
Appendix D

Polarization and spin-1/2 fermions

It is essential to know the technique for dealing with the spin and po-
larization of any spin-1/2 fermion, electron or nucleon, entering into a
scattering process. Consider first the case of a massless fermion, for exam-
ple a relativistic electron. The positive energy, stationary state, momentum
eigenstate of the Dirac equation in this case satisfies1

α · pψ = Epψ

Ep = |p| (D.1)

Introduce the Dirac matrix γ5 with the properties

γ5 ≡ γ1γ2γ3γ4

γ5γμ + γμγ5 = 0

γ2
5 = 1 (D.2)

In the standard representation, γ5 and γ5α take the form

γ5 =

(
0 −1

−1 0

)
; γ5α = αγ5 =

( −σ 0
0 −σ

)
≡ −σ (D.3)

Introduce the projection operators defined by

P↓ =
1

2
(1 + γ5) P↑ =

1

2
(1 − γ5) (D.4)

These satisfy

P 2
↓ = P↓

P 2
↑ = P↑

P↓P↑ = 0 (D.5)

1 Recall h̄ = c = 1 here. The reader can extend the arguments to the negative energy

solutions.
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Define

ψ↓ = P↓ψ ψ↑ = P↑ψ (D.6)

Now multiply Eq. (D.1) on the left by, for example, P↓. Since γ5 and α
commute, this gives

α · pψ↓ = |p|ψ↓ (D.7)

Multiply this equation on the left by γ5 and make use of the above
relations

−σ · pψ↓ = |p|ψ↓

σ ·
(

p

|p|

)
ψ↓ = −ψ↓ (D.8)

One concludes that P↓ projects out of the Dirac spinors that part with
negative helicity. P↑ does just the opposite.

One can now compute the cross section for massless fermions of any
helicity by inserting either P↑ or P↓ before the appropriate Dirac spinors
and then summing over all helicities. This converts the required expressions
to traces, and only the appropriate helicity will contribute to the answer.

Suppose the fermion has a non-zero rest mass m. One can then go to
the rest frame of the particle. In this frame, the four-vector pμ = (0, im).
The Dirac spinors for a particle at rest reduce to simple Pauli spinors,
and the spin operator in this frame is just σ/2. The spin can be quantized
along any convenient z-axis in this rest frame. Introduce a spin vector
which points along this z-direction

S ≡ z

|z| ; rest frame (D.9)

Evidently

σ · Sψ = ±ψ (D.10)

One can readily construct projection operators for spin up or down along
this z-axis in the rest frame

P↑ =
1

2
(1 + σ · S) P↓ =

1

2
(1 − σ · S) (D.11)

Now define a four-vector Sμ to be the result obtained by Lorentz
transforming Sμ ≡ (S, 0) from the rest frame. One evidently has the
Lorentz invariant relations

p · S = 0 S2 = 1 (D.12)
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The projection operators can be put into covariant form by using Eqs.
(D.3), with the result that for positive energy spinors (for which, in the
rest frame, βψ = ψ)

P↑ =
1

2
(1 − γ5 α · S)

=
1

2
(1 + iγ5 γ · S β)

=
1

2
(1 + iγ5 γμSμ) (D.13)

This result can now be readily transformed from the rest frame to any
other Lorentz frame. A similar result is obtained for P↓, and the reader
can verify that Eqs. (D.5) are again satisfied.

These projection operators can now be inserted in front of the appropri-
ate Dirac spinