﬁlr , 5) — Hur(s", 5) The homotopy HS preserves the subspace Hur(<“>1r, 57) at all times and,
thus, witnesses that the inclusion of Hur(3",d) in Hur(R!",d) is a homotopy equivalence. O

Note also that if ¢ € Hur(ﬁlr, 5) is supported in OR!, then the entire path HS (¢, —) consists
of configurations supported in IR Using Lemmas 2.21 and 2.24 together, we can therefore
connect any ¢ € Hur(R", d) to a configuration ¢’ € Hur(RY,d) supported in 93" = {2, 22}.

We next define auxiliary configurations, supported on the three points z, zi, z5: by moving

2. towards z. or towards 2%, we can construct paths between configurations supported on oS =
{2525}

DEFINITION 2.26. Recall Definition 2.17. For all g,h € G and a € Q we define a configuration
¢gan = (P, ) € Hur(R"Y,9) as follows:

o P =1{z,2z,2}; let fe, f., f£ be an admissible generating set for &(P), where f, is represented
by a loop in Sp1 \ P, f} by a loop in S_se,1/2 \ P and fg by a loop in Sy o \ P;

* ¢ maps fo— a;

o pmaps fo i e(a), fi g and 5 h.

We also define configurations ¢ n, ¢.0.1s €g.a.05 €900, €0,0,0 a0d cg g 5 in a similar way: for every
occurrence of ‘" we remove the corresponding point from P and we define 1) and 1 on the
relevant elements of the admissible generating set by the same formulas.

Proof of Theovremv 2.19. Note first that w(cy,ps)=h € G: this shows surjectivity of
w: mo(Hury (RY,0)) — G.

Lemma 2.21 and the proof of Lemma 2.24 imply that every configuration ¢ € Hur, (R, 0)
can be connected to a configuration supported on O3 i.e. of the form Cg.0,h> Cg,0,0 OF €0, h-

For all g, h € G the homotopies Hll /2 and H] /2 give paths joining the configuration cp 5  to
¢1.,0n and cp gy, respectively; the same homotopies give paths joining the configuration ¢,y g
to ¢g009 and cggq,,, respectively. Thus, ¢, is connected to ¢y, and ¢4 is connected to
¢g.0,1,° We conclude that every configuration in Hur(ﬁlr, 5) can be connected to a configuration
of the form ¢, ¢ .

Similarly, for all g,h € G and a € Q the homotopies Hll /2 and Hj /2 give paths joining the
configuration ¢g o p 10 Cge(a),0,n A0 €4 g e(a)n, Tespectively. Thus, ¢ge(q) 0,n 18 connected t0 ¢y g e(a)n-
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Since we assumed that ¢(Q) generates G, we can write g = e(a)™ ----- ¢(a,)*!. Using r
instances of the paths described above, or their inverses, we can connect any configuration of
the form ¢, ) to the corresponding configuration ¢y, g ,,- We have thus proved that every
configuration in Hur+(7v€h”, 5) can be connected to a configuration of the form ¢; , ¢ ) and these
are sent bijectively to G along w. O

3. Bar constructions of Hurwitz spaces

In this section we study the bar constructions of the topological monoids HM and HM. Many
arguments of this and the next section are adapted from [Hat14], so familiarity with this paper
may be valuable.

Recall that a topological monoid M is group-like if the monoid 7y(M) is a group; a standard
argument, ensures, in this case, that for every m € M the maps given by left multiplication
w(m,—): M — M and right multiplication p(—,m) are self-homotopy equivalences of M. For
left multiplication, for instance, one chooses an element m’ € M with u(m’,m) and p(m,m’)
contained in the same component of the neutral element e; then a homotopy inverse of u(m, —)
is given by u(m’/,—). Note that this argument strongly relies on M having a strict neutral
element e.

Unfortunately HM is a unital, but not group-like topological monoid; on the other hand
its subspace HM+ (see Notation 2.6) is a non-unital, but group-like topological monoid: see
Theorem 2.19. We will consider the space HM+ as a left module over HM in order to exploit the
good properties of both spaces.

3.1 Bar constructions

We recall the classical definition of bar construction with respect to a topological monoid M and
a left M-module X.

DEFINITION 3.1. Let M be a topological monoid, let X be a left M-module and denote
by w both multiplication maps M x M — M and M x X — X. We define a semisimplicial
space Be(M,X). For p >0, the space By(M,X) of p-simplices is MP x X. The face maps
di: Bp(M,X) — By_1(M,X) are defined as follows:

o do: (my,...,mp,x) — (Ma,...,my,x);
o di: (my,...,my) — (m1,...,pw(ms, mig1),...,my,x), for 1 <i<p—1;
] dp (ml,.. ) (ml,...,mp_l,,u(mp,x)).

The space B(M, X) is the thick geometric realisation of the semisimplicial space Bq(M, X), i.e. it
is the quotient of [[ -, A x MP? x X by the equivalence relation ~ generated by (d'(w), m, ) ~
(w, d;(m, z)), for all choices of the following data:

e p>0and 0 <i<p;

e a point w = (wp, ..., wy—1) in AP~! represented by its barycentric coordinates wy, . .., wp—1 >
0 with wo + - -+ +wp—1 = 1;
e a point (m,x) = (Mmy,...,mp,x) € MP x X.

Here d': AP~' — AP denotes the standard ith face inclusion.
When X = x is a point, we also write BM for B(M, x); when X = M with left multiplication
coming from the monoid structure, we also write EM for B(M, M).
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In fact Definition 3.1 only uses that M is an associative non-unital monoid; in § 3.3 we will
recall the thin bar construction, which is a simplicial space whose degeneracy maps are defined
using the unit e € M.

It is a standard fact that if M is a topological monoid, X is a left M-module and for
all m € M the map p(m;—): X — X is a self-homotopy equivalence of X, then the natu-
ral projection map px: B(M,X) — BM = B(M,x*) induced by the constant, M-equivariant
map X — x is a quasi-fibration with fibres homeomorphic to X. See, for instance, [Hatl4,
Lemma D.1].

LEMMA 3.2. Recall Definitions 2.4 and 2.12 and let (t,c) € HM; then the left multiplication
wu((t,c),—) restricts to a self-homotopy equivalence of HM; moreover, if w(c) =1 € G, then
w((t,c), —)\H~M+ is homotopic to the identity of HM . It follows that

Py, : BHM, HM, ) — BHM
is a quasifibration with fibre HVM+.

Proof. Tt suffices to prove the statement for one configuration (¢, ¢) in each connected component
of HM: the statement is obvious for (,¢) = (0, (0,1,1)) € HM, which is the neutral element of
HM. Using Theorem 2.19 we can then assume that ¢ = 1 and ¢ has the form c‘g1 := (P, 1, p) for
some g € GG, where:

e P = {23} consists of the only point zJ (see Definition 2.23);
o ¢: Q(P)={1} — Q is the trivial map of PMQs;
e p: B(P) — G sends the unique standard generator of &(P) to g.

We start with the case g = 1. We claim that pu((1,c{), _)|HM+ is homotopic to the identity of
HM+; by Lemma 2.7 it suffices to prove that the restriction

,LL((l, C%ll)v _): Hur+(7§’a 5) - HM+

is homotopic to the natural inclusion Hur, (R,d) < HM,..

First we prove that the maps wu((1,¢$),—) and u((1,(0,1,1)),—) are homotopic maps
Hur, (R, d) — Hury (Rs, ). We use an argument similar to the proof [Bia23a, Proposition 7.10].
Recall from [Bia23a, Definition 3.1] that the Ran space Ran (Ry) is the space of non-empty finite
subsets of ﬁg; it is weakly contractible [Lurl7, Theorem 5.5.1.6] and using the notion of stan-
dard explosion from [Bia23a, Subsection 7.2], one can find a homotopy & 2 : Ran, (Rz) x [0,1] —
Ran (Rs2) contracting Ran (Rs) onto the configuration {z4}. Recall also that there is an exter-
nal product — x —: Hur | (R, d) x Ran, (Ry) — Hur, (R, d), which essentially superposes to a
configuration in Hur (7?2, 5) another configuration with trivial monodromies (i.e. a configuration
in Ran, (Ry)); see [Bia23a, Definition 5.7 and Notation 5.9].

We consider the following homotopy H? : Hury (R, d) x [0,1] — Hur, (Rq, d)

(Id,e) xId

s Hury (Ra,d) x Rany (Ry) x [0,1]

— X —

Hur, (R, d) x [0,1]

Hur, (R, d) x Rany (Rs) s Hury (Ra, ),

where e: Hur, (Ry, d) — Ran (Ry) is the canonical map (P, 1), ¢) — P. Roughly speaking, each
point in the support of a configuration in Hury (R, 0) is split at time 0 into two points: the
first keeps the original local monodromy and does not move; the second carries a trivial local
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monodromy and moves straightly to zJ; at time 1 all the second points have merged at z&. We
observe the following:

e the composition HZ(—, )ou((l,((Z),]l,Il)),—): Hur, (R, Hur, (Ra,8) is equal to
w((1,(0,1,1)),—), since HZO( ,0) is the identity of Hury (
((1,(0,1,1)),-): Hury (R,

25
e the composition HZ*(—,1)o 57)—> Hury (R2,d) is equal to

((17 C]l)a )

We thus obtain that u((1,¢?), =) and u((1,(0,1,1)), —) are homotopic as maps Hur, (R,d) —
Hury (R2,0) C HM,.

We then note that (1, (9,1, 1)) is connected by a path to (0, (9,1, 1)) in HM; as a consequence
p((1,(0,1,1)),—) and p((0,(0,1,1)), —) are homotopic as maps Hur+(72 d) — HM, and the
second map is the natural inclusion. This concludes the case g = 1.

Now let g # 1; by Theorem 2.19 the three configurations pu((1,¢9), (1,¢3_,)), u((1, 1),
(1,¢d)) and (1,¢f) are in the same connected component of HM_ : hence, u((l,cg) —) and
w((1, cg,l), —) are homotopy inverses as maps HM, — HM,. O

It is a classical fact that if M is a unital, topological monoid, then EM is contractible. In
the following proposition we prove an analogous statement for B(HM, HM ).

ProprosITION 3.3. The space B(Hul\/[7 HM+) is weakly contractible.

The proof of Proposition 3.3 is in Appendix A.3. As a consequence of Lemma 3.2 and
Proposition 3.3 we obtain the following theorem.

THEOREM 3.4. There is a weak equivalence HM+ ~ QBHM.

3.2 Pontryagin ring and group completion

If M is a unital topological monoid, H,.(M) is an associative, graded ring with unit, called a
Pontryagin ring. We usually denote by = -y € H,(M) the Pontryagin product of two homology
classes x,y € H,(M). The unit 1 € Hy(M) is the homology class corresponding to the connected
component of e in 7o(M). The subset mo(M) C Ho(M) C H.(M) is closed under multiplication.

DEFINITION 3.5. A topological monoid M is weakly braided if there is a homeomorphism
bv: M x M — M x M such that:

e if p1,poa: M x M — M are the two natural projections, then p; o br = py as maps M x M —
M;
e 4 and p o bt are homotopic as maps M x M — M.

Note that if M is weakly braided, then the ring localisation H,(M)[mo(M)~1] can be
constructed by right fractions: for all x € H,(M) and a € mo(M) there exist y € H,(M) and
b€ mo(M) with z - b = a - y. This follows from setting b = a and y = (p2). o br.(x X a), where X
denotes the homology cross-product and po: M x M — M is as in Definition 3.5.

LEMMA 3.6. The topological monoid HM is weakly braided.
Proof. We define bt: HM x HM — HM x HM by the formula
be((t,¢), (¢, ) = (¢, ), (¢, D)),

where & is the Q-valued total monodromy (see Notation 2.14) and we use the action by global
conjugation [Bia23a, Definition 6.6]. It is clear that bt is a homeomorphism and that the first
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property in Definition 3.5 holds. To check the second property, note that bt restricts to a map
br: Hur(R) x Hur(R) — Hur(R) x Hur(R).

By Lemma 2.7 it suffices to prove that pu and 1o bt are homotopic when considered as maps

Hur(R) x Hur(R) — Hur(Ry). Let RY/2 € R be the open unit square (1/4,3/4) x (1/4, 3/4) of

side length 1/2 centred at z. € R; we can regard Hur(R'/2) as an open subspace of Hur(R),
containing all configurations supported in R1/2. Note that br restricts to a map

br: Hur(R'?) x Hur(R'Y?) — Hur(R'/?) x Hur(R'/?).
Let H'/2: C x[0,1] — C be a semialgebraic isotopy of C fixing * at all times, such that
H'/2(—,0) = Id¢ and H'/2(—,1) restricts to a homeomorphism R — R/2. Then by functori-
ality there is a deformation of Hur(R) into the subspace Hur(R'/?). Thus, it suffices to prove
that the following restricted maps are homotopic:

ft, pobr : Hur(RY?) x Hur(R'Y/?) — Hur(Ry).

Let H"": C x [0,1] — C be a semialgebraic isotopy of C fixing pointwise C \ R at all times, such

that H"(—,0) = Idc and H"*(—,1): C — C has the following properties:

o HP(—,1) restricts to 71 : RY2 — 71(R'/2) (see Definition 2.9);

o H'(—,1) restricts to 7_: 7 (RY2) — RY/2;

o H"(—,1) restricts to a self-homeomorphism of C \ (R'/2 U 71 (R/2)) representing a clockwise
half Dehn twist, for instance we may assume that there is a simple loop v C S12\ 7 (RY/2)
spinning clockwise around 7'1(731/ 2), such that H"(—,1) o~ is a simple loop contained in
So,1 \Rl/ 2 and spinning clockwise around R/,

Then the composition of p with HY gives a homotopy from p to p o bt as maps Hur(fél/ 2) x
Hur(RY?) — Hur(Rs). O

Recall that for any topological monoid M there is a canonical map M — QBM: the induced
map in homology H,(M) — H.(2BM) sends the multiplicative subset mo(M) C H.(M) to the
set of invertible elements of the Pontryagin ring H,(2BM ). Therefore, there is an induced map
of rings

H,(M)[mo(M)™] — H,(QBM).

We recall the group completion theorem (see [MS76] and [FM94, Theorem Q.4]).

THEOREM 3.7 (Group completion theorem). Let M be a topological monoid and suppose that
the localisation H,(M)[mo(M)~] can be constructed by right fractions. Then the canonical map

H, (M)[ro(M)™] — H.(QBM)

is an isomorphism of rings.
Using Theorem 3.7 together with Lemma 3.6 we obtain an isomorphism of rings

H, (HM)[mo(HM) '] = H,(QBHM).

3.3 Thin bar construction

Recall Definition 3.1: the semisimplicial space Be(M, X) can be enhanced to a simplicial space
by defining the degeneracy map s;: Bip(M,X) — Bpi1(M,X), for 0 <1i < k, by the following
formula, where e denotes the neutral element of M,

si: (ma,...,mp,x) — (M, ..., mj,€,Mig1,..., Mk, T).
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DEFINITION 3.8. The simplicial space defined above is denoted by Be(M, X); its geometric
realisation as a simplicial space is denoted by B(M, X) and called the thin bar construction. It
is the quotient of BM by the equivalence relation ~ generated by [s'(w), m, z]~[w, s;(m, z)] for
all choices of the following data:

e p>0and 0 < i <p;
e a point w = (wp, ..., wp1) in APTL represented by its barycentric coordinates;
e a point (m,x) = (my,...,mp,z) € MP x X.

Here s': APT1 — AP denotes the ith degeneracy. The natural projection map is denoted by
pg: B(M,X) — B(M,X). In the case X = * we also write BM for B(M, x).

It is a classical fact that if M is well-pointed, then pg: BM — BM is a weak homotopy
equivalence, as Bq(M) is a good simplicial space in the sense of [Seg73, Appendix 2]. The monoids
HM and HM are well-pointed, as the connected component of the unit (0, (0, 1, 1)) is contractible
in both cases.

4. Deloopings of Hurwitz spaces

In this section we describe the weak homotopy types of BHM and BHM using suitable, relative
Hurwitz spaces. Recall from [Bia23a, Definition 6.9] that a left-right-based (Ir-based) nice couple
(21, €, 2%) is a nice couple € = (X,)), together with a choice of two points 2!, 2 € ) satisfying

R(Z) =min{R(2) |z € X} < max{R(z) |z € X} = R(2").
We denote by Hur(€) Hur(¢; Q,G),1 .+ the subspace of Hur(€) of configurations whose
support contains {z!, 2"}; recall from [Bia23a, Definition 6.12] that there is an action of G x G°P

on the Hurwitz space Hur(€), .., i.e. there are compatible actions of G on left and on right on
this space; by [Bia23a, Lemma 6.16] the quotient map

pa,ger : Hur(€) 1 v — Hur(€)g,gor := Hur(€),1 ,./G x G

2zt —

is a covering map, with G x G°P as the group of deck transformations.

THEOREM 4.1. Recall Definitions 2.4, 2.23 and 3.1. Let (Q, G) be a PMQ—group pair and assume
that ¢(Q) generates G as a group; then there are weak homotopy equivalences

o: BHM — Hulr(<v>1r7 é)G,Gop; o: BHM — Hur(o, 0)a,gor-
Here we consider the Ir-based nice couples (2L, (3", ), 22) and (2}, (¢,9), 2L).

We will use a classical approach, going back to Segal [Seg73|, which allows us to model
the classifying space of a monoid M, arising from configuration spaces, with another, relative
configuration space. We will follow tightly the strategy of the proof of [Hat14, Proposition 3.1]
and to some extent we will use the same notation: we do this for convenience of the reader. We
focus on the case of HM and write in parentheses the necessary changes for HM.

We will first define the comparison map o in the two cases and then show that it induces
isomorphisms on all homotopy groups.

4.1 Definition of the comparison map

By Definition 3.1 the space BHM (respectively, BHM) arises as a quotient of the disjoint union
[0 AP HM” (respectively, [1,50 AP x HM"). We will first define ¢ on this disjoint union and
then prove that the given assignment induces a map on the quotient.
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Notation 4.2. We usually denote by (w;t, ¢) a point in [ ], AP X HM” (respectively, [1)50 AP x
HM"), where:

o w=(wp,...,wp) is a system of barycentric coordinates in AP, i.e. wy,...,w, >0 and wo +
e _|_ wp g 17 i 5

o t=(t1,...,tp) and ¢ = (c1,...¢p), such that (¢;,¢;) is an element in HM (in HM) for all
1 <7< p.

We usually present ¢; as (P, ;) (respectively, as (P;, s, ¢i)).

Given (w,t,¢) as in Notation 4.2, note that the product (ti,¢1)---(¢p,¢p) has the form
(t1 + - +tp, ), with ¢ supported on the set

P:P1U(P2+t1)U(P3+t1—I—tg)U-"U(Pp—i-tl—i-"-—i-tp_l).

By Definition 2.4 we have ¢ € Hur(féoo) (respectively, ¢ € Hur(7éoo, 5)), but in the following we
will consider ¢ as a configuration in Hur(Rg) (in Hur(Rg, 0), see Notation 2.3).

DEFINITION 4.3. The above assignment (w;t,c) — ¢ gives a continuous map

fL: H AP x (HM)P — Hur(Rg) (respectively, fL: H AP x (HM)? — Hur(ﬁR,é))

p=>0 p=>0

Note that fi factors, on each subspace AP x (HM)P (respectively, AP x (HM)P), through the
projection on the factor (HM)P (respectively, (HM)P). The first subspace AU is sent to the empty
product in HM (in HM), i.e. to the neutral element (0, (0,1, 1)).

DEFINITION 4.4. For (w;t,¢) as in Notation 4.2, define ap = 0 and a; = Z;=1 tjforalll <i<p.
Define the barycentre of (w;t,c) as b= Y ¢ _,w;a;. Set a;” = max{a;,b} and a; = min{a;,b} for

all 0 <4 < p and define the upper barycentre and the lower barycentre as bt = f:o wiaf and

b™ =3 wiay -
See Figure 5(left). Note that the barycentres b, b™, b~ vary continuously on [1,50 A7 x (HM)?

(on [[,5q AP x (HM)P), but do not factor to continuous functions on BHM (respectively, BHM):
indeed, if wy = 0, the triple (w;t,¢) is equivalent to the triple (w’;t’,¢’) obtained by removing
wo, t1 and ¢q; all barycentres b, b, b~ drop by ¢; when passing from the first to the second triple.
Nevertheless, the differences b —b and b — b~ factor to continuous functions defined on BHM
(respectively, BHM).

Note also that for all (w;t,¢) we have ag < b~ < b < bT < ap. More precisely, let imin > 0
be minimal with w;_, > 0 and let imax < p be maximal with w; . > 0; then a; , <b~ <b <
bt < a;,.., with all these inequalities strict unless they are all equalities: in this case all t; with
imin < % < imax are equal to 0 and all corresponding ¢; are equal to ((), 1, 1), so that ji(w,,¢)
is equal to the product (t1,¢1) - (i Cinin) * (Fimaxt1s Cimaxt1) - - (tps €p). In particular, if b~ =
b=0b", then we have that ji(w,t,¢) is supported away from Sy, in fact it is supported away
from Sy p4c for € > 0 small enough.

DEFINITION 4.5. We define a continuous function e: [[,5qA? x (HM)? — [0,1] (respectively,
e: [I,50 A7 x (HM)? — [0,1]): for (w;t,¢) as in Notation 4.2, we denote by P C R x [0, 1] the
support of fi(w;t,c) and set

e (wit,¢) = %SUP{t € [0,1]| PN Sp-_t pt+4t = 0},
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where upper and lower barycentres are computed with respect to (w;t,c). We denote b =b~ — ¢
and b = bt +e.

We observe that e satisfies the following properties:
o for all (w,t,¢) satisfying b~ = b™, we have e(w, t,¢) > 0;
e for all (w,t,¢) with e(w,t,¢) >0, the configuration fi(w,t,¢) is supported away from
Sb* —e,bt e

The advantage of replacing b~ and b™ by b and b is that we now have strict inequalities
b < b < bt for all (w;t,c). As we will see, the disadvantage that b — b2 does not factor through
a function defined on BHM (respectively, on BHM) will be inessential.

Recall the proof of Lemma 2.7: for s > 0 the map A;: C — C is an endomorphism of the
nice couple (703R, () (respectively, (7UQR, 5)), depending continuously on s. We obtain a continuous
map

A,: Hur(Rg) x (0,00) —Hur(Rg) (respectively, A,: Hur(Rg,d) x (0, 00) — Hur(Rg, 9)).

Similarly, recall Definition 2.9: for all ¢t € R the map 7; is an endomorphism of the nice couple
(Rr,0) (respectively, (Rg,d)), depending continuously on ¢. We obtain a continuous map

7t Hur(Rg) x R — Hur(Rg) (respectively, 7, : Hur(Rg, d) x R — Hur(Rg, d)).
DEFINITION 4.6. We define a map

i H AP x (HM)? — Hur(Rg) <respectively, i H AP x (HM)? — Hur(ﬁR)>
p=0 p=0

by the following assignment:

N X . — . . 1
(w;t, c) = A (T*(“(w’ t,¢); —b; (wit,¢); b (w;t, ¢) — bz (w;t, C))

Roughly speaking, the map ji® has the effect of a horizontal translation and a dilation of
the configuration fi(w;t,c): the effect of the translation and dilation is to map the rectangle
[b=,bF] x [0,1] homeomorphically onto the unit square R.

DEFINITION 4.7. Let ¢ denote the interior of ¢ (see Definition 2.23) and denote R + /—1/2 =
{t++v/—1/2|t € R} C H. We introduce several nice couples:

o ¢U = (Rp,Rr \R); o€ = (&fu (RJF\/;T),(&U <R+‘/2jl>> \5);

.o . v—1 v—1
e U= (Rp,Rr\R); e = <<>U (R—I—2> , <<>U <R+ 2>> \<°>>.
Since Idc is a map of nice couples (Rg, ) — €2 (respectively, (Rg,d) — €5), it induces a
map Hur(Rg) — Hur(€D) (respectively, Hur(Rg, d) — Hur(¢5)). See Figure 4.
Notation 4.8. By abuse of notation we will also denote by /i the composition
(Idc) «

. ~b - o
[1,50 AP x (HM)? —*— Hur(Rg) —— Hur(€Y)

(Idc)«

v Ab v
(respectively [1,50 AP x (HM)? 2 Hur(Rg) Hur(¢5)>.
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FIGURE 4. Top: nice couples €2 and €°. Bottom: nice couples ¢5 and €°.

DEFINITION 4.9. We define maps x~ and ™ : C x [0,00) — C by the formulas

z if R(z) >0,
K (z,8) =q2z—R(z) if —s<RN(z) <0,
z+s if R(z) < —s;

z if R(z) <1,
KH(2,8) =2z —R(2)+1 if1<R(z) <1+s,
zZ—8 if R(z) > 1+s.

Roughly speaking, both k= and x™ fix the vertical strip [0,1] x R for all s > 0; the map
Kk~ (—,s) collapses the strip [—s,0] x R to the vertical line Cr—y and translates (—oo,s] x R
to the right; instead k™ (—,s) collapses the strip [1,1+ s] x R to the vertical line Cg—; and
translates [1 + s,00) x R to the left.

Both £~ (—, s) and k¥ (—, s) are morphisms of nice couples €= — €5 (respectively, €& — ¢U)
for all s > 0. We obtain continuous maps

ko, kI Hur(€9) x [0, 00) — Hur(e€D)

(respectively, k7, k7 : Hur(€9) x [0, 00) — Hur(e")).
Notation 4.10. Recall Definition 2.25; we use the notation H$ := H®(—;1): C — C.

Note that H¢ is a morphism of nice couples €= — €° (respectively, €5 — ¢°).
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FIGURE 5. Left: the product (t1,¢1)(ta, c2)(t3,c3) of three configurations in HM; for a given
w E A3 the barycentres b, b1, b- are shown as dotted, vertical lines. We use the letter ‘¢’ to
represent the Q-valued monodromies around points in Rr. Right: the image of (w;t,¢) along &;
the question marks suggest that, because of the quotient by the G' x G°P-action, the monodromies

of the loops spinning around z. and 2} are just not defined.

DEFINITION 4.11. We define a map
s H AP x (HM)? — Hur(¢D) <respectively7 s H AP x (HM)? — Hur((’ZD)>
p=0 p=0
by the following assignment, where p, ap, b and b depend on (w; ¢, ¢):

b\ b —
(iP(w;t,©) = k] (F»i <ﬂb(w;t,C); Tp Ve ) b ao)

b —bz ) b bz

We further define

ac: H AP x (HM)P — Hur(€°) (respectively, I H AP x (HM)? — Hur(¢°)>
p=>0 p>0

as the composition (H$). o .

Roughly speaking, /lD improves the effect of i as follows: fi°(w;t,¢) is a configuration sup-
ported in the rectangle [(b. — ag)/(bF —b7),1+ (a, —bF)/(bF — b7 )] x [0,1] and the further
application of k7 and ] collapse fi®(w;t,¢) to a configuration supported in R. The further
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composition [i° changes the configuration i5(w;t,¢) to a configuration i°(w;t,c) supported
in ©.

Note that there is a natural inclusion of spaces Hur(3",d) c Hur(€°) (respectively,
Hur(¢,d) C Hur(€°)). The following lemma summarises the previous discussion.
LEMMA 4.12. The map /i has values inside Hur (3", d) (inside Hur (o, 8)).
Proof. Let (w;t,c) be as in Notation 4.2. Then j’(w;t,¢) is supported in the rectangle
((=bz = ao)/(b — b ), 1+ (ap — bE)/(b — b)) x (0,1) (in the rectangle ((—b; — ao)/(bF —
b-), 1+ (ap — bF)/(bF —b2)) x [0,1]). This rectangle is mapped to R (to R) by the compo-
sition w5 (1 (—; (ap — bF)/(bF —b7)); (b — ap)/(bF — b)) and the map H sends R to 3"
(respectively, R to ©). d

We consider now the external product

— x —: Hur(3", d) x Ran(3"™) — Hur(s", 9)
(respectively, — x—: Hur(¢,d) x Ran(¢) — Hur(e,d))

from [Bia23a, Definition 5.7 and Notation 5.9] and evaluate the second component at
O3 = {2} 2r}, thus obtaining a map — x 93T : Hur(3",9) — Hur (3", 9) 55 (respectively, — x
d3": Hur(o,d) — Hur(o, 0) g1 )-
DEFINITION 4.13. We denote by ﬂgélr the composition

X1

[1,50 A% x (HM)P —"— Hur(3",d) — %" Hur(s",d),50
(resp. 1,50 A7 x (HM)P N Hur(e, 9) A) Hur(o, 8)551r).

We denote by & the composition of ﬂgélr with the covering projection

pG"Gop : Hur(<v>lr, 5)8“51r — Hur(élra au)G,GOp

(respectively, pg, gor : Hur(o, 9) g,: — Hur (o, 9)g,gor)-

Here we regard (3", ) (respectively, (¢,8)) as an Ir-based nice couple, using the two points z)
and 2L of 93", See Figure 5.

Roughly speaking, ﬂgélr improves the effect of fi° by forcing the presence of z. and 2. in

support of the configuration fi°(w;t, ¢), which is already supported in 8 (in o); if either point

z}), 25 is already in support of /1°(w; ¢, ¢), then its local monodromy does not change when passing

to fi%. ., (w;t, c). The further composition & forgets the monodromy information around the two
(225

points z. and 2% of the support of ﬂgélr (w;t,c).

Notation 4.14. We endow BHM and BHM (respectively, BHM and BHM) with the basepoint
corresponding to the (unique) O-simplex in Be(HM, %) (in Bo(HM, %)). Similarly Hur(3", au)G’GOP
(respectively, Hur(o, d) g gor) is endowed with the basepoint given by pg.ger (0, 1,1) x d3I). We
denote this basepoint by ¢ € Hur(s", 5)G7Gop (respectively, ¢* € Hur(,d)q gor)-
PROPOSITION 4.15. The map & from Definition 4.13 sends every sequence (w;t,c) satisfy-
ing e(w;t,¢) >0 to the basepoint ¢*. Moreover, & descends to a pointed map o : BHM —
Hur(élr,é)gygop (respectively, o: BHM — Hur(o, 0)g,gor); the map o descends further to a
pointed map &: BHM — Hur(3", 5)G7Gop (respectively, 5: BHM — Hur(o,d)g.gon ).
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The proof of Proposition 4.15 is in Appendix A.4. Since the quotient map BHM — BHM
(respectively, BHM — BHM) is a weak equivalence, Theorem 4.1 reduces to proving that the
map & is a weak equivalence. In fact, we will prove surjectivity of o, and injectivity of &, on
homotopy groups.

4.2 Surjectivity on homotopy groups

We fix ¢ >0 and want to show that o: 7rq(BH°M) — my(Hur(3",d)g.cor) (respectively,
O Wq(BHM) — mq(Hur(¢, 0)g,gor)) is surjective. For ¢ = 0 this will imply, in particular, that
Hur(élr,é)agop (respectively, Hur (o, d)g,gor) is connected.

Notation 4.16. We denote by HM@ C HM (respectively, HM@ C HM) the component of the
neutral element: it contains all couples (¢, (0,1, 1)) for ¢ > 0.

Note that HM@ (respectively, HM@) is a contractible topological monoid, hence the subspace
BHM@ C BHM (respectwely, BHM, C BHM) is also contractlble Moreover, the map o sends
BHM@ (respectively, BHM@) constantly to the basepoint ¢

In order to prove that o induces an 1somorphlsm on g-homotopy groups, it suf-
fices to prove that the map o.: m(BHM, BHMy) — m,(Hur(3",d)c qor) (respectively,
0. Tq(BHM, BHMy) — 7, (Hur(o, 8)g,gor)) is an isomorphism, i.e. we can consider relative
homotopy groups.

To show that o, is surjective, represent an element of ’R'q(HUI‘( av)G7Gop) (of
mg(Hur(e, 0)g,gor)) by a map

f: DI — Hur(élr, 5)G7G0p (respectively, f: D? — Hur(o, 0)g,gor)

sending dD? to the basepoint ¢". Thus, for all v € D? we have an orbit f(v) = [c,]g.gor of the
action of G x G°P on Hur(s", 9) sete (on Hur(o, 0) 54:). We choose for all v € D? a representative
¢y = (Py, 1y, o) of f(v); note that the sets P, C 3" (respectively, P, C ¢) do not depend on this
choice; similarly the evaluation of 1, and ¢, is independent of the choice of ¢, on those elements
of Q(P,) and B(P,) that can be represented by a loop contained in [0,1] x R \ P,.

For all v € D? we can find an open interval J, C (0,1) and a neighbourhood v € V,, C D14
such that for all v' € Vj, the finite set R(P,/) is disjoint from J,,. Using the compactness of D7, we
can then choose a cover of D? by finitely many open sets V; with corresponding open intervals
Ji C (0,1), satisfying R(P,) N J; = () for all v € Vj. After shrinking the intervals J; appropriately,
we can assume they are disjoint. To fix notation, we assume that we have r open sets Vi,...,V,,
such that the corresponding intervals Ji, ..., J, appear in this order, from left to right, on (0, 1).

We choose numbers A; € J;: note that Sy, 4, is disjoint from P, for all v € V; and that the
numbers Aj, ..., A, are all distinct. We fix weights W;: D? — [0, 1] giving a partition of unity
on D1 subordinate to the covering {Vi,...,V,}. We also assume that for each v € DY there are
at least two distinct indices 1 < ¢ < r such that W;(v) > 0.

Notation 4.17. Let 0 <t <t < 1. We denote by & v (respectively, (o,0)) the space 3
(t,t") x R (the nice couple (¢ N (¢,t') x R, oN(t,t') x R)).

Recall Notation 2.3: we denote by ﬁt,t’ (by (7V€t7t/, d)) the space (¢,t') x (0,1) (the nice couple
((t,t") x [0,1], (¢,¢") x {0,1})).

LEMMA 4.18. For all 0 <t <t <1 the map Hj induces a homeomorphism Hur(fét’t/) &
Hur(<>t "v) (respectively, Hur(Rt o, 8) Hur(o 4, 0)).
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Proof. Note that HS restricts to a semialgebraic homeomorphism of the subspace
1
T:=((0,1) x R)u {«} c C.

The space T is contractible and the interior T contains the spaces 703,5,75/ and <V>gt, (the spaces ’Iv%t’t,
and o ). Moreover, the space 7D2t’t/ (the nice couple (ﬁt,tu 5)) is mapped along H{ homeomorphi-
cally to the space <v>}5rt/ (to the nice couple (o4, 0)). It follows that H{ induces a homeomorphism
HurT(th,t/) Hur” (<>t ) (respectively, Hur® (7v€t7t/, d) = Hur" (0t4,0)) and the statement is a
consequence of the natural homeomorphism i%: Hur(€) = Hur™ (€) holding for all nice couples €
contained in the interior of T. O

Notation 4.19. For all v € D? we list the indices 1 <ip < --- < ip, < r satisfying Wi, (v) > 0,
for some p, > 1 depending on v: here, recall our assumption that for each v € D? there are

at least two indices i with W;(v) > 0. We denote by Af,..., A) the list A, ..., A4;, . We set
BY =375 Wi (v )A” . For all 0 < j < p, we set AP = max{AY, B’} and A"~ = min{AY, B"}.

We set BV = 3700 Wi, (0) A7 and BY~ = 320 Wi () A}

Note that the numbers BY, B»% and BY~ vary continuously in v € D? and attain values
n (0,1). Note also that we have a sequence of strict inequalities 0 < A} < B¥~ < B < BVt <
Ap < 1. In the following, for all 1 < j < p, we construct a configuration ¢, j = (Pyj, v j, Pv ;)
in Hur(5§§717A§, d) (in Hur(oA;gil,A;;,B)): roughly speaking, ¢, ; will be the part of ¢, contained
in the vertical strip (A7_;, A7) x R. See Figure 6.

To define ¢, ;, note that P, is disjoint from the vertical lines { 1,A”} x R; as a conse-

quence P, is contained in the disjoint union &' Av Ay U (3T\'s A Av) (respectively, ¢ Av_,,Av L
(0\'Sav_, av)); note that the first space 3k, LAY (respectlvely, ©4v_, Av) is contained in the inte-
— J— ’ J J— .

rior of S AV, AV, whereas the second space 3" \'S AV, AY (respectively, o \ S A, A})) is contained
in the interior of C\ S AV AV We use the restriction map

. Xy Sav v [
1(83“ » : Hur (ohv Ay U (s N\ S 4o Av) aolr) — Hur “-1% (<>1}W Ay>
A ]

j—1° J—1

S v v
(respectlvely, iS 0 :Hur( OAv_ | A I_I(O\SA;_PAJv,),@) — Hur 4-1v4 (<>A; 1,1419,(9))

‘]71
from [Bia23a, Definition 3.15] and define ¢, ; as the image of ¢, along this map. We can then use
the canonical identification

:C . wIr ~ SA?L AY (gl
1SA1! LAY : Hur (OA§717A23> = Hur v <<>A;) 1,A’.’)
J— J

. . S 4v
(respectlvely, 1&@ av Hur(<> AV LAY (9) — Hur -4 (<> AY_| AT, 8))
J=17

to regard ¢, ; as a configuration in Hur (3%, Lav) (in HUI'(OA;J LAY 0)).
J—=17"g -
Note that ¢, ; does not depend on the choice of a representative ¢, of f(v) = [¢y]@,gor. Let T
be as in the proof of Lemma 4.18; then we can regard ¢, ; as a configuration in Hur (01413 ) Av)
J—=17"g

(in Hur™ (o A, A;,(‘))) using the canonical identification 1S v
By Lemma 4.18 we can consider for all 1 < j < p, the conﬁguration (HS)7 L (cyw;) lying in

the space HurT(ﬁAyil, A;_z) (in HurT(f%A;gil, A;,é)); using the identification i% we can regard

A'U

(H$) (cy;) as lying in Hur(ﬁA;_pAg) (in Hur(7u2A]v__l,A§, d)). Composing further with the map

1675

https://doi.org/10.1112/S0010437X2400719X Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X2400719X

A. BIANCHI

FIGURE 6. Left: a configuration ¢, € Hur(o, 8)551” in the case p, =1. Right: the clipped
configuration ¢,; € Hur(oaz av,0).

T_4v_, we obtain configurations
v

Cug = (Toay_ )o (M) (o))

lying in Hur(RAJv__A;;_l) (in Hur(ﬁAy_A;_l,é)), for 1 < j < py.
In other words, we obtain couples (A} — A, ¢, 1),...,(Ay, — A _1,¢,,,) in HM (in HM);
the product (A} — Ag, ¢, 1) (Ap — Ap 1,6, ) of these configurations has the form (4, —
g, ), for some ¢’ € Hur(?i’,Agv —ay) (respectively, ¢’ € Hur(R Ay — A, d)): we then have, roughly
speaking, that HS(7ay(c’)) recovers the part of ¢, in the vertical strip (Ag, Ap ) x R.

We can define a map g: D? — BHM (respectively, g: DY — BHM) by the formula
v (Wig(v), o, Wiy, ()5 (AT = AG 1), (Ap, — A 1, 60p,))-

To see that g is continuous, note that if a weight W;  (v) goes to 0, then the number A}? is dropped

from the list Ag,..., Ay and the following happens:

e if 1 < j <p, — 1, then the configurations (A} - i1 C;Q) and (A%, — AY, ¢, ;) are replaced
in the formula above by their product in HM (in HM), according to the identifications
defining BHM (respectively, BHM); this is compatible with the fact that the configurations

¢y and ¢, j4+1 are ‘adjacent’ in g (in o) and if A7 is dropped these two configurations

are replaced in the construction by their ‘concatenation’ in Hur(éi;%’ A}’+1> (respectively,

Hur(¢AY |, AY

41, A7, 0)), which is up to canonical identifications the configuration i& (cv);

S v v
Aj-rAit
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e if j =0 or j=p,, then the configuration (A} — Ag, ¢, ;) or (A — A ¢, ) is dropped

Pv—17 Yv,py
in the formula above, according to the identifications defining of BHM (respectively, BHM);
this is compatible with the fact that the configuration ¢, or ¢, p, is also dropped in the

construction, as soon as Af or A) is dropped.

Note also that g sends @D inside BHMj (inside BHMjy): in fact, if f(v) = ¢, then all
configurations c;’ ; are supported on the empty set. For v € D? we remark, moreover, the equal-
ities B~ — Ay = b (g(v)) and B"" — Ay = bT(g(v)), by virtue of which the lower and upper
barycentres of g(v) can be recovered from the numbers B"~ and BY" and vice versa, once the
‘translation parameter’ Aj is known; in particular, B"" — B"~ = bT(g(v)) — b~ (g(v)).

We are left to prove that og is homotopic to f, relative to dDY, i.e. they represent the same
element in 7, (Hur (3", 8)g.gor) (in my(Hur(o, d)g.gor))-

DEFINITION 4.20. Recall Definitions 2.22 and 2.25. For all 0 <t <1 we define homotopies
Hf’l,Hf’r: C x [0,1] — C by the following formula:

M3 (z) + (@°(2) = 0 (73 (2, )V~ ifz¢5, 9() > 5
o < Lo o . o x 1
2o (o) — T 8) = (0°2) =07 (2, )V T ifz¢5, 9() < 5
Hi(z,8) — (%(z) - ;) 2 (Htl(z’ 8) Z () V=1 ifz€o0, 2# 2., 2.
5 - DQ(Z)

Here e is either 1 or r.

Roughly speaking, Hf’l collapses the part of ¢ contained in [0,t] x R to z<1> and expands the
other part ¢\ [0,] x R inside o; similar remarks hold for H;".
Note that for z € ¢ close to z. we have the equalities

(M (2, 5)) — 0°(2) 0°(Hi(z,5)) —2°(2) _ —s+st
T S =s and T S =1 e
3 —0°(2) 3 —0(2) —s+s
Similarly, for z € ¢ close to 2z, we have
PO ) s ) )
3 —0°(2) 1—st 3 —0%(2)

In particular, the homotopies Hj’l, H;"" are continuous; note also that they depend continuously
ont € (0,1), so that we can define continuous maps

HOL HOT: C x [0,1] x (0,1) — C

by H*\(z,s,t) = 'Hf’l(z, s) and H®*(z, s,t) = H;"" (2, s). Note also that, for ¢ = 1,1, the following
properties hold:

(1) Hf"(—, s) is an endomorphism of the nice couple (5lr, 5) (respectively, (o,d)) for all (s,t) €
[0,1] x (0,1);

(2) Hf"(—,s) fixes pointwise the subspaces Cr<o and Cgp>; and preserves the subspaces o,
[0, 1] x (— 0, %] \ ¢ and [0,1] x [%, oo) \ é; in particular, it fixes the points z}, 2;

(3) Hy*(—,0) =1Idc for all ¢ € (0,1).
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It follows from property (1) and [Bia23a, Proposition 4.4] that for e = I, r there is an induced
map
HE®: Hur(8",8) x [0,1] x (0,1) — Hur(3", 9)
(respectively, H>®*: Hur(o,d) x [0, 1] x (0,1) — Hur(o,d)).

Property (2) ensures that for all (s,¢) € [0,1] x (0, 1) the map Hy'®*(—, s, t) restricts to a self-map
of the subspace Hur(8", d) st (respectively, Hur(o, ) 5,:) and is equivariant with respect to the
G x G°P action on this subspace. In particular, there is an induced map

HE®: Hur(3",9) g qor x [0,1] x (0,1) — Hur(3",d) g gor
(respectively, HY®: Hur(o, d)q,gor X [0,1] X (0,1) — Hur(o, 9)¢,gor).
Property (3) ensures that HY'*(—,0,t) is the identity of Hur(3",d)q G,gor (of Hur(o,0)g,gor)

for all ¢t € (0,1). We can now define a map H: D7 x [0,1] — Hur(vhr d)a.qov (respectively,
H: D9 x[0,1] — Hur(¢, 0)g,gor) by setting

H(0,s) = HE (R (00, B0, D)

" Bvt

where we recall that 0 < B~ < BT < 1. By the construction of g we have H(—, 1) = og. This
concludes the proof that o, is surjective on m,.

In the particular case ¢ =0 we obtain that, since BHM and BHM are connected, then
Hur(8", 9)g.gor and Hur(o, 3)g,geor are also connected. The fact that Hur (3", 8) g g is connected
can also be proved by combining [Bia23a, Lemma 6.16 and Proposition 7.10], Theorem 2.19 and
Lemma 2.24: the space Hur(<v>1r, 5)G’,GOP is the quotient of the space Hur(<“>lr, 5) 5sir by the action
of G x G° and on mo(Hur(3", 9) 5sr) = G this action can be identified with the action by left
and right multiplication, which is transitive. The fact that Hur(¢, 0)g, gor is connected is instead
new in our discussion, although it could have been proved directly using simpler arguments.

4.3 Injectivity on homotopy groups

For ¢ >0 we want now to prove that o,: Wq(BHM) — 7y (Hur(3",d)g,gor) (respectively,
0.1 Tg(BHM) — 7, (Hur(o,d)g.gor)) is injective. We fix a basepoint * € S ¢ DI*! and start
with a pointed map f: S7 — BHM (respectively, f: S —>BHM) and a map f: DIt —
Hur(élr,é)g’gop (respectively, f: D9T! — Hur(o,d)g,gor), such that the restriction of f on
54 = 9D is equal to o f.

We can construct a map ¢g: D9tt — BHM (respectively, KE D+l — BHM) in the same way
as we constructed g: D9 — BHM (respectively, g: DY — BHM) in the previous subsection: using
compactness of DIt we can find a suitable cover Vi,...,V, of DI and disjoint intervals
J1, ..., Jr € (0,1), ordered from left to right, such that for all v € V;, if ¢, is a representative
of f(v ) [cv]G,gop, then ¢, is supported on a set P, with R(P,) NJ; = 0. We also fix A; € J;
for all 1 <17 <r and a partition of unity W1,... W, subordinate to the covering V;; again we
assume that for all v € D! there are at least two indices 1 <4 < r such that W;(v) > 0. The
rest of the construction is the same as in the previous subsection; note that, in general, g(x)
is a point in the contractible subspace BHM@ (respectively, BHMj), but g(x) is not necessarily
the basepoint of BHM (of BHM) For our scopes it suffices to prove that g|gs is homotopic to
f as maps S — BHM (as maps S¢ — BHM), through a homotopy sending * € S7 inside BHM@
(respectively, BHMj) at all times. We are thus replacing Wq(BHM) (respectively, 7,(BHM))
with the set of homotopy classes of maps of pairs from (59, %) to (BHM, BHMj) (respectively,
to (BHM, BHMj).
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At this point of the discussion it becomes convenient to switch our focus to the thin bar con-
struction. Recall Definition 3.8: the projection pg: BHM — BHM (respectively, PB: BHM —
BHM) is a weak homotopy equivalence; similarly, note that the subspace BHM@ c BHM (respec—
tively, BHM@ C BHM) is contractible. Therefore, it suffices to prove that pg o glsa and pgzo f
are homotopic as maps S? — BHM (as maps S? — BHM), by a homotopy sending * € S inside
BHM,) (inside BHMj) at all times. Exhibiting such homotopy will be much easier than comparing
glse and f directly.

One of the advantages of the thin bar construction occurs already in the construction of
the map g: D7 — BHM (respectively, g: D7t — BHM). Recall that we had to shrink the
intervals Jp, ..., J, to make them disjoint, in order to ensure that the numbers Ay,..., A, are
all distinct. This was crucial when defining g(v) for v € D! (or, in the previous subsection,
for v € D7): we started from the list of indices 1 <ip < --- <y, < satisfying W, (v) > 0; we
denoted by Ag,...,... A} the list A;),..., A;, and used the portions of f(v) contained in the
slices 6{2@71, av (in (0av_ av,0)) to define the configurations Cys--+sCyp,- The fact that the
numbers]Al7 - , A, are all distinct was crucial in ensuring that all slices have strictly positive
width and, most important, the numbers Wi, (v),...,W; (v) naturally form an ordered list
of p+ 1 numbers: this is crucial, as we want to use these numbers to define the barycentric
coordinates of a point in AP.

Suppose instead that we repeat the above construction of g, but using directly the thin
bar construction; in other words, consider the composition of g with the projection pg: then
the fact that Aq,..., A, are all distinct ceases to be important. Indeed, suppose that for some
v € DI we write a list AY,...,. .. Ap as above and suppose that for some 1 <j <p, we
have AY_; = AY: this means, in particular, that ¢/ -=(0,1,1). On the one hand, we cannot
unequwocally determlne which of the barycentric coordlnates Wi, _, (v) and Wy, (v) should come
first in the list of barycentric coordinates for g(v); on the other hand, the two possibilities give rise
to the same configuration in BHM (in BHM) For simplicity, in the following we keep assuming
that the numbers 0 < A; < --- < A, < 1 are distinct and we keep considering g and f as maps
with values in BHM (in BHM).

Fix v € §7 and let f(v) € BHM (respectively, f(v) € BHM) be represented, for some p, > 0,

by the p,-tuple (¢},¢}),.. (t;j 5 ) of configurations in HM (in HM) with barycentric coordi-

nates wg, . .., wg . Let the numbers ag, . . ., ag, and the barycentres by, bz, and b;v be computed
as in Definitions 4.4 and 4.5 with respect to (¢}, c}), .. (t; 5 ) and wyg, . .. LW

Using the notation from §4.2, for v € S let 1 < iy < --- <1y, <1 be the list of all indices
ij satisfying W, (v) > 0; again let Ay ...y Ay denote the corresponding list of numbers
0< Ay <--- <A, <1. Recall that g(v) € BHM (respectively, g(v) € BHM) is constructed
using the numbers W, (v),... Wi, (v) as barycentric coordinates and using the portions of
¢y contained in the slices [A;,, A;] xR,... [4; , ,4; ] xR to obtain configurations (4;, —
Ai; 56, ;) in HM (in HM).

For 0 < j <p, define o} = b, + (b, — bz,)A}. Then b7, < af <--- < ap, <bf, and the

inequality b, < b;tv is strict. To fix notation, let
Bo < = By apota

be the union of the lists of numbers ag, ..., a3 and ag,...,ap : all numbers 57, as well as the

2] DPv”
numbers by, bz, and b7, belong to the interval [af —¢,af +¢] = [~¢,af +¢].
In writing the list £ < . pet1 We choose a shuffle of the sets {0,...,p0}

and {0,...,py} into {0,...,py, +py + 1}, i.e. a pair of strictly increasing and commonly
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surjective maps

77: {07"'7ﬁ’0}_>{07"'7ﬁv+p’u+1}7 77: {077p11}_>{077ﬁ11+p11+1}

In the generic case, the numbers ag, . . .,agv,ag, ...,ap are all distinct and the choice of the
shuffle is unique, but nothing prevents that, for some v € S, some of these numbers become
equal.

Let wg, ..., w5 4, 11 denote the corresponding shuffle of the lists of barycentric coordinates,

Le. wp = wj and wy .y = Wi (v). Define also

e:{0,...,pp +py+ 1} x[0,1] = [0,1], e: (7(j),s)—s, e:(n(j),s)+—1—s.

Let (ap, .c) be the product (t{,cy)---(t5 .c5 ) in HM (in HM) and use Notation 2.2. Then

for all 0 <j <p,+py+1 the vertical line Cp—g; is disjoint from P. We can then cut the

rectangle 703(1; (respectively, 7?&; ) along these vertical lines and define configurations ¢j in

Hur(ﬁgj_lﬁj) (in Hur(?égj_l’gj,é)) as the parts of ¢ lying in the regions Sg,_, g, for all 1 < j <
Dy + Py + 1: formally, we evaluate the restriction maps igﬁ 5 onc Let Eg be the configuration
j—1:P;

in Hur(ﬁgj,gjfl) (in Hur(?égj,gjfl,g))) given by (7_g;, ,)«(c}), for all 1 < j < p, +p, + 1.
We define a homotopy H: S? x [0,1] — BHM (respectively, H: S? x [0,1] — BHM) by the
formula

H(Ua S) = (e(oa s)wéja .. 7e(ﬁv +py + 1, s)wgv-t,-pv.ﬂ;
(ﬁl - BO’ E,ll})’ Tt (ﬁﬁv+pv+1 - ﬁﬁv“t‘pv’ Egv“l‘pv'i‘l))

The continuity of the formula relies on the fact that we are using the thin bar construction:
if varying v € 7 two consecutive values 3;_1 and [3; become equal, then the corresponding
configuration (f; — 3j-1,¢_;) becomes equal to (0, (0, 1,1)) and can, thus, be dropped from
the list: the weights e(j — 1,s)w?_; and e(j, s)w] are replaced by their sum e(j — 1, s)w]_; +
e(j,s)wj and we obtain a description of the same configuration in BHM (in BHM) which is
formally symmetric in the indices 7 — 1 and j.

For s =1 the list of weights e(0,s)wy,...,e(p+p + 1,3)1D§v+pv+1 reduces to the list of
weights wyg, . .. s W shuffled with p, + 1 occurrences of 0; if we drop the zeros and perform
the corresponding products of consecutive elements in the list (B1 = Bo,¢)), -y (Bpotpot1 —
Bputpus Sy spyr1)s We Tecover f(v).

Similarly, for s = 0 we obtain the weights Wj, (v), ..., W;, (v) shuffled with p, + 1 occurrences
of 0; in particular, since 8y = ag = 0 and B35,4p,+1 = ap, at least one zero at the beginning and
at least one zero at the end of the list of all weights are dropped. If we perform the corresponding
products of consecutive elements in the list (81 — Bo,¢7), .- -, (Bputpo+1 = Bputpes €5, +p,+1) a0d
if we drop the corresponding elements at the two ends of the list, we recover g(v).

Finally, note that for v = x € S? we have that all configurations E;’ are supported on the

empty set, so that H(v,—) is a path in BHOM@ (in BHM@). This concludes the proof that o, is
injective on homotopy groups.

4.4 Homology of the group completion of HM

The second part of Theorem 4.1 implies, together with Theorem 3.4, that there is a weak
equivalence

HM, ~ QHur(o,d)g,go-
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If we select one connected component on each side, using Theorem 2.19 for the left-hand side,
we obtain a weak equivalence

HM+,1 ~ QO Hur(<>, 8)G7Gop.

By [Bia23a, Lemma 6.16] we have that Hur (o, ) 5, is a (disconnected) covering of Hur(o, 9)g,geor:
more precisely, there is a free and properly discontinuous action of G x G°P? on the former
space and the latter is the quotient by this action. Hence, also the connected component
Hur(o, 0) gera © Hur(o,0) g4: is a covering of Hur(o,d)g gor, with deck transformation group
given by the stabiliser in G x G°P of this component, which is the ‘diagonal’ copy of G, consisting
of pairs (g, g~ 1°P) for varying g € G. We obtain a weak equivalence

Hvl\/[_hl ~ Q() Hur(<>, 3)55”,]1,

and Lemmas 2.7 and 2.24 and [Bia23a, Proposition 7.10] yield a weak equivalence
Hur (3", 5)551r,1 ~ Hur (3",9); ~ HM, ; ~ Qo Hur(o, ) ;= Qo Hury (0,0);1.

551r;
Now we use the first part of Theorem 4.1, together with the fact that Hur (3", 5) sl 1 18 a covering

of Hur(élr,a\/)G’Gop, again by [Bia23a, Lemma 6.16]; taking one component of loop spaces we
obtain a weak equivalence

QoBHM ~ Q() Hur(<“>1r, 5)G7Gop ~ QO Hur(<u>lr, 5)551r 1
Putting the above weak equivalences together, we obtain
Qo BHM = Qg Hur(8",0) 550, ~ QF Hury (o,0)1.

Finally, Theorem 3.7 (which is applicable thanks to Lemma 3.6) and Theorem 2.15, imply the
following homology isomorphism,

H.(HM)[mo(HM) '] = Z[G(Q)] ® H.( Hury (o, 0)1).

Here G(Q) denotes the enveloping group of the PMQ Q, as in [Bia21, Definition 2.9]: concretely,
this is the group generated by elements [a] for a ranging in Q, under the relations [a][b] = [b][a?]
for all a,b € Q and [a]b = ab for all a,b € Q such that the product ab is already defined in Q. In
fact, G(Q) is the universal group receiving a map of PMQs from Q; moreover, G(Q) coincides
with the enveloping group of both the monoid Q and its free unitalisation O LI {1} 2 m(HM).

In fact, the combination of Theorems 2.19, 3.4 and 4.1 implies the following isomorphisms
of discrete monoids (which happen to be groups):

w1 (Hur(o,d)g,gor) 2 71 (BHM) 2 mo(HM,, ) = G.

On the other hand, [Bia23a, Lemma 6.16] implies that Hur(o,d)zq: ; is a covering of
Hur(o,d)g,gor with group of deck transformations G and Hur(o,d)g.: ; is connected by
Theorem 2.19. In the next lemma we prove that Hur(o, d) 5,0 , is, in fact, the universal cover of

Hur(o, 9)g,gor.

Ir
,1

LEMMA 4.21. The space Hur(o, 9) 541  is simply connected.

Proof. Recall the weak equivalence o: BHM — Hur (¢, 9) g - For g € G let (1,¢9) € HM,,
be the pair with ¢, being a configuration supported on the unique point %,
monodromy g € G. Consider the loop ~,4: [0,1] — BHM sending t € [0,1] to the class of
(t,1—1t;(1,¢,)) € A x HM C [,50 A7 x HM” in the quotient. Observe that the class of Yg

in 7, (BHM) corresponds to the class of (1,c¢,) € mo(HM_ ), which along the total monodromy

carrying local
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corresponds to the element g € G; in particular, every element of Wl(BHM) is represented by a
loop 7.

Recall now Definition 2.22 and the proof of Theorem 2.19 and let ¢;,-1 4, € Hur(R, 9)o,1;1
be the configuration supported on the set {0, 2 3 1} such that the G-valued total monodromy
sends small loops spinning clockwise around 0, 1 5,1 to g1, g, 1, respectively. Let Fg: [0,1] —
Hur(R, 0)o,1.1 be the path defined by

R . .
H11/2(cg—17g,]lgyl) lfogtg 1_727
1—-2(1—-1¢)2 ] 1 1
Yy flo ——<t<
(1) = 1/2< Cg- ,g,ﬂcﬂ 2t(1 —t) ) \/i =" =9
Yg\t) = ( 1—2(1—1)? 1) ‘f1<t< 1
YV i — .
R 1
Hijo(€g-1916:1) if s<tsl

Consider also the map (H7).: Hur(R, 9)o,1;1 — Hur(o,d) 5., induced by H7; then 7, := (HF)« o
g¢ [0,1] = Hur(0,0) 59, is a path lifting the loop o o 7y: [0,1] — Hur(c,d);
coverlng Hur (¢, 0) — Hur(o, 0)g,gor-

joir.1 along the

slr:1

Both configurations 74(0) and 744(1) are supported on 93 the local monodromies around z}
and zL are 1g and 1g, respectively, for the first configuration and are g~! and g, respectively,
for the second. It follows that the path 7, is a loop if and only if g = 1. This shows that
Hur(o, 9) gir g Hur(¢, 0)g,gor is a universal covering and, in particular, Hur(o, 0) Sgir,p 1S simply
connected. O

From now on it is convenient to replace the nice couple (¢,d) with the nice couple (R, d).
For this, fix an orientation-preserving, semialgebraic homeomorphism ¢: C — C fixing * and
restricting to a homeomorphism of couples (¢,d) = (R, d); then £ induces a homeomorphism
&« Hur(o,0) = Hur(R, 0), restricting to a homeomorphism Hurj (¢,0); = Hury (R, 0);. Using
again [Bia23a, Proposition 7.10] we can then replace Hury (R, )1 by the weakly equivalent space
Hur(R, 0)o.1, where 0 € OR is the lower left vertex.

We rephrase the last homology isomorphism, together with the discussion about simply
connectedness, as the following theorem.

THEOREM 4.22. In the hypotheses of Theorem 4.1 there is an isomorphism of graded abelian
groups
H,(HM(Q))[mo(HM(Q)) "] = Z[G(Q)] ® H.(2f Hur(R, 8; Q, G)o;1)-

Moreover, the space Hur(R, 0; Q, G)o,1 is simply connected.

We immediately observe that the left-hand side of the isomorphism in Theorem 4.22 only
depends on the PMQ Q and not on the PMQ-group pair (Q,G) (in particular, not on the
group G). In fact, the isomorphism of Theorem 4.22 is an isomorphism of rings, if we consider
on Z[G(Q)] ® H,(Q3 Hur(R, d)o.1) the correct structure of twisted tensor product of rings, which
we briefly describe in the following.

The group G(Q) acts on the right on Hur(R,d)o;1 = Hur(R,0; Q, G)o.1 by global conjuga-
tion: in fact, G acts on the right on this space by global conjugation and we consider the map
of groups G(e): G(Q) — G. Consequently, G(Q) acts on the right on H,.(Q3 Hur(R,d)o.1) by
automorphisms of rings.
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For g1, g2 € G(Q) and x1, 29 € H.(Q3 Hur(R, d)o.1) we define the twisted product (g1 ® x1) -
(g2 ® x2) := (g192 ® (2§? - z2). This assignment extends to an associative product on Z[G(Q)] ®
H.(Q2Hur(R,d)p.1) and with this ring structure the isomorphism of Theorem 4.22 is an
isomorphism of rings.

The isomorphism of Theorem 4.22 is a bit surprising at first glance, because HM(Q) is not,
in general, weakly equivalent to an FEs-algebra.

5. The space B(Q4, G)

For concrete homology computations the space Hur(R,d; Q,G)o. is too large. In this section,
we introduce a homotopy equivalent subspace

B(Q+,G) C Hur(R,0; Q,G)o.1;

under the assumption that Q is augmented. If, in addition, we assume that Q is normed, then
B(Q+,G) admits a natural filtration by closed subspaces. In the next section, assuming further
that @ is finite and rationally Poincaré, we will exploit this filtration to compute explicitly the
rational cohomology ring of B(Q4, G).

Recall from [Bia21, Definitions 4.1 and 4.9] that a PMQ is augmented if the set Q4 := Q \ {1}
is an ideal for the partial product, i.e. if for all a,b € Q such that ab =1 we have a,b=1. A
normed PMQ is a PMQ Q together with a morphism of PMQs N: Q@ — N such that N=1(0) =
{1}. Every normed PMQ is also augmented.

DEFINITION 5.1. Let ¢ € Hur(R, 0; Q,G)o.1 and use Notation 2.2, so that the support P of ¢
splits as {z1,...,2} C R and {z141,..., 21} COR. Let 5 C R be a clockwise oriented simple
closed curve in R \ P such that the disc bounded by 3 contains all points z1, ..., 2.

The configuration ¢ lies in the subspace B(Q,G) C Hur(R, 9; Q, G)o,1 if the conjugacy class
of &(P) corresponding to 3 is contained in the PMQ Q*(P),, C &(P) (see [Bia23a, Definition
2.13)).

If Q is augmented, we define B(Q, G) as the intersection

B(Q+,G) :=B(Q,G) NHur(R,0; Q+,G)oa1 C Hur(R,0; Q, G)o.1.
Roughly speaking, a configuration ¢ € Hur(R,0;Q,G)o1 lies in B(Q,G) if, using

Notation 2.2, the [ values of the monodromy v around the [ points of P N R can be multiplied
in Q. See Figure 7.

DEFINITION 5.2. Let € be a nice couple and let (Q, G) be a PMQ-group pair with Q augmented.
Let ¢ = (P,v¢, ¢) € Hur(¢; Q,G); a point z € P is inert for ¢ if z € X \ Y and 1 sends to 1g each
element of Q(P) represented by a small loop spinning clockwise around z.

If Q is augmented, a configuration ¢ lies in B(Q, G) if it lies in B(Q, G) and, moreover, no
point of the support of ¢ is inert: in other words, v attains values different from 1 around all {
points of PN 7R.

Ezample 5.3. Suppose that Q is finite and normed and let Nyax € N be the maximal norm of
an element of Q. Let ¢ € B(Q,G) and use Notation 2.2. Then at most Npax of the [ points in
PN 7Ry can be non-inert; in particular, if ¢ € B(Q+,G), then | < Npax. There is also another
evident restriction on the behaviour of : if fi,..., fx is an admissible generating set for &(P),
then 37y N(¥(f)) < Ninax.

Ezample 5.4. Let Q be the abelian PMQ {1, ¢} with trivial partial multiplication and let G = {1}
be the trivial group. Let ¢ € B(Q4+,G) and use Notation 2.2. Then PN R is either empty or it
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FIGURE 7. The configuration c lies in the space B(Q, ) G) if gse(a1)gae(az)gse(az) = 1 € G, none
of a1,as,a3 is equal to 1 € Q and the product ajas (a3 95" ) is defined in Q.

contains exactly one point. We can define a map B(Q,,G) — R/OR = S? by looking at the
position of the unique point of P in R and taking the quotient point [JR] € R/OR if PNR = 0.
In fact, the map B(Q4,G) — R/IR is a quasifibration with fibre the Ran space Ran(9R), so it
is a weak homotopy equivalence.

We will see in Proposition 5.5 that the inclusion B(Q4,G) C Hur(R,0R; Q, G)o.1 is also a
homotopy equivalence; hence, in this case, Theorem 4.22 reduces to a classical result of Segal
[Seg73] stating that the group completion of the topological monoid ][, Conf,(R?) is Q%S
Passing from Hur(R, d; Q, G)o.1 to its subspace B(Q,, G) should thus be regarded as the ana-
logue of passing from the relative configuration space Conf(R,d) to the sphere ’R/ OR by a
scanning argument.

5.1 Deformation retraction onto B(Q, G)

In this subsection we will prove that Hur(R, 0; Q, G)o.1 admits a deformation retraction onto its
subspace B(Q, G); if Q is augmented, the same argument will give by restriction a deformation
retraction of Hur(R,d; Q+,G)o,1 onto its subspace B(Q4,G). Using [Bia23a, Proposition 7.4],
we will therefore obtain the following proposition.

ProOPOSITION 5.5. For any PMQ-group pair (Q,G) the inclusion of B(Q,G) into
Hur(R, 0; Q,G)o.1 is a homotopy equivalence. If Q is augmented, the following is a square of

1684

https://doi.org/10.1112/S0010437X2400719X Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X2400719X

DELOOPINGS OF HURWITZ SPACES

inclusions which are homotopy equivalences:

B(Q:,G) ———— B(Q,G)

[ [

Hur(R,d; Oy, G)oa —— Hur(R,d; Q, G)o.1-

The rough idea of the proof of Proposition 5.5 is that each configuration ¢ &
Hur(R, 0; Q,G)o.1 can be gradually magnified around the centre z. € R, letting gradually more
and more points collide with 9R: such points are downgraded to points in the support of ¢ around
which only the G-valued monodromy is defined and they remain fixed during further magnifi-
cation. At some finite time we obtain a configuration satisfying the properties of Definition 5.1
and we stop the magnification.

DEFINITION 5.6. Let zp € R. For z € C let 92 (2) € [1,00] be the infimum of all s > 1 such
that zo + s(z — z0) ¢ R; note that 9% (z) = oo if and only if z = z. We define a map H% : C x
[1,00) — C by the formula
z if 2 ¢ R,
H%O(z,s) =1 20+ s(z — 20) if z € R and 20+ s(z — 29) € R,
20+ 02 (2) - (2 —20) if z € R and 20 + s(z — 20) ¢ R.

Roughly speaking, the map HIZBO(—, s) expands the square (s — 1)/szp + (1/3)702, which has
side length 1/s, to the entire R, by a homothety centred at zy of rescaling factor s and collapses

1 1.
R\(S Z0+R>
S S

onto JR. Note that for all s > 1 the map H]ZBO(—,S) is an endomorphism of the nice couples
(R, 8); note also that HE (0,s) =0 for all s > 1 and that HZ (—, 1) is the identity of C. Thus,
we obtain a continuous map

(HIEO)*: HHF(R, 0; Q, G)O;]l X [1, oo) — Hur(’R’ 0; 9, G)O;Il,
such that (H2 ).(—,1) is the identity of Hur(R,9; Q, G)o;1.

DEFINITION 5.7. Let zg € R. For each 0 < ¢ < 1 denote by B C R the simple closed curve
whose support is the square (1 — £)z9 + €(OR), i.e. the boundary of the square of side length ¢
obtained from OR by a homothety centred at zy of rescaling factor ¢; we orient 3,, . clockwise.
Let ¢ € Hur(R,0)1 and use Notation 2.2. We denote by 20,,(c) € [0,1] the supremum of all
0 < e < 1 satisfying the following properties:

L4 P m ﬁzo,& - @7
e every element g € &(P) in the conjugacy class corresponding to 3., belongs to Q¢ (P),, C
&(P).

Note that 20,(c) <1 for all ¢ € Hur(R, 9; Q,G)1; moreover, 20,,(c) = 1 if and only if ¢ €
B(Q, G). Note, on the other hand, that 20,,(c) > 0, as for a generic and very small € > 0 the
curve 3,  is disjoint from P and encloses at most one point of P, so it corresponds to a conjugacy
class of &(P) which is contained in Q(P) C Q™*(P),,. Note also that the assignment ¢ — 20, (¢)
is continuous in c.

Notation 5.8. Recall Notation 2.16. We simplify the notation and write H® = HE and 20 = 20....
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Proof of Proposition 5.5. We define a homotopy
H®: Hur(R,9; Q,G)o.1 x [0,1] — Hur(R,d; Q, G)o.1,

B B 1
H"(¢,s) =H; <c, 1 8+82U(c)>'
Note that H®(—,0) is the identity of Hur(R, d; Q, G)o.1, that H®(—,1) takes values in B(Q, G)
and that H®(—,s) restricts to the identity of B(Q,G) C Hur(R,9; Q,G) for all 0 < s < 1.

This proves the first homotopy equivalence in the statement. The second homotopy
equivalence is completely analogous: we have constructed the deformation retraction of
Hur(R,0; Q,G)o.1 onto its subspace B(Q,G) using enriched functoriality with respect to
maps of nice couples; this implies that H®(—,s) restricts at all times to a self-map of
Hur(R, 0; Q4+, G)o.1 and, in particular, the restriction of HB(—,1) on Hur(R,0; 9., G)o;1 takes
values in Hur(R,0; Q1+, G)oq1 NB(Q, G) =B(Q4,G). O

5.2 Norm filtration

In the rest of the section we assume that O is endowed with a norm N: @ — N. Our aim is to
introduce a filtration Fe on B(Q4,G). It will be convenient to define a norm filtration Fy more
generally on the Hurwitz space Hur(¢; Q, G) associated with any nice couple €.

DEFINITION 5.9. Let € be a nice couple, let ¢ € Hur(€; Q, G) and use Notation 2.2. Let f1,..., fx
be an admissible generating set for &(P). We define a function of sets N: Hur(¢; Q,G) — N by

N(c) = N®(f1) +--- + N (f),

and call N(c) the norm of the configuration c.

For v > 0 we define the vth filtration layer F, Hur(€; Q, G) as the subspace of configurations
¢ with N(¢) <v. We also set F_; Hur(¢; Q,G) = 0.

For v > 0 we denote by §, Hur(¢; Q, G) the vth filtration stratum

§, Hur(¢; Q,G) := F, Hur3(¢; Q,G) \ F,—1 Hur(¢; Q, G).

Recall from [Bia23a, Definition 2.5] that given a nice couple € = (X,)) and a finite subset
P C X, an adapted covering of P is a collection U of disjoint, semialgebraic open discs in C
containing each a single point of P and such that each point in P\ ) is surrounded by a disc
disjoint from Y. The topology on Hur(€; Q,G) has a basis given by the open neighbourhoods
U(e; U), for varying ¢ = (P, v, ¢) € Hur(€; Q, G) and varying U among adapted covers of P.

LEMMA 5.10. For all v>0 we have that Hur(¢;Q,G)\ F,_1 Hur(¢; Q,G) is open in
Hur(¢; Q,G).

Proof. Let ¢ = (P,v, ) € Hur(¢; Q,G) and assume that N(c¢) > v. Let U be an adapted cov-
ering of P. We claim that the open neighbourhood (c,U) is contained in Hur(¢€; Q,G)\
F,_1Hur(¢; Q,G).

Let ¢ € U(c,U) and use Notation 2.2. For all 1<i<[ let P/=P NU; and let P/ =
{zi1- Z;,k;}' Choose an admissible generating set f1,..., fx of &(P) = &(U). We can regard

&(U) as a subgroup of &(P’). We can choose an admissible generating set f{,..., f;, of &(P’)
with the following property: for all 1 <i <1, if f;,,..., f/,, are the elements represented by

loops spinning around the points 2;,, ..., 2! ., respectively, then the product f;, --- f/,, is equal
to f; in (P’). The hypothesis ¢’ € $(¢,U) implies the following equality in Q, for all 1 <7 < :

W) e (flg) = (i),
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whence, using the norm on Q, we obtain

N/ () + -+ N () = N ().
Summing over 1 < ¢ <[ and recalling that P{ U---U P/ might be a proper subset of P'\ Y =
{#1,..., 2}, we obtain

l U

1K
v<N() =3 N@(fi) =D D NW,)) <> N () =N(),

i=1 i=1 j=1 i=1
which shows that (¢, U) is contained in Hur(¢; Q,G) \ F,—1 Hur(¢; Q, G). O

Notation 5.11. For every subspace X C Hur(€; Q, G) and for v > —1, we use the notation F, X =
F,Hur(¢; Q,G) N X. For v > 0, we use the notation §,X = §, Hur(¢; Q,G) N X.

We will use Notation 5.11 mainly in the case X = B(9Q4,G) C Hur(R,9; Q,G).

5.3 A model for BG

Our next goal is to analyse the strata §,B(Q4,G). We start with FoB(Q4,G), which can be
identified with Hur(OR,0R;Q, G)o.1. By [Bia23a, Lemmas 5.4 and 5.5] we can equivalently
consider the space Hur(OR; G)o.1, where the group G is considered as a (complete) PMQ. In this
subsection we prove the following proposition.

PROPOSITION 5.12. The space Hur(OR; G)o.1 is an Eilenberg-Maclane space of type K(G,1).
DEFINITION 5.13. We denote by M C OR the union of the three closed sides of R

M= {0} x [0,1] U [0,1] x {1} U {1} x [0,1].
LEMMA 5.14. The spaces Hur(M; G)o,;1 and Hur(M; G)o,1;,1 are contractible.

Proof. Note that IMis contractible; more precisely, we can fix a semialgebraic homotopy H'': C x
[0,1] — C with the following properties:

e H'"'(—,s) is a lax endomorphism of the nice couple (M,0), for all 0 < s <1 (see [Bia23a,
Definition 4.2]);
e H'(0,s)=0€Cforall 0 <s<1;
e H''(—,0) =Idc;
e H"'(—,1) maps I constantly to 0.
By functoriality, using that G is a complete PMQ, we obtain a homotopy
HD: Hur(r; G)O;ﬂ X [0, 1] — Hur(; G)O;]l-

Note that the map H[(—,1) takes values in Hur({0}, G)o.1, which is just a point. Thus, the
homotopy H.' exhibits Hur(; G)p.1 as a contractible space.

By [Bia23a, Proposition 7.10], the inclusion Hur(M;G)o1,1 € Hur(M; G)oa is a homotopy
equivalence, hence Hur(M; G)o 1.1 is also contractible. O

Now let ¢'': C — C be a semialgebraic map with the following properties:

(1) € is a lax endomorphism of the nice couple (OR, (), in particular it restricts to a map
OR — IR;

(2) € fixes Cpr<p pointwise;

(3) &' maps the horizontal segment [0,1] x {0} constantly to 0;

(4) €M restricts to a homeomorphism C \ ([0,1] x {0}) — C\ {0}.
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FIGURE 8. Left: a configuration ¢ € Hur(9R;G)o;1. Right: a configuration ¢ in the fibre
(€)™ (e) € Hur(M; Gosn-

Note that £ is a lax morphism of nice couples (I1,0) — (OR,(); we obtain by functoriality a
map &': Hur(M; G)o 1.1 — Hur(9R; G)o,1, see Figure 8.
We will prove that £[! is a covering map.

LEMMA 5.15. For ¢ € Hur(OR; G)o.1, the fibre of £,! over ¢ is a non-empty and discrete subspace
of Hur(l‘l; G)071;1 .

Proof. Write ¢ = (P,1), where P = {z1,..., 2} and ¥: Q@ar g (P) — G is a map of PMQs;
without loss of generality suppose 2, = 0. Assume that we are given ¢/ = (P',¢') € (£')71(c).
Note that if £'(¢/) = ¢, then, in particular, {"'(P") = P and by properties (3) and (4) of £ we
must have P’ = (¢™)~}(P) N c C. To fix notation, let z, = (¢")71(z;) € P for 1 <i<k-—1
and let z;, =0¢€ P’ and 2, =1 € P".

Fix an admissible generating set fi,..., fx for &(P) and assume that f is represented by
a loop supported in a small neighbourhood of the vertical segment {0} x [—1,0] C C joining x*
to 0. Then we can consider (¢")~! as a map C\ P — C\ ([0,1] x {0}u P’) c C\ P" and map
the generators fi,..., fr to elements of &(P’). Note that fi,..., fr_1 are mapped to simple
loops spinning clockwise around the points 21, ..., 2, whereas f; is mapped to a simple loop
spinning clockwise around the segment [0,1] C C. We decompose (£);1(fx) as a product of
two elements f7, f; |, represented by simple loops in C\ P’ spinning clockwise around z;, and
241> respectively, and define f/ = (£7);1(fi) for 1 < <k — 1: thus, we obtain an admissible
generating set fi,..., f;,, for &(P’). Note that for 1 <7 <k — 1 the generator f; can be rep-
resented by a simple loop in C\ P’ supported in C\ (P U[0,1] x {0}); similarly f; and f
can be represented by loops supported on small neighbourhoods of the straight segments in C
joining * with 0 and 1, respectively.

Since &'(¢/) = ¢, we have in G the equalities ¢/'(f/) = ¢(f;) for 1 <i <k —1 and ¢(f) =
V()Y (fria)-
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Vice versa, for any factorisation of (fi) € G as the product gh of two elements in G, we can
define a configuration ¢’ = (P’,4') by setting P’ = (¢"')~1(P) N and by defining ¢’ by sending
fi=o(fi) for 1 <i<k—1, fi = gand f;_, +— h. This shows that (€M~1(c) is non-empty.

Now note that, for ¢’ as above and for any adapted covering U’ of P’, we have that ¢ is
the unique configuration in Y(P’; U’) C Hur(M)o 1,1 supported on the set P’. In fact, the normal
neighbourhoods $(¢c; U’), for fixed U’ and varying ¢ in (£")!(c), are disjoint: compare with the
proof of [Bia23a, Proposition 3.8]. This proves that (£™)~!(c) is a discrete topological space. [J

LEMMA 5.16. There is a free action of G on Hur(I1; G)o,1;1 whose orbits are precisely the fibres
of €.

Proof. Let ¢ € Hur(M; G)o,1;1 and write ¢’ = (P', ') with P' = {2],..., 2, }, where we assume
2, =0, 2., = 1. For g € G we can define a new configuration g x ¢’ = (P’, g * ¢') € Hur(M)o,1;1
by setting g+ ¢'(f]) =¢/(f;) for all 1 <i<k—1, g=¢'(f}) =¢'(f{)g~! and g*Y'(fi ) =
g¥'(fi), where f1,..., fi,, is an admissible generating set of &(P’) as in the proof of Lemma 5.15.

This defines a left action of G' on the set Hur(1; G)o,1;1. This action can also be obtained by
identifying Hur(M; G)o,1;1 with Hur(M,M; G, G)o1;1 via [Bia23a, Lemma 5.4] and by considering
(0, (r1,M),1) as a left-right-based nice couple [Bia23a, Definition 6.9] and by restricting the action
of G x G° on Hur(M,M;G,G)o,1;1 to the diagonal subgroup G C G x G°P, which leaves the
subspace Hur(M, M; G, G)o,1;1 invariant. This proves, in particular, that the action is continuous.

For ¢’ as above, we use the notation ¢ = (P,¢) := £/'(¢), with P = {21,..., 2} and assume
2z, =0 and z; = £"(2]) for all 1 <i <k — 1. Choose an admissible generating set fi,..., fx of
&(P) as in Lemma 5.15. Then ¢(f;) =¥'(f]) = g ¢'(f]) forall 1 <i <k —1 and

() = GOV (Fo) = (Fg gv' (fr) = (90 (i) (g * ¥ (Fi)-
It follows that &,'(¢') = &'(g * /). O
LEMMA 5.17. The map &' is open.

Proof. Let ¢ and ¢’ be as in the proof of Lemma 5.15, i.e. £': ¢/ + ¢ and let U’ be an adapted
covering of P’. We want to find an adapted covering U of P such that &'(4(P’;U’)) contains
U(P,U). We choose U with the following properties:

e for all 1 < i < k the intersection U; N 0 is contractible;
e for all 1 <i <k — 1 the intersection (¢")~}(U;) N is contained in U/;
e the intersection (£)~'(Uy) N1 is contained in U, U U} ;.

Let t=(P,9) € U(c,U): we want to find a configuration ¢ € U(¢,U’) with £(¢) = ¢. Write
= {Z1,..., 2}, with Z; = 0. Then the finite set P’ = (€M~ (P) N is contained in U’ and it

intersects non—tr1v1ally every component of U’. We write P’ = {Z,... } and assume zL =0

’ k+1 k

o
and = 1.

Let f],... k .
Note that we can regard f; and f;_ ; as elements of @(P’) by the composition &(P’) = &(U’) C
(’5(P’ ); moreover, the sequence of elements fl, e k X T 1o, 41 1s also a free generating set for

be an admissible generating set for (’5(P’ ) as in the proof of Lemma 5.15.

Qi(P’ ), although in general it is not an admissible generatlng set: in fact, ;. can be decomposed
as a product of distinct elements f/, with one element equal to fé and similarly f;,, can be

decomposed as a product with one factor equal to féJr X Nevertheless we can define a morphism

of groups @': &(P') — G by setting ¢': f/ — @(f;) for 1 <i <k —1 and @' fi = (f]) fori =
k,k + 1. We can restrict ¢’ to Q) (P') and obtain a morphism of PMQs ¢': &9y (P') — G.
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We can use the previous to define a configuration ¢ = (P',¢) € 4(¢;U’), satisfying
i) =c O

In the last step of the proof, note that ¢ is, in fact, the unique configuration in {(¢’; U) with
E(T) = ¢. This shows, in particular, that for ¢, ¢/, U’ and U as in the proof of Lemma 5.17,
there is a unique map of sets s: U(¢; U) — (¢’; U’) which is a section of £, i.e. such that £ o s
is equal to the inclusion of 4(¢;U) in Hur(0R; G)o.1-

LEMMA 5.18. Let ¢, ¢, U’ and U be as in the proof of Lemma 5.17 and let 5: $(¢; U) — U(c';U")
be the section defined above. Then s is continuous.

Proof. Let ¢ € 8(c;U), denote ¢ =s(¢) € U(c;U’) and use the notation from the proof of
Lemma 5.17. By continuity of &' there is an adapted covering U of P! with U’ c U’ and such
that ¢! maps 4(¢;U) inside U(c; U).

First, note that £ is injective on $4(¢'; Q/): for a configuration ¢ € U(¢'; Q/) we have, in fact,
(€)= ¢

By Lemma 5.17 we know that &' is open; it follows that the map ' il(E’;Q/) —
Hur(OR; G)o1 is a homeomorphism onto its image and, hence, s is continuous on the open
set £0(U(;0)), which contains <. O

Proof of Proposition 5.12. The combination of Lemmas 5.15, 5.17 and 5.18 shows that the
map &': Hur(M; G)o1.1 — Hur(OR; G)o.1 is a covering. Lemma 5.14 shows that the total space
is contractible, in particular connected and Lemma 5.16 exhibits G as the group of deck
transformations of £. O

Notation 5.19. We denote by BG the space

BG := Hur(OR; G)o;1 = Hur(0R,0R; Q, G)oa = FoB(Q+,G) = §oB(Q+,G).

5.4 Bundles over BG
In this subsection we define for all ¥ > 0 a bundle map p,: F.B(Q+,G) — BG; the fibre of p,
can be identified with

H Hur(']%ﬁ Q+)a7

ac Qu

where Q, C Q is the subset of elements of norm v. In the case v = 0, the map pg is just the
identity of BG = §oB(Q4, G) and the fibre is a point, i.e. the space Hur(70€; Q).

In the next section we will investigate the rational cohomology of B(Q., G) using the Leray
spectral sequence associated with the filtration Fo = FoB(Q4,G): the first page of this spectral
sequence contains the relative cohomology groups H*(F,, F,_1), rather than the cohomology
groups of the strata §,. To acquire information about these relative cohomology groups, we
introduce in this subsection certain subspaces Fi*, = Fi*' B(Q,,G) C B(Q4,G), for v > 0. We
will prove, between this subsection and the next section, that Fyfa_t1 C F,, that F),_1 is contained
in the interior of F| when the latter is regarded as a subspace of F,, and that the inclusion
F, 1 C Flfa_tl is a homotopy equivalence. In particular, after setting 9%, := &, N Flfa_tl, we will
obtain in Lemma 6.2 an isomorphism

H*(Fm FI/—].) = H*(%’mafatgy)‘
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In this subsection we will prove that p, exhibits (Sl,,ﬁfat&,) as a couple of bundles over BG,
with fibre a suitable couple of spaces

(Hur(R; Q4)y, 0™ Hur(R; Q4),) = ( [T Hur(R; Qp)a, J] 0™ Hur(R; Q+)a>;
GEQV U«EQV

the computation of the rational cohomology H*(F,,0%'F,; Q) will then be possible using the
Serre spectral sequence associated with p,,.

DEFINITION 5.20. Recall Definition 5.9. Denoote by 0f*R the closed oneighbourhood ofo OR in
R = [0,1]? given by 0'R = R\ (2¢/2 + (1/2)R), where z./2 + (1/2)R is the image of R along
the homothety centred at z. of rescaling factor %; in other words, z./2 4 (1/2)R is the open

square of side length % centred at zc.
The identity of C induces a map

(Idc)s«: Hur(R,0; Q,G) — Hur(R, ™R Q, G).
Recall that Hur(R, 0™*R; Q, G) has a filtration by subspaces F, Hur(R, 0™'R; Q, G) for v > —1;
we define F**B(Q,, @) as the intersection
FIB(Q,,G) = (Ide) (F, Hur(R, 0*'R; ©,G)) 1 FyiB(Qs., C).

In particular, we have F'3B(Q,,G) = 0. Roughly speaking, for ¢ € B(Q,,G), we can use
Notation 2.2 and suppose without loss of generality that {z1,...,2y} = PN (1/4,3/4)? for some
0 <! <Il;if f1,..., fx is an admissible generating set for &(P), then ¢ belongs to F™B(Q, , G)
if the following hold:

o Y  N((fi)) <v+1, that is, ¢ € F,11B(Q4, G);

« Di N@(f) <v.

Another characterisation is the following: FI**B(Q, , G) is the preimage of the space F,B(Q,G)
along the restricted map H®(—,2): F,,1B(Q,,G) — B(Q4,G), see Definition 5.6. Note that, in
fact, H®(—,2) restricts to a self-map of F,1B(Q,,G). By construction, we have inclusions

E,B(Q,,G) C F*B(Q,,G) C F,,1B(Q,,G).
Notation 5.21. For a subspace X C B(Q4,G) and v > —1 we denote by F** X the intersection
X NF2B(Q,,G). For v > 0 we denote by 0 F, X the intersection §,X N Flfa_th.

Ezample 5.22. Let a € Q and let X = Hur(R; Q4 )q; the inclusion of nice couples (R, 0) C (R, d)
induces an inclusion of spaces X C B(Q4,G); let v = N(a) > 0 and note that F,,_; X = () and,
hence, X = F,X = §,X. The space F,fale contains all configurations ¢ € X such that, using

Notation 2.2, P intersects non-trivially ™R in fact, the condition ¢ € Hur(702; Q) implies that
the monodromy 1) attains values of norm > 1 (i.e. different from 1 € Q) around all points of P.
The space 0™'F, X coincides with Flfith in this case and by abuse of notation we will also write

ofet Hur(ﬁ,; Qi)a= oty Hur(?%,; Qi)

Ezample 5.23. Let X =B(Q,,G); then F™X =93, X =0 and FoX = BG; hence, the
identity of BG can be regarded as a pair of bundles

po: (FoB(Q4,G), 0™FB(Q+,G)) — BG

with fibre the couple (Hur(R;Q4)1,d™ Hur(R; Q4)1) = ({(0,1,1)},0). In the rest of the
subsection we generalise this example to the other strata of B(Qy, G).
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a a

a3

A A

FIGURE 9. The configuration ¢ from Figure 7 belongs to 0%'F,, where v = N(a;) + N(as) +
N(a3), because the two points z; and z3 lie in 0™*R . On the right, the image of ¢ along p,; note

that the loop with label g4 on the left is not constructed using an arc contained in C\ R; as
a consequence the monodromy on right around the ‘same’ loop is changed by conjugation: we

have, in fact, g = g§ """ ), g} = g5 and g = goe(ar)e(a)gs(e(az)? ).

Fix in the following v > 1, let ¢ € §,B(Q+, G) and use Notation 2.2. Let (1, ..., (x be embed-
ded arcs in C joining % with the points z1, ..., z; of P, intersecting pairwise only at the endpoint
« and such that (; € C\ R for I + 1 < i < k. Recall that, since ¢ € B(Q+,G), the point 0 belongs
to P; we use the convention that z; = 0. Let fi,..., fi be the admissible generating set of &(P)
obtained by replacing each (; by a loop contained in a small neighbourhood of {; and spinning
clockwise only around z;.

We define a new configuration ¢’ = (P’,¢) € BG = Hur(0R; G)o.1 as follows:

e P’ is the intersection P N IR;
e ¢ sends, for [+ 1 <i <k —1, the generator f; to p(f;) € G and it sends fi to the unique
element ¢'(fi) € G such that the resulting configuration ¢’ = (P’,v’) satisfies w(¢) =1 € G.

Note that G is treated as a complete PMQ when defining ¢’. See Figure 9.
DEFINITION 5.24. The previous assignment ¢ — ¢’ defines a map of sets
}Jl,l &,IB%(Q.H G) — BG

To check that the previous is a good definition, we need to verify that the choice of the
arcs (1,...,( is not relevant in computing p,(c¢). The generator f; is uniquely defined up to
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conjugation by a power of the element [y] € &(P) represented by a loop 7 spinning clockwise
around R. It follows that v (f;) is well-defined, as an element of G, up to conjugation by a
power of 9([v]), i.e. up to conjugation by a power of w(c) = 1 € G: here we use that the total
monodromy attains constantly the value 1 € G on configurations of B(Q., G); this shows that
¥(fi) € G is well-defined for 1 <14 < k — 1 and 9(f) is also uniquely determined by the values
Y(f;) for 1 <i <k —1 and by its characterising property. Therefore, p, (c) is well-defined.

We next check that p,: §.B(Q+,G) — BG is continuous. Roughly speaking, p, splits a
configuration in §,B(Q+,G) in two parts, the part supported on IR and the part supported
on R and it pushes all points in the second part to 0, thus giving rise to a new configuration
supported only on OR. Continuity of p, depends on the fact that if we perturb a configuration
staying inside the stratum §,B(Q4,G), then no point in R can collide with R and vice versa
no point in IR can move in the interior, as this would let the internal total norm jump (down
and up, respectively). Here it is important that, working with B(Q., G), the local monodromy
of a point lying in R is required to have positive norm.

Formally, let ¢ € §,B(Q+,G) and let U be an adapted covering of P: in particular, we have
zieU; C R for all 1 <4 <. Denote by ¢ =p,(c) € BG and let U’ be the restricted, adapted
covering of P', i.e. U = (Upy1,...,Ux). Then p, sends the intersection U(¢;U)NF,B(Q4,G)
inside $(¢/; U') € BG: this essentially follows from the observation that, for ¢ = (P,1), @) €
U(e;U)NFB(Q4,G), we have PC Uy U---UU U (U' NAR).

Notation 5.25. Let v >0, let T C C be a contractible subspace containing *, let X C T be a
semialgebraic subspace and let X be a subspace of Hur® (X; Q). We denote X, = [ico, (XN
Hur®(X; Q),).

PROPOSITION 5.26. The map p,: §.B(Q+,G) — BG is a bundle map with fibre Hur(7:€; Q).
The restricted map p,: 0?3, B(Q.,G) — BG is also a bundle map with fibre 9™ Hur(R; Q. ),.
The two bundles admit compatible local trivialisations, i.e. they form a couple of bundles.

Proof. Choose a small closed interval J C (0,1) x {0} C R and choose an arc (s joining * with
the midpoint of J. Let T be the union T =R U J U {; C C and note that T is contractible and
contains R in its interior. We can define a map of sets

i§: §.B(Q+,G) NHur(R\ J,aR\ J; Q,G) — Hu''(R; Q).
in the spirit of [Bia23a, Definition 3.15]. To define this map, let
c€F5B(Q+,G)NHur(R\ J,0R\ J; Q,G).

Using Notation 2.2, this means that ¢ € §,B(Q4,G) and the support P of ¢ does not intersect
J. The inclusion T\ P C C\ P gives rise to an inclusion of groups 8T(PNR)C &(P) and,
by restriction, an inclusion of PMQs Qj(l;oz @)(POR) C Q(r,0)(P). We define if(c) to be the
configuration ¢ = (P',v/), where P’ = PNR and /: Qq(l;oz @)(P’) — @ is the composition of the
above inclusion with ¢: Qg ) (P) — Q.

To show that i% is continuous at ¢ € F,B(Q4,G) NHur(R\ J,0R\ J; Q,G), let U be an
adapted covering of P with U C C\ J, let ¢ =i%(c) as above and let U’ be the restriction of U
to P C P, i.e. U’ consists of those components of U that intersect non-trivially P’; equivalently,

U’ consists of those components of U that are contained in R.
We claim that i sends U(c,U) N §,B(Q+,G) inside (¢, U’) € Hur' (R; @ ),; since every

)

small enough adapted covering U’ of P’ with respect to (R, () can be extended to an adapted
covering U of P with respect to (R \ J,0R \ J), the claim suffices to prove continuity of i%.
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For the claim, let ¢ = (P,,$) € U(c,U) N F.B(Q4,G); fix an admissible generating set
fi,..., fr of &(P) extending an admissible generating set fi,...,f; of &T(P’) and regard
fi,..., fr as elements of &(P) by the inclusion &(P) = &(U) C &(P). Let P, = PNU; for all
1 <i <k and write ]f’Z ={%i1,...,2ik}- Choose an admissible generating set (fi7j)1§i§k,1§j§ki
of &(P), such that the equality f; = fi,l ----- fzk:l holds in &(P) for all 1 < i < k. The hypoth-
esis on ¢ implies that for all 1 <4 <[ the product 1[1( le) e 1/3( flkz) is defined in @ and is equal
to ¥(fi), in particular Zf;l N(qﬁ(f”)) = N(¢(fi)). Summing over 1 < i <[ and recalling that
¢ € 5.B(Q4,G), we obtain the equality 22:1 Zf;l N(q[)(f”)) = v. This implies that P can only
intersect the open sets Uji1,..., U in points of OR or in inert points for ¢; since ¢ has no inert
point, we have that P is contained in the union 9R U U’. Tt follows that ¢ = i(¢) is supported
on U’; the fact that ¢ is contained in U(c/, U’) follows now directly from the definition of i% and
from the already mentioned equalities 1(fi1) - -- - - O(fir,) = w(fi) for 1 <i <1

Now note that the intersection §,B(Q4,G) NHur(R \ J,0R \ J; Q, G) is precisely the preim-
age along p, of the open subspace Hur(OR \ J; G)o.1 C BG. The product map p, x i% gives a
homeomorphism

p, X i%: p H(Hur(OR\ J; G)o.1) = Hur(OR \ J; Qo1 ¥ Hur'(R; Q4 ),.

Since the open sets Hur(0R \ J; G)o,1 form an open covering of BG, for varying J, we obtain that
p, is a bundle map, i.e. it admits local trivialisations. The fibre of the bundle is homeomorphic
to the space Hur(R; Q4 ),.

The local trivialisation p, X i% restricts to a local trivialisation of the restriction of p, to
9™ 5, B(Q4,G) C F,B(Q4,G), with restricted fibre 9 Hur(R; Q4 ), O

6. Rational cohomology

In this section we assume that Q is a finite, Q-Poincaré PMQ and G is a finite group
and compute the rational cohomology of B(Q4,G). Recall from [Bia23a, Definition] that a
PMQ Q is Q-Poincaré if Q is locally finite and for all @ € Q the space Hur(R; Q. ), is a Q-
homology manifold of some dimension: in this case @ admits an intrinsic norm hA: Q@ — N and
Hur(R; Q4 ), is an orientable Q-homology manifold of dimension 2k(a) for all a € Q. See [Bia23a,
Proposition 9.7].

Our interest for the space B(Q4,G) and its cohomology comes from Theorem 4.22 and
Proposition 5.5, relating B(Q, G) to the topological monoid HM(Q) Note that, for a fixed PMQ
Q, we are free to choose a group G completing Q to a PMQ-group pair (Q, G, ¢, t). If Q is finite
we can, for instance, take G = G(Q)/K(Q), which is a finite group; here (Q) denotes the kernel
of the map p: G(Q) — Autpnmq(Q)°P, giving the right action of G(Q) on Q by conjugation: if
Q is finite, then Autpmq(Q)°P is also finite and contains a subgroup isomorphic to G(Q)/K(Q).
See also [Bia21, Lemma 2.13]. Thus, if we are given a finite, Q-Poincaré PMQ Q, we can complete
Q to a PMQ-group pair by adjoining a suitable finite group G.

Recall from [Bia2l, Definition 4.29] that A(Q) C Q[Q] is defined as the subring of the
PMQ-group ring Q[Q] consisting of the invariants under conjugation by G:

A(Q) = Q[QI°.

As a Q-vector space, A(Q) is spanned by elements [S] = )", ¢[a], for each conjugacy class
S C Q. In this section we consider Q[Q]“ as a graded, associative ring, by putting the generator
[a] in degree 2h(a), for all a € Q; similarly A(Q) is a graded ring with [S] in degree 2h(a), for
any a € S. By [Bia21l, Lemma 4.31] the ring A(Q) is a commutative ring, hence by our choice of
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degrees it is a graded-commutative ring, supported in even degrees. We will prove the following
theorem.

THEOREM 6.1. Let (Q,G) be a PMQ-group pair with Q finite and Q-Poincaré and with G
finite. Then there is an isomorphism of rings

H*(B(Q+,G); Q) = A(Q).
In this entire section we use the abbreviation B = B(Q, G).
6.1 Two spectral sequence arguments

Since the space B is equipped with a filtration by subspaces F,B, we can compute H*(B; Q) by
the associated Leray spectral sequence, whose first page reads E}"” = HPV(F,B, F,_1B).

LEMMA 6.2. For v > 0 the inclusion F,_1B C Flfa_tllﬂ% is a homotopy equivalence. Moreover, we
have cohomology isomorphisms

H*(F,B,F,_1B;Q) = H*(F,B, F*,B;Q) ~ H*(3,B,0™'§,B; Q).

Proof. Recall Definitions 5.6 and 5.7. For ¢ € F,B let 20, (c) be the supremum in [1/2,1] of all
1/2 < e < 1 for which H2(¢,1/¢) € F,_1B. We define a homotopy

s
H}: F,Bx[0,1] — EB, (e He (e, 1— :
v v [ ]_) v (CS)F—) | € S_l_my(c)
The homotopy HE restricts to a deformation retraction of Ff* B onto F,_;B, whence the first
cohomology isomorphism follows. The second cohomology isomorphism follows from excision: in
fact, F, 1B = (20,)~ (1) and the open set (20,)~((1/2,1]) is contained in F'2!, (B), so we can
apply excision. ]

We can now focus on the relative cohomology groups H*(F,B, 0™F,B; Q).

PROPOSITION 6.3. For v > 0, the cohomology groups H*(F,B, 0™F,B; Q) are concentrated in
degree x = 2v; the group H* (F,B, 0™ F,B; Q) is isomorphic to A(Q)a,, i.e. the degree-2v part
of A(Q).

Proof. We use the Serre spectral sequence E(v) associated with the couple of bundles
p,: (5.8, 0"F,B) — BG: its second page reads

E(v)5? = HP(BG; H(Hur(R; Q4 )., 0™ Hur(R; Q1) Q).

The first step is to compute H*(Hur(f%; Q. )a, 0t Hur(7°€; Q1)a;Q) for a € Q, and the argu-
ment for this will be similar to the proof of Lemma 6.2. Consider the closed unit square R and
define 9% Hur(R; Q4 )q := Hur(R; Q4 ) \ Hur((z¢/2 + (1/2)R); Q4 )a and OHur(R; QO )q :=
Hur(R; Q4 )a \ Hur(R; Q4 )a. The subspace 9™ Hur(R; Q) C Hur(R; Q4), contains config-
urations whose support intersects O™'R (see Definition 5.20), whereas 0Hur(R; Q. ), C
Hur(R; Q4), contains configurations whose support intersects OR.

Recall Definition 5.6: for all s > 1 the map H®(—,s): C — C is a lax endomorphism of the
nice couple (R, 0); if we consider Hur(R; Q4 ), as a connected component of Hur(R; Q+), under
the inclusion Q C Q, we obtain by functoriality a homotopy

HE: Hur(R; Q4 ) X [1,00) — Hur(R; Q4 ).
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For ¢ € Hur(R; Q4 ), denote by 20,(c) the supremum in [1/2,1] of all 1/2 < e < 1 for which
HE(c,1/¢) € OHur(R; Q4 ),. We define a homotopy

HEIB%: Hur(R; Q+)a X [O, 1] — Hur(R; Q-}-)(u (C, 8) — HIE <C, 1—s+ ws(c)>.

The homotopy H2 restricts to a deformation retraction of ot Hur(R; Q.+ )q onto O Hur(R; Q4 )a;
moreover, the subspace OHur(R;Q;), of Hur(R;Qi), is contained in the interior of
o™ Hur(R; Q4 ), and

O™ Hur(R; Q4 )a \ OHur(R; Q4 )a = 8™ Hur(R; Q4 )a.
We thus obtain cohomology isomorphisms
H*(Hur(R; Q4 )a, 0™ Hur(R; Q4 )a; Q) = H* (Hur(R; Q1 )a, 0™ Hur(R; Q1 )a; Q)
= H*(Hur(R; Q4 )a, 0 Hur(R; Q4 )a; Q).

Since Q is Q-Poincaré, as a consequence of [Bia23a, Lemma 9.5 and Proposition 9.7] the coho-
mology H*(Hur(R; Q4+ )4, 0 Hur(R; Q4 )4; Q) vanishes in degrees * # 2v = 2h(a) and it is equal
to Q in degree x = 2v. Going back to the Serre spectral sequence, the group &(v)5? vanishes
for ¢ # 2v and 8(1/)’2”2" is equal to the twisted cohomology group H?(BG; Gaco,Q); this already
shows that the spectral sequence collapses on its second page. Moreover, since G is a finite group

and we are considering twisted cohomology with coefficients in a G-representation over Q, all
cohomology groups except possibly H® vanish, i.e. the entire page £(v)2 vanishes except possibly
EW)Y = HY(BG; e, Q).

The action of G on @aegy Q is the Q-linearisation of the action of G on the set Q, by
conjugation; the invariants of the action of G on P,co, Q are therefore the Q-vector space
spanned by conjugacy classes of @ of norm v: this vector space is isomorphic to the degree-2v
part of A(Q). O

Proposition 6.3 implies that the E1-page of the Leray spectral sequence associated with the
filtered space B is supported on the main diagonal, i.e. EY”” =0 whenever p # v. This implies
that the spectral sequence collapses on its first page and, thus, we obtain an isomorphism of
graded Q-vector spaces

H*(B(Q+,G); Q) = A(Q).

It will be convenient to specify a particular isomorphism of graded QQ-vector spaces. Recall that,
since Q is Q-Poincaré, it is locally finite and coconnected; in particular, for all ¥ > 0 and for all
b € Q, there is a canonical fundamental class

[Arr(Q)p, NAdm(Q)p] € Hay([Arr(Q)sl, [NAAmM(Q)s[; Q),
see [Bia2l, Definition 6.25]. Recall also the map of pairs
v =1y (|Arr(Q)s], [NAAmM(Q)s|) — (Hur(R; Q4 )p; 0 Hur(R; Q4 )s);

by [Bia23a, Lemma 8.23] v is a continuous bijection and the hypothesis that Q is locally finite
implies that |Arr(Q)s| is compact, hence vy, is a homeomorphism. We thus obtain a fundamental
class

[Hur(R; Q4 )p; O Hur(R; Q4 )p] € Hop(Hur(R; Q4 )p; O Hur(R; Q4 )p; Q).
Using the homotopy equivalences of pairs

(Hur(R; Q1 )p; O Hur(R; Q4 )p) ~ (Hur(R; Q4 )p; 0™ Hur(R; Q4 )p)
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and excision we obtain a fundamental class
[Hur(R; Q4 )p; 0™ Hur(R; O )s] € Hoy (Hur(R; Q4 )p; 8% Hur(R; O )p; Q).

Notation 6.4. Let [S] € A(Q)2, be the generator corresponding to the conjugacy class S C Q,,.
We regard [S] as the (unique) cohomology class

[S] € H* (Hur(R; Q),, 0% Hur(R; Q4),; Q)

satisfying the following property: for all b € Q,, the Kronecker pairing of [S] with the
fundamental homology class [Hur(R; Q. )y, % Hur(R; Q4 ), is 1if b€ S and is 0 if b ¢ S.

Note that [S] is invariant under the action of G by conjugation, hence [S] corresponds
to a cohomology class in H?(F,B, 0T, B; Q), which we also denote [S]. Finally, we use the
canonical isomorphisms

H™(§,B,07'3,8;Q) = H*(F,B,0" F",B;Q) = H*(F,B:Q) — H" (B; Q)
to regard [S] as a cohomology class in H?(B(Q.,G); Q).

6.2 A strategy to compute the cup product

We fix v,/ > 0 throughout the rest of the section; our aim is to compute the cup prod-
uct H?(B; Q) ® H* (B; Q) — H**+2V(B; Q). We fix [S] € H*(B;Q) and [S'] € H*'(B;Q):
our aim is to express the cup product [S] — [S] € H*+?''(B;Q) as a linear combination of
generators [T, for T' varying among conjugacy classes of Q contained in Q, .

The restriction map H*(B; Q) — H*(F,,,/B; Q) is an isomorphism in degrees * < 2v + 21/
therefore, it suffices to compute the cup product H% @ H?' — H?*2" for the space F, .B.
In the rest of the subsection we use the abbreviation Fy = F,B.

The argument to compute the cup product on F, ., is based on certain subspaces Fi;, Flfat
and Ff of F,,; there are inclusions F,,,, 1 C Fi, as well as F,_y C F2* and F,,_; C Ff
and we will prove that the last two inclusions are, in fact, homotopy equivalences. Postponing
the actual definition of Fj., Flfat and Frfat, we introduce some notation.

Notation 6.5. We introduce several subspaces of F},,:
Fliat = Flfat U Frfat§ Svw = Fyiw \ Firs
alfatgl/—i-u’ = gl/-‘rl/' N Flfat§ afatsjv—i-u/ = Su—i-l/’ N Frfat; alfftgu—i-u’ = Su-&-u’ N Flfrat§
O = Towr N O, = G NFRY 0P, = Fur 0 AR

There is the following square of inclusions of subspaces, where both horizontal arrows are
inclusions of a closed subspace of F,,1,s in the interior of a larger subspace of F,,

fat
Foipo1 —— FJ3,

v

| /

fat
Fy — Ffat

This implies that the inclusions of couples (F, 1./, 31fratSV+V/) C (Fyyur, Fﬁf‘t) and (§,,./, a{gtg,,,yl) -
(Fyyrrs Flgat) satisfy excision. Finally, the bundle projection p, .,/ : §,1,» — BG exhibits also the
subspaces OfUF, ., ORYE, ., OBV, 0, By O, L, 0BT, and Of'F, , as bundles over
BG, with suitable fibres: local trivialisations for these bundles can be obtained by restricting the
local trivialisations of p,.,/ given in the proof of Proposition 5.26.
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The previous technical results will allow us to write two commutative diagrams of cohomol-
ogy groups, where we understand Q-coefficients for cohomology. We state the two diagrams as
propositions for future reference.

PROPOSITION 6.6. There is a commutative diagram of cohomology groups as follows.

HQD(FV-I-V’) ® HQV/ (Fl,_,_,,/) — H2y+2yl (FV+V’)

o

H2V(Fy+1/’7 F'lfat) ® HQU' (Fl/Jrl//? Frfat) N H2V+2V/(Fl,+,/, Efrat)

[==3

HQV (31/—&—1/’ 5 alfatgu—l—l/) X HQV/ (gu—f—u’a aﬁatgu—&-lﬂ) é H2V+2V/ (Su—&-lﬂy 6{;%3'1/—}—1/)

o

H2V ("SIV,I// ) 81fatgu,l/’) & szl ("S:V,l// ) 853‘:3%1/’) % H2V+2V/ (gu,y’a alfftgu,u’)-

We will consider [S] ® [S'] as an element in H?(F, ., F2") @ H* (F,,,/, F?) in the
previous diagram and compute explicitly the image of the cup product [S]— [S] in
H2y+2y (gy—l—y’a 81fgtgu+u’) = H2V+2V (Su,z/a 81fftgu,z/)-

PROPOSITION 6.7. There is a commutative diagram of cohomology groups as follows.

H2u+2u’ (Fquy’ )

T o

’ ’
H2u+21/ (Fu—i-y/;Flfrat) H2u+21/ (Fy+y/,Ffat )

v+v'—1

’ . 0 !
H2v+2v (Su—i—y/y 8{?t{§y+ul) —7 5 Htw (gy-&-ll’ ) 8fatSV+V/)

We will compute the image along the natural map 6 of [S] — [S’] and identify it with the
class [S] - [S'] € A(Q)ayro.-

6.3 Proof of Propositions 6.6 and 6.7

DEFINITION 6.8. Recall Definition 5.20. We let 2. =2/7+v/—=1/2 and zc, =5/7+V—1/2;
note that the homothety centred at z.; with rescaling factor 1/4 maps R to the open square
(1/4,3/8) x (7/16,9/16), i.e. (1/4,3/8) x (7/16,9/16) = Tz, /8 + (1/8)702; similarly (5/8,3/4) x
(7/16,9/16) = Tz, /8 + (1/8)R. See Figure 10.

For e = 1,1, we define a subspace 'R of R by Of*R := R\ (7zc.e/8 + (1/8)R). The iden-
tity of C is a map of nice couples (R,IR) — (R, 9P'R), giving rise to a map (Idc)«: F4, =
F, B — Hur(R,9™R; Q,G). Recall Definition 5.9: we define Flfat C F,1, as the preimage
along (Id¢). of F,—; Hur(R, 8{“72; Q,G) and, respectively, Ff** C F, .,/ as the preimage along
(Idc) of F,r_y Hur(R,0™'R; Q, G).

Roughly speaking, a configuration ¢ = (P, v, ¢) € F,4,/ lies in F/*" if the sum of the norms
of the values of the monodromy ) around points of P lying in the open square (1/4,3/8) x
(7/16,9/16) does not exceed v — 1; similarly for Ff* referring to the open square (5/8,3/4) x
(7/16,9/16) and replacing the threshold v — 1 with v/ — 1. To keep the notation simple, we avoid
adding the indices v and v/ to F® and Ff*'. Note that F,_; C Ff** and F,,_; C Fa.
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- - =
I
I

FIGURE 10. The complement of the left (respectively, right) white square is Of**R (respectively,

85“72), whereas the total grey area is 0™'R; the dotted vertical line splits the total grey area
into ™R and PR,

LEMMA 6.9. The inclusions F,,_1 C Flfat and F,_1 C Frfat are homotopy equivalences.

Proof. We focus on the inclusion F,_; C Flfat, the other one being analogous. Recall
Definition 5.6 and the proof of Lemma 6.2. For ¢ € F,;,, we denote by 20; ,,(¢) the supremum in
[1/8,1] of all 1/8 < & <1 for which (H3. )«(¢c,1/€) € F,,_1B. We define a homotopy

HB:FI/ v/ 071 v+v's ) 5 71_ L .
B Fon X 01] = P (e20) = (2,), (61— 5+ 5

The homotopy HE/ restricts to a deformation retraction of Flfat onto F,_1. O
Lemma 6.9 implies the top left isomorphism in Proposition 6.6.

LEMMA 6.10. The space F,f‘fy,_l is contained in the union KU Fft,

Proof. Let ¢ € szﬁ:u’flv use Notation 2.2 and for ¢ =1, r denote by P, C P the intersection of P
with the open square (7z.4/8 4+ (1/8)R). Without loss of generality, we may assume that there
are indices 0 < I < 1" <[ such that P = {21, . . .,Zl/} and P = {Zl’+17 .. .,zl//}. Let fl, .. .,fk
be an admissible generating set. Then the hypothesis ¢ € Flfffy,_l, together with the fact that
(T261/8 4+ (1/8)R) and (7zc,/8 + (1/8)R) are disjoint and contained in (z./2 4+ (1/2)R), implies

the inequality p

l/
SIN@U) + Y Nw(f) <v/ 1
It follows that at least onéof the followin’g twb inequalities holds:

l//

ll
DON@(f) <v—1, Y N@((fi) <V -1
i=1

i=l'+1

the first inequality implies ¢ € Flfat, the second implies ¢ € Frfat. O
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Notation 6.11. We introduce several subspaces of R, see Figure 10:
R =10,1/2] x [0,1], RF =][1/2,1] x [0,1],
R =(0,1/2) x (0,1), R"=(1/2,1) x (0,1),
IR = RN\R!, R =R'\ R,

7z, 1o Tz 1o
fato1 1 c,l fat 1 1 ¢,
O*R =R — 4+ -R O*R =R + -R

o o Tz 1. ° ° TZe1 1.
afatRl _ Rl C, R fatRl _ Rl C, “R).
8 + 8 , 0 8 + 8

DEFINITION 6.12. Recall Definition 5.9. The identity of C induces maps of nice couples (R;9) —
(R,R\R") and (R;0) — (R,R\ R"). We define F}, C F,,,s as the subspace of configurations
¢ such that at least one of the following conditions holds:

o (Idg)«(c) € Hur(R,R\@l; Q+,@G) has norm <v —1;
e (Idc)s«(c) € Hur(R, R\ R"; Q+,G) has norm < 1/ — 1.

Roughly speaking, the complement §,,, of F, in F,,, contains those configurations
¢ = (P, v, ¢) such that P C R\ {1/2} x (0,1), the sum of the norms of the values of ¢ around
points of PN R is equal to v and the sum of the norms of the values of ¥ around points of
PNR" is equal to /.

LEMMA 6.13. The space Fi, is contained in the interior of Fﬁf"t, considered as subspace of F,, .

Proof. Given ¢ = (P,1, ) € F, it suffices to note that for any adapted covering U of P with
the sets U; of diameter at most 1/8, the restricted normal neighbourhood U(¢;U) N F, 4,/ is

contained in Flfrat. O

Lemma 6.13 implies, together with the inclusion F, 4, 1 C Fj;, that the couple (F}, 4., Fﬁat)
satisfies excision with respect to the subspaces F},y,/_1 and Fj, i.e. the two bottom right vertical
isomorphisms in Proposition 6.6 hold. This concludes the proof of Proposition 6.6.

In the same way, the two bottom vertical isomorphisms of Proposition 6.7 follow from excision
of the subspace F,,1,_1, whereas the top diagonal isomorphism follows from the computation of
H*(B; Q) using the Leray spectral sequence. This concludes also the proof of Proposition 6.7.

6.4 Conclusion of the proof of Theorem 6.1

As remarked already, p,., exhibits all subspaces of §,y,» occurring in the bottom rows
of Propositions 6.6 and 6.7 as bundles over BG: the proof of Proposition 5.26 provides local
trivialisations also for these bundles. Our next aim is to compute the cohomology groups of
these bundles and of the couples of bundles they form.

DEFINITION 6.14. For v,/ > 0 we denote by Q, C Qy, x Qs the subset of couples (a, b) for
which the product ab is defined in Q. We set

Hur(R; Qi) = H Hur(R'; O ) x Hur(R"; Q1 ).
(a,b)Gwal
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We regard Hur(7°€; Q4)vy as a subspace of Hur(f%; Q4)yy by regarding each product
Hur(R'; Q4 ), x Hur(R"; Q4 ), as a subspace of Hur(R; Q, )4 under the inclusion given by

Hur(RY Q. )a x Hur(R*; Q)

i€ x i
So,1/27 S1/2.1

HurSOJ”(Tz’,l; Q) X HurSl/“(er; Q)

|-v-

Hur®1 (R; Q4 )b

.C -1
(150,1)

Hur(R; Q4 )ab.

The generic fibre of the bundle p, ,: §,,» — BG is homeomorphic to the space
Hur(?i’,; Q1 )yy. To see this, note that the same argument of the proof of Proposition 5.26
identifies the fibre of p,4,/: §,,» — BG with the subspace of Hur(7°€l URF ; Q4 )y containing
configurations ¢ with the following properties:

° igo,m sends ¢ to a configuration in HurSo.1/2 (7021; Q) with total monodromy in Q,;

° igl/m sends ¢ to a configuration in HurSl/Zvl(Rr; Q) with total monodromy in Q,;

e the product of the elements w(igoyw(c)) and w(igum (¢)) is defined in Q.

We can further identify the fibres of the following restrictions of p,4,/:

e the fibre of §,,» — BG is identified with Hur(?oz; Q4 )v,, as already mentioned;
e the fibre of alfatg,,,,,, — BG is identified with the intersection of Hur(R;Q4),,, with the
product 0™ Hur(RY; Q. ), x Hur(R"; Q4 ),/, i.e. with the space

oft Hur(R; Qi) = H ™ Hur(RY; Q4 ) x Hur(R'; Q4 ),
(a,b)GQU’V/
where 8% Hur(RY; Q. )q := Hur(R!; Q4 ), \ Hur(7z.,/8 + (1/8)R; Q4 )
e the fibre of afatg,,,,,/ — BG is identified with the intersection of Hur(R;Q4),,, with the
product Hur(R!; Q,), x 0% Hur(R"; Q,),/, i.e. with the space
o Hur(R; Qi) = H Hur(R; Q4 )q x 82 Hur(R; Q4)s,
(a,b)GQUW/
where 0™t Hur(R"; Q4 ); := Hur(R"; Q4 )y \ Hur(7zcr/8 + (1/8)R; Q1 )y D
e the fibre of 0*'F,,, — BG is identified with the union &' Hur(R;Q.),, := 0 Hur(R;
Qi)yu U Qfat Hur(7O€; Qi)

By using functoriality with respect to suitable semialgebraic homeomorphisms of C, we can
identify the couples of spaces

(Hur(R'; Q4 )a, 0™ Hur(RY; Q4 )a) = (Hur(R; Q4 )a, 0™ Hur(R; Q4 )a);
(Hur(R'; Q4 )y, 0™ Hur(R"; Q4 )s) = (Hur(R; Q1 )p, 0™ Hur(R; Q4 )p).

Notation 6.15. For d > 0 we denote by Q(Q,,,)[d] the graded Q-vector space concentrated in
degree d, with basis the set Q, .

For d,d" >0 we denote by fi,,: Q(Qy,)[d] ® Q(Q,)[d'] — Q(Qu,)[d + d'] the pairing
given by (a,b) ® (a,b) — (a,b) for (a,b) € Q,, and (a,b) ® (a’,1') — 0 for (a,b) # (a/,V) €
Ql/,u’ .
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Consider the bottom row of Proposition 6.6: all groups involved are cohomology groups of
couples of bundles over BG. The cup product on fibres reads as follows, where we simplify the
notation by writing Hur for Hur(R; Q4 ):

H?¥(Hur, -, 8lfat) ® H2V (Hur, ./, ofaty = 2+ (Hur, ./, Olffft)

I I

Q(Qu.w) [2v] @ Q(Quw) 2] —— Q(Quw) [2v + 2V,

Notation 6.16. For a € Q, we denote by ¢, € Hur(?oel; Q4)q the unique configuration sup-
ported on {z}; similarly, for b € Q,, we denote by ¢, € Hur(R"; Q4 ), the unique configuration
supported on {z}.

The three cohomology groups in the top row of the previous diagram have bases in
bijection with the set Q, ,/. For instance, H 2"(Huryvl,x,81fat)) has a basis given by the coho-
mology duals of the homology classes [Hur(R'; Qy)q, 8% @ [¢,5]. Here [Hur(RY; Q. )4, 8%t €
Hy,, (Hur(RY; Q. )a, 8™ Q) is the fundamental homology class and [erp] € Ho(Hur(R'; Q4 )p: Q)
denotes the ‘ground’ homology class.

A similar description gives a basis for H2' (Huryv,,/,afat) in bijection with Q, .,
whereas for H?*T2 I(Hur,,’l,/,alfft) we consider the cohomology duals of the homology classes
[Hur(RY; Q4 )a, 8%%) @ [Hur(R*; Q4 )y, 8. Taking G-invariants, we obtain an explicit computa-
tion of the bottom row of Proposition 6.6 as follows:

HQV (gu,u’ ; a]fatgu,l/) & HQV, (gu,u’ ) afatgu,l/) — H2V+2V/ (SU,V’, alfftgl/,u’)

3 £

G G G
(Q(Quu) 20]) © (Q(Quw) 2V])  — (Q(Quwr) [2v +20/])

LEMMA 6.17. Let S C Q, be a conjugacy class of Q and consider [S] as a cohomology class
in the group € H*(F, ,, B =2 H*(F,,,, F,_1) 2 H¥(F,,,/); the restriction of [S] to
H*(F, ., 085, /) is the element

ST (a,h) € QUQ[20).

(ab)€Q,,,/NSXQ,/
Similarly, for a conjugacy class S’ C Q,, the class [S'] € H*'(F,4,., F2%) restricts to

Z (aa b) € Q<Qu,u’> [2V,] = HQV, (SV,I/’a afatgu,u’)-

(a.b)€Q,,/NQy xS"

Proof. We focus on the first part of the statement, the second being analogous. Fix (a,b) € Q, ,/;
the couple of spaces (Hur(R'; Q4 )4, 0%) x ¢;p can be embedded into the couple of bundles
(v a{atgw) as part of the fibre over the basepoint of BG. We consider the homology class

[Hur(RY Q1 )a, 0™ @ [erp] € How(Fowr, 0" For; Q);

such classes generate the group Ha, (§,., a{atgw,/; Q), so in order to identify the restriction of
[S] € H*(F, 1., Ff*; Q) to H* (T, 0/F, ,/;Q), it suffices to compute the Kronecker pairing
of the restricted [S] with all homology classes of the form [Hur(R'; Qy)q, 8% @ [c,4]. Let j be
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the composite
j: (Hur(']él; Q4 )a, afat) X {cr,b} — (gu,u’a alfatgu,u’) C (Fyywr, Flfat);

then we can also consider the homology class j, ([Hur(RY; Q4 )q, 8] @ [crp)) in Hoy(Fy oy, B2t Q)
and compute its Kronecker pairing with [S].
Fix a homotopy H: C x [0, 1] — C with the following properties:

e forall 0 <s <1, H(—,s) is a semialgebraic self-map of C fixing C \ R pointwise and sending
8{”7?, into itself;

e H(—,0) is the identity of C;

e H(—,1) restricts to a homeomorphism of couples (R, 'R 5 (R, 0™ R) and it sends Zex

T
25

Then ‘H induces a homotopy of maps of couples
Ha: (Fypwr, ) % [0,1] = (Fypur, F™),
and composing this homotopy with j we obtain a homotopy of maps of couples
H="Ho(jxId): (Hur(R'; Q4 )a, 0™) x {erp} x [0,1] — (Fyppr, F™).
Since H(—,0) = j, we have
jo ([(Aur(R'; Q4 )a, 0™ @ [erp]) = H(=, 1) ([Hur(RY Q4 )a, 0™ @ [erp),

so we can focus on the Kronecker pairing of the latter homology class with [S].
Now note that, by construction, H(—, 1) can be considered as a map of couples

(Hur(/}él; Q+)a7 afat) X {cr,b} - (%lla afatgu) C (FerI/a Fifat);

more precisely H(—,1) restricts to a homeomorphism of (Hur(R'; Qy)a, %) x {c.5} onto
(Hur(R; Q4 )a, 8™), where the latter couple is considered as part of the fibre of p,,: (., 9™'F,) —
BG over the unique configuration ¢, .5y = (P, 9) satisfying the following properties:

® . 1) is supported on the set P = {0, 2 };
e if v is a simple loop in Sy o spinning clockwise around z}, then 1 ([y]) = ¢(b) € G.

It follows that H(—,1).([Hur(RY: Q. )a,0™]® [crp]) is the image of the homology class
[Hur(R; Q1 )a, 0™ € Hoy(Fy,0™F,) under the inclusion (§,,0%F,) C (Fytu, F2Y); the
Kronecker pairing of the latter class with [S] is 1 if and only if a belongs to S. O

Lemma 6.17 implies that for S € Q, and S’ C Q,/, the restriction of the cup product
[S] — [S] to the cohomology group in the bottom right corner of Proposition 6.6, can be
identified with the G-invariant element

Z (av b) € (Q<Qu,u’> [2V + 2V/])G = H2V+2V/ (gl/,l//7 alfratglf,z/; Q)

(a.b)€Q, ,/NSXS’
The following lemma concludes the proof of Theorem 6.1.
LEMMA 6.18. There is a commutative diagram
H2 P2 (Hur(R; Q1 )y, O3 Q) —— H* 2 (Hur(R; Q4),0™); Q)

¥ !

Q <Qu,1/’> [QV —+ 2V/] [-1-1-1
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Here the vertical maps are the canonical isomorphisms, given by the bases of the top homology
groups of elements of the form [Hur(R'; Q4 ),, 8% @ [Hur(R*; Q1 )y, 8], for (a,b) € Q,,,» and,
respectively, of the form [Hur(R; Q4 )., %4, for ¢ € Q,4,s. Moreover, [-] - [~] denotes the map
(a,b) — [a] - [b]. Passing to G-invariants, we obtain the following commutative diagram:

’ 5 9 / P,
H2V+2V (3u+y’7 alfgtgy+u’; @) — H2V+2V (SDJ,»I/’? afatgu+u’ ) @)

o |

(Q(Qu,) [2v+20]) S A(Q)ayson

Proof. We first argue that commutativity of the first diagram implies commutativity of the
second. The Serre spectral sequences computing the cohomology of the couples of bundles
(S,,+,,r,6fft3’y+y/) and (§y4v, 0™ F 1) have both a second page concentrated in the single
entry in position (0,2v + /), with value, respectively, the G-invariants

H> 2 (Hur(R; Q4 )y, O QY and - H* 2 (Hur(R; Q1),0™); Q).

Ir »

R

This implies that the spectral sequences collapse and that the top row of the second diagram
is obtained from the top row of the first diagram by taking G-invariants. This, together with
the fact that all arrows in the first diagram are G-equivariant, shows that the second diagram is
obtained from the first by taking G-invariants.

It suffices therefore to prove commutativity of the first diagram. Recall that Hur(?oz; Qi )tw
is an orientable Q-homology manifold; moreover, both differences Hur(R; Q4 )yyr \
ofat Hur(R; Q4 )yyr and Hur(R; Q4 )pqy \ 0% Hur(R; O )y4. are relatively compact inside
Hur(7°2; Q.+ )yt We can therefore apply Poincaré-Lefschetz duality and reduce to proving
commutativity of the following diagram, where we use the abbreviation Hur for Hur(?oz; Qy):

Ho(Hury, \ 0 Hur,1,; Q) —— Ho(Hur, 1, \ 0®™*Hur,;,/; Q)

I b

Q Q) [0] —— Beco,., @

Here the bottom right group is abstractly isomorphic to Q[Q]2,+2,7, but lives naturally in degree
0. The vertical isomorphisms are given as follows:

o the left vertical map comes from the identification of Hur, - \8{5“ Hur, 4, with

7 1. ;1.
H Hur Zol +-R;Q+ | xHur Tz, +-R; Q4
8 8 8 8 b
(a,b)Gnyyl a

induced by the maps igo s and igm U the second space has connected components in bijection
with @, ./, by taking the total monodromies of the two factors;
e the right vertical map comes from the identification of Hur, 4,/ \ ofat Hur, ;. with

z 1.
Hur<2C + 572; Q+> ;
v+v/
the second space has connected components in bijection with Q, ., by taking the total
monodromy.

Commutativity of the last diagram follows from the observation that for all (a,b) € Q, ./,
if we set ¢ =ab € Q, then the inclusion of Hur,;,s \ 9 Hur,,,/ into Hur,,,, \ 0% Hur,,/
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restricts to an inclusion

TZc1 1o 7z 1o
Hur< 8C7 + gR; Q+>a X Hur( 8C’r + gR; Q+>

Zc
2

1.

b c
6.5 Stable rational cohomology of classical Hurwitz spaces

We apply Theorem 6.1 in the case of a finite PMQ Q@ with trivial multiplication: recall from
[Bia21, Example 6.20] that every PMQ with trivial product is Poincaré, in particular it is Q-
Poincaré. The algebra A(Q) is isomorphic in this case to Q[zg|S € conj(Q4)]/(z%), i.e. the
quotient of the polynomial ring over Q with one variable xg in degree two for each conjugacy
class S C Q4 , modulo the ideal generated by the squares CL‘% A minimal Sullivan model for A(Q)
is given by the commutative differential graded algebra (A(Q),d), where

A(Q) = Qlxs |5 € conj(Q4)] @ Aglys | S € conj(Q+)],

with g in degree two and yg in degree three and where the unique non-trivial differentials are
d(ys) = % for all S € conj(Q4). Looping twice the minimal Sullivan model (i.e. decreasing all
degrees of the zg and yg by 2) and restricting to one connected component, we obtain that
the rational cohomology of Qo BHM(Q) is isomorphic to Ag [Ys | S € conj(Qy4)], ie. it is the free
exterior algebra over Q generated by classes yg in degree one, one for each S € conj(Q4): the
class y is obtained by looping twice yg € A(Q).

There is a special case of interest, namely when Q has the form ¢ U {1o}, for ¢ C G a finite,
conjugacy invariant subset of a group G: then by [Bia23a, Proposition 7.3] the space HM+(Q)
is homotopy equivalent to the topological monoid Hurf; := [[,,o Hurg,, of classical Hurwitz
spaces with monodromies in ¢, see [EVW16, Subsection 2.6] and [RW19, Subsection 4.2]. Adding
a disjoint unit, we obtain a homotopy equivalence of topological monoids HM(Q) ~ {1} LI Hur;
we can now recall that the weak homotopy type of the group completion of a topological monoid
does not change up to homotopy if we add a disjoint unit to the monoid and, thus, we obtain
weak equivalences

QBHM(Q) ~ QB({1} UHuw$,) ~ QB Hur$,.

Thus, we obtain a computation of the rational cohomology of QB Hurg, which is computed
already in [RW19, Corollary 5.4]; a claim of the result already appears in the withdrawn
preprint [EVW12], as a combination of the statement of [EVW12, Theorem 2.8.1] for n = 2 and
X = BG and the discussion in [EVW12, Subsection 5.6]. See also the conjecture in [EVW16,
Subsection 1.5], which predicts the previous computation for ¢ being the conjugacy class of
transpositions in a symmetric group on at least three letters.
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Appendix A. Deferred proofs

A.1 Proof of Proposition 2.13
The two cases HM and HM are analogous, so we will focus on the case of HM, which is slightly
more difficult.

Recall Definition 2.4. We define in a symmetric way HM as the subspace of [0,00) x
Hur(ﬁR, 5) containing couples (¢, ¢) with ¢ supported in g,w.

Note that HM  is contained in the subspace [0, 00) x Hur(Rg-,d), where we define (Rg-—, d)
as the nice couple ((—o0,0) x [0, 1], (—00,0) x {0,1}).

By [Bia23a, Proposition 4.4] the assignment (t,c) — (¢, (7—¢)«(c)) gives a continuous map
—: HM — [0, 00) X Hur(ﬁR7 5), note that 7~ has values in the subspace HM : in fact, 7~ is a
homeomorphism HM ~ HM .

Recall [Bia23a, Definition 3.16]. The following composition of continuous maps takes values
in HM C [0, 00) x Hur(Rg, d) and it coincides with z: HM x HM — HM as a map of sets:

HM x HM Tl HM x HM
</
[0, 00) x Hur(Rg-,d) x [0,00) x Hur(Ras, 9)
lm xigimﬁo x1d xigoyx
[0, 00) x Hur®=>(Rp—,d) x [0, 00) x Hur®o= (R, d)
|-
[0,00) % [0, 00) x Hur®=>> (Rg- U Reos, d)

[0,00) % [0,00) X Hur(Rg- U Res, d)

|
[0,00) x [0,00) x Hur(Rg, d) a [0,00) x Hur(Rg, d).

Here, by abuse of notation, we denote by — LI — the map (¢, ¢, t',¢') — (¢,¢/,c U ¢); the map 7 is
defined by (t,t,¢) +— (t + ', (7)«(c)). This shows continuity of the product u.
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To prove associativity of u, let ¢; = (P;,1;,¢;) be a configuration in Hur(?éti,é) for ¢ =
1,2,3. Under the identification ig()t, we can regard ¢; as a configuration in HurSot (Ry;,0).

Then (7, )«(c2) is a configuration in HurStt1+02(Ry, 4+ t1,9) and (74, 44, )«(c3) is a configura-
tion in HurSt+tzi+t2+ts (Ry, + t1 4 to,d)). The compositions ¢; U (74, )« (c2) U (74,44, )« (¢3)) and
(¢1 U (72,)«(c2)) U (Tt,+4,)«(c3) represent the same configuration in HurSoti+tz+ts (Rey U Ry, +
t1 U 7ét3 + t1 + to, 5) and by inclusion and change of ambient to C, the same configuration in
Hur(7v2h+t2+t3, 5) This proves associativity of f.

The fact that (0,(0,1,1)) is a two-sided unit for u follows directly from Definition 2.11,

together with the fact that p is the identity of C.

A.2 Proof of Lemma 2.18

We start by proving that the elements mo(1,¢,) generate mo(HM) as a monoid. Let (¢,¢) €
HM and use Notation 2.2. If P = (), then we can continuously reduce ¢ to 0, so that 7 (¢,¢) =
70(0, (0, 1,1)) is the neutral element of 7o(HM). Suppose from now on that P # (.

Suppose first that P = {z} consists of a single point. By Lemma 2.7 we can connect (¢, ¢)
with a configuration of the form (1,¢’); we can then connect (1,¢’) with a configuration of the
form c¢,: for this we can use any homotopy of C through semialgebraic homeomorphisms which
is at all times supported on R (i.e. C\ R is fixed pointwise at all times) and pushes the unique
point 2/ € P’ to z. It follows that (¢,¢) and (1,¢,) are connected in HM.

Suppose now that |P| > 2. We can perturb the positions of the points z; € P inside 7%4 and
assume that their real parts R(z;) are all different: again, we use a semialgebraic isotopy of C
supported on 7o€t, starting from the identity of C and ending with a semialgebraic homeomorphism
of C mapping P to a set of points with distinct real parts.

Without loss of generality we assume that P already has this property and we also assume
R(z1) < --- < R(zx); choose positive real numbers 0 =ty < t; < --- <t =t such that ¢;_; <
R(z) < t; for all 1 < i < k. In particular, we can regard ¢ as a configuration in

Hur(Rtl URty—t; +t1 U URp—t, , + th—1).

Recall [Bia23a, Definition 3.15] and for all 1 <i <k let ¢; € Hur(Ry,_s, ,) be the image of ¢
along the following composition:

C
15
Sti_1.t;

Hur(703t1 U 7Ozt2—t1 +t1U--- U ﬁtk—tk—l +tk—1) E— Hurstifl*” (703157:—757‘,71 +ti_1)

.C -1
ig )
Sty 1.t

Hur(Ry, ¢, , +ti1) Hur(R¢, s, , )

(T—t; 1)

Then (¢, ¢) is equal to the product (t; — tg,¢1) - -« - - (tg — tg—1,c) in HM and each ¢; is supported
on the single point 7_¢, , (z;). It follows that the elements my(1, ¢,) generate 7o(HM) as a monoid.

Now let a,b € Q and note that (1,c¢,) - (1,¢;) has the form (2,¢), for some ¢ = (P,¢) €
Hur(Ry) with P = {2 = zc, 22 = 2c + 1}. Let f1, f2 be the admissible generating set for &(P)
with f; represented by a loop supported on S_ 1 and f2 represented by a loop supported on
S1,+400- ]

We can fix a semialgebraic isotopy H: C x [0,1] — C supported on Rg, starting from the
identity of C and swapping at time 1 the two points of P according to a clockwise half Dehn
twist. We use the notation ¢/ = (P, ') := H.(c; 1) € Hur(Ry).
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The homeomorphism H(—,1): C\ P — C\ P induces an automorphism of the fundamental
group H(—,1)«: &(P) — &(P) which restricts to an automorphism of the fundamental PMQ
H(=, 1) Qp, (P) — Qp, (P).

Note that H(—,1). sends fo — f1 and f{? — fo. By definition, we have ¢/ = o H(—,1); !,
hence ¥/(f1) =¥ (f2) =b and ¥'(f2) = ¥(f{?) = ab. Tt follows that (P,v') = (1,¢c) - (1,¢p),
hence mo(1,¢q) - mo(1, ¢3) = mo (1, ¢p) - mo(1,¢yp)-

Suppose now that the product ab is defined in Q. Again by Lemma 2.7 we can connect
(2,¢) == (1,¢q) - (1,¢) to a configuration of the form (1,c”), with ¢ € Hur(R); for instance we
can take ¢’ = A,(c,1/2), where the semialgebraic isotopy A: C x (0,00) — C was introduced in
the proof of Lemma 2.7. In fact, we have ¢’ € Hury (R)a; by [Bia23a, Corollary 6.5] the space
Hur (702)ab is contractible, in particular it is connected; hence, mo(1,¢,) - mo(1, ¢) = mo(1,¢") =
770(1’ cab)‘

A.3 Proof of Proposition 3.3
« b “ o
DEFINITION A.1. We introduce a subspace HM, C HM,. A couple (t,¢) € HM, belongs to
< b
HM, if ¢ > 1 and the point zE =t— % belongs to the support of c.

o b o
Note that HM, is invariant under the action of HM by left multiplication.

DEFINITION A.2. Let ¢d € Hur(R,d) be as in the proof of Lemma 3.2 and note that (1,¢d) e

< b b
HM_ ; in fact, the right multiplication map p(—; (1, ¢})): HM — HM has image inside HM 4. We
< < b
define HMt_jF C HM, as the image of u(—; (1,c{)).

See Figure A.1. Note that also the subspace HvMi is invariant under the action of HM by left

multiplication. Moreover, u(—, (1,¢1)): HM — HuMﬁ_ is a homeomorphism of HM-left modules

v v b
and HMg_ C HM_ contains precisely all couples (¢, ¢) such that, using Notation 2.2, the following

hold:
e {Z}CPC{22}UR_1;
e {: Q(P) — Q factors through Q(P \ {27}) along the point-forgetting map i

Q(P\ {22}), see [Bia23a, Notation 2.17];
e similarly, p: &(P) — G factors through &(P \ {22}) along i

P .
Pyt 2 =

P . b
P &(P) — &(P\{z}).
Passing to bar constructions, we obtain inclusions of spaces

BHM, HM") < BHM, HM,) — B(HM, HM,).

The first space B(HVM,HVMi) is homeomorphic to FEHM and, hence, is contractible, as HM
o v b o o
is a unital monoid. We will prove that the inclusions B(HM,HM, ) — B(HM,HM,) and

B(HM, HvMi) — B(HVM,HVMZ) are weak homotopy equivalences: this will conclude the proof
of Proposition 3.3.

o b o
LEMMA A.3. The inclusion HM, C HM is a homotopy equivalence.

Proof. The argument is similar to that of the proof of Lemma 3.2, but a bit more care is needed.
We define a continuous map &°: (0,00) x Rany (Rs) x [0,1] — Ran, (Reo) by the formula

E {2, ), s) = {(1—8)z1 + sty..., (1 — 8)z + st}.
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N
N

as

g4 #1

=)

- -

v b o
FIGURE A.1. Two configurations in HM, ; note that only the right one belongs to HMi

We also let j: (0,00) — (0,00) be given by the formula

1
t—= fort>1,
2

(1) =

~+

— for t <1.
5 ort <

We consider then the homotopy H”: HM_ x [0,1] — (0, 00) x Hur(Ra,d) given by the formula
H(t,¢;8) = (t, ¢ x E(i(t),2(c), 5)).
Let HvMJr,tzl denote the subspace of HM, containing all couples (t,c) with ¢ > 1. Then the
homotopy H? has the following properties:
H’(—, s) sends HM inside HM, for all 0 < s < 1;
H’(—,0) is the identity of HM,;
° HI’(—, s) preserves the subspaces Hvl\/[ir and HVMJﬁtzl at all times;
y < b
H’(—, 1) sends HM ;> inside HM,,..

o b o
This shows that the inclusion HM, — HM, ;>; is a homotopy equivalence. Moreover, there is
a deformation retraction of HM, onto HVM+¢21 given by the formula

((tv C); 3) = ,u((max{(), S — t}7 (®7 L, ﬂ))> (tv C))

< b <
It follows that the inclusion HM, C HM, is a homotopy equivalence. O

By Lemma A.3 the inclusion of semisimplicial spaces

o o b o o
Bo(HM,HM, ) C B,(HM,HM,)
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is levelwise a homotopy equivalence; after (thick) geometric realisation we obtain the following
corollary.

« b .
COROLLARY A.4. The inclusion B(HM,HM, ) C B(HM, HM,) is a weak homotopy equivalence.

For the second step of the proof of Proposition 3.3 we define a homotopy
M HM, % [0,1] — HM)

by setting H*: ((¢,¢);s) — (t+s,¢x {20, ,}) for 0 < s <1 and (t¢) € HVMEF, here ¢ x {2}, ,} is
the evaluation at (c, {2}, ,}) of the external product

— X —: Hur(Reo, ) x Ran(Ruo) — Hur(Re, J).
Roughly speaking, the homotopy H* has the following effects on configurations (t,c) € HvMi

e it increases by 1 the first component ¢ of a couple (¢,¢) € HVMEF,

e it splits ztb , which already belongs to the support of ¢, into two points; one point remains at
the position z? and ‘keeps the local monodromy’ (which is only defined as an element of G,
because ZE € 57%00); the other point moves gradually to a distance 1 to right and has trivial
local monodromy 1 (also only defined as element of ).

Note that H* has the following properties:

)
o H¥(—;0) is the identity of HM,;
e H%(—;1) has values inside HvMﬁJr,
v < b
e for all 0 < s <1 the map Hﬁ(—; s) is equivariant with respect to the action of HM on HM_
by left multiplication.

v )
As a consequence, H* induces a homotopy of B(HM, , HM ) starting from the identity and

ending with a map B(HM,, HMljr) — B(HM,, HVMi) We obtain the following lemma, which is
the last step needed to prove Proposition 3.3.

< < b
LEMMA A.5. The space B(HM;,HM_ ) admits a deformation into its contractible subspace
< < < « b
B(HM,, HM&) As a consequence B(HM,HM, ) is weakly contractible.

A.4 Proof of Proposition 4.15
We first give a rough idea of the proof: the value of & at a given sequence (w;t,¢) in
AP x (HM)? (respectively, in AP x (HM)P) is obtained by combining several steps: the first
step is computing the product f(w;t, ¢) = (t1,¢1) - (tp,cp) in HM (in HM). The product
map [, however, does not factor through BHM (respectively, BHM): one of the reasons is
that if wo =0, the sequence (w;t,c) is equivalent in BHM (respectively, in BHM) to the
sequence obtained by forgetting wg and (¢1,¢1); yet the product (¢1,¢1)---- - (tp,¢p) is, in gen-
eral, different from the product (t2,¢9)---- - (tp,¢p). In fact, letting 0 < imin < imax < p be as
in the discussion before Definition 4.5, we might reduce (w;t,c) to an equivalent sequence
(wimin, ey Wi timin‘f‘l’ ey timax; Cimin+1s-++> Cimax), yet the product (tl, Cl) MR (tp, Cp) iS, in
general, different from the subproduct (¢; . +1,¢, . +1) """ (Lo > Cimas ) -

We solve this problem by using the barycentres b < b and by considering only the part of
the configuration (t1,¢1)---- (tp,¢p) lying in the strip Sbe_,b:: more precisely, using a suitable
expansion and translation (implemented via the homotopies 7, and A,), we map the strip Sb;,bj
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to the strip Sp,; and then we collapse the two parts of the obtained configuration lying outside the
strip Sp,1: we first collapse all points lying on left (respectively, on right) of Sp; to the segment
0 x [0, 1] (respectively, 1 x [0,1]) via the homotopies x; and k} , we further collapse these vertical
segments to the two points 2} and 2L via (H$). and finally we get rid of the residual information
of the G-valued local monodromy at z) and 2% by quotienting by the action of G' x G°P. The
key observation is that the part of (¢t1,¢1)----- (tp, ¢p) lying in the strip Sb;7b€+ only depends on
the subproduct (t;_. +1,¢, .. +1) " (fipaes Cimax )- Lhe conditions on e, moreover, ensure that
either e = 0, i.e. b7 = b~ and bF = b, or the part of ji(w;¢,¢) lying inside Sb;,bj is ‘empty’ and,
in particular, independent of the positive value of ¢; this is the rough reason why & and, hence,
o and &, do not depend on e.
Before starting the proof of Proposition 4.15, we give a definition.

DEFINITION A.6. Let € be a nice couple, let ¢, ¢ € Hur(€; Q, G) be two configurations and let
x € T C C be a contractible subspace. We say that ¢ and ¢’ agree on T if the following hold,
using Notation 2.2:

e PNT=PNT;
e for every loop v C T \ P representing an element [v] in Q¢(P) we have ¢¥(y) = ¢'(7);
e for every loop v C T \ P representing an element [v] in &(P) we have ¢(y) = ¢'(7)).

Consider the particular case in which € splits as a disjoint union of nice couples €;, & with
¢; C T and €, contained in the interior of C \ T: then [Bia23a, Definition 3.15] gives configura-
tions i%(c) and i%(¢’) in Hur"(€1; Q, G) and the condition that ¢ and ¢’ agree on T is equivalent
to the equality i%(c) = i5(¢/).

Now let (w;t,¢) be as in Notation 4.2 and assume w; = 0 for a fixed 0 < j < p; let (¢',¢) =
dj(t, ¢) (see Definition 3.1), let w’ be obtained from w by removing the (vanishing) jth coordinate
and present w’ as (wp,...,wy, 1), t' as (},...,t, 1) and ¢’ as (¢},...,¢, ;). We want to prove
that &(w;t,¢) = &(w'; ¢, ¢'): this implies that & descends to a map o defined on BHM (on BHM).

Let ag, . ..,ap,b,b", b~ be computed as in Definition 4.4 with respect to (w; ¢, ¢) and, similarly,
let ag, ..., a;, 1,0, (b7)', (b7)" be computed with respect to (w'; ', ¢'). We observe that e(w;t, ¢) =
0 if and only if the support P of fi(w;t,¢) intersects non-trivially the strip S,- ,+. Similarly,
e(w';t,¢) = 0 if and only if the support P’ of ji(w’;t',¢') intersects non-trivially S,—y +y. We
now observe that for j >0 we have P NSy y+ = P' NSy y+), whereas for j =0 we have
(P NSy p+, —t1) = P' NSy oy In particular, either intersection is empty if and only if the
other is or, in other words, e(w;t,¢) > 0 if and only if (w';¢',¢') > 0. In this case, however,
we have that both &(w;t,¢) and &(w';t’,¢') coincide with the basepoint ¢ of Hur(8",d)q gov
(respectively, of Hur(o,d)g,gor) and, in particular, they are equal. This proves also the first
statement of Proposition 4.15.

From now on we assume e(w;t,¢) = e(w’;t',¢') = 0, allowing us to use the lower and upper
barycentres instead of their e-variations in the computations of the rest of the argument. Note
that b — b~ =b — (b~) and bT — b = (b")' — V. In particular, in the following we assume b* —
b= =" — (b)) >0.

First, we give an alternative description of the configuration fi°(w;t,c). We regard c;, for
1 <i < p, as a configuration in Hur®# (R,,) (in Hur®# (R,,,d)) and consider the configuration

(o= )w(er) € Hur w1 =0"i=0™ (R, 4 a; — b™)

. S - - _ 5
(respectively, (7o, | - )s(c;) € Hur %1727~ (Ry +a; — b, 9)).
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Using the disjoint union map — U — from [Bia23a, Definition 3.16] we obtain a configuration

¢ = (Tag—b=)w (1) U+ U (Tq,_ —p=)«(cp),
which a priori belongs to
Hursao—b_’ap"’_ (70%1 +ayp—b" U---L 7O€tp +ap—1— b_)
(respectively, Hur’eo—b=ap—b- (7ét1 +ag—b U---U 7v2tp +ap_1—b", 5)),
but can be naturally considered as a configuration in Hur(Rg) (respectively, Hur(Rg,d)). The
equality (7_p-)«(fi(w;t,c)) = ¢ follows directly from Definitions 2.11 and 4.6. It follows then

from Definition 4.6 that i°(w;t,¢) is equal to A.(c;1/(b* —b7)). In a similar way, we obtain a
configuration

¢ v= (T — oy ) () LU U (7o) (1),
which we consider as a configuration in Hur(Rg) (in Hur(Rg,d)) and identifications ¢ =
(r—omy)s (ia's £, €)) and pP(ul: 1, ¢') = A (¢ 1/((6F) — (b)),
LEMMA A.7. The configurations ¢ and ¢’ agree on the vertical strip [0,b7 —b~] x R.
Proof. We use Notation 2.2 and argue the statement differently, depending on the value of j.

e If1<j<p-—1,thenc=7¢.
o If j =0, note that a1 —b~ =ay — (b7)' > 0and ap — b~ =a,_; — (b7)" > b+ —b7; then both
¢ and ¢’ can be regarded as configurations in
Hur(?i’,tl +ag—b- U 7%,%,@1 +a1—b"),
(respectively, Hur(R¢, +ag — b~ U 7U€ap_a1 +a—b, (5)),
and the restriction map i . from [Bia23a, Definition 3.15] sends ¢ and ¢’ to the same

a1—b7,ap—
configuration in the space

Hur o1 -4 ap b~ (7O€ap,a1 +a; —b7) (respectively, Hur o —b- o0 (703%,@1 +a1—b7));

this common image is essentially the configuration ¢’. Now we use that Sy j+_;- C Say—b-,a,—b-
to conclude that ¢ and ¢’ also agree on Sy ,+_;- and, finally, we note that agreeing on S j+_-
is equivalent to agreeing on [0,b" — b~] X R, as all configurations are supported in H.
o If j = p, note that ag = ap, b~ = (b7)" and b" = (b*)’ < a1 = aj,_;; then both ¢ and ¢’ can
be regarded as configurations in
Hur(ﬁ%,l +ap—b" U 702tp +ap-1—b7),
(respectively, Hur(ﬁam1 +ap—b" U 7v2tp +ap1—0b", 5)),
and i§ o o sends ¢ and ¢ to the same configuration in the space
ag—bT,ap_1—
S _ o
Hur —>%-17"" (Rq, , + a0 —b")
. S — —
(respectively, Hur —>»-17"" (R, _, +ag—b7));

this common image is essentially the configuration ¢’. Now we use that Sg+_,- C
Sag—b-,a,_1—b— t0 conclude that ¢ and ¢’ also agree on Sy ,+_;- and again we note that agreeing
on Sy p+_p- is equivalent to agreeing on [0,b7 —b~] x R.

O

1712

https://doi.org/10.1112/S0010437X2400719X Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X2400719X

DELOOPINGS OF HURWITZ SPACES

By applying A.(—;1/(b" —b7)) = Au(—;1/((b7) — (b)) we obtain that, in a similar way,
b (w;t, ¢) and a°(w';t', ¢') agree on the vertical strip [0, 1] x R.

Note that the vertical strip [0,1] x R is preserved by the homotopies x~, kT and H® at all
times and the homotopies k™, k™ restrict even to the identity on [0, 1] x R. This, together with
Lemma 4.12, implies that ,&gélrc := & (wg; ti, ¢;) and ¢ = ,L]Zi%lr(w
the set P := HS(P) U, Let k= |P|and [ = [P\ do].

Recall that ¢=(P,¢,$) and ¢ = (P,4/,@') are configurations in Hur(3", 5)55“ (in
Hur(o,d)54:). We can choose an Ir-based admissible generating set fioeeo,s f,; of &(P) (see
[Bia23a, Definition 6.10]) with the following properties:

I tl,¢}) are both supported on

RS SR

e two generators, denoted fl and fr, are represented by loops spinning clockwise around z. and
2, respectively;

e the other generators are represented by loops contained in the strip [0, 1] x R; in particular,
we assume that fl, e JEZ correspond to points in P\ 9.

Since ¢ and ¢ agree on [0,1] x R, we have that ¢ and ¢’ agree on the admissible genera-
tors fl, ey f[, whereas ¢ and ¢’ agree on all admissible generators fl, ey f];: except, possibly,
the two generators fl and fr. It follows that ¢ and ¢ have the same image in the quotient
Hur(élr,é)G’Gop (respectively, Hur(o,d)g ger), i.e. d(w;t,¢) =a(w';t',¢'). This concludes the
proof that & descends to a map o defined on BHM (on BHM).

For the second statement of the proposition, let (w;t,¢) be as in Notation 4.2 and assume
(tj,cj) =(0,(0,1,1)) for a fixed 0 < j < p;let (¢',¢') = d;(¢, ¢), so that vice versa (t,¢) = s;(t’,¢)
and let w’ be obtained from w by replacing the consecutive entries w; and w;j;1 with their sum

wj +wji1; present w' as (wy, ..., wy, 1), t as (t],...,t, 1) and ¢’ as (¢},..., ¢, ;). We want to
prove that &(w;t,¢) = &(w'; ¢, ¢): this implies that & descends to a map o defined on BHM (on
BHM).

For this it suffices to note that j(w;t,¢) = f(w';t',¢’) and also the barycentres b,b~,b* are
equal when computed with respect to (w;t,¢) or (w';t',¢’). The formula for & only depends on
these parameters.
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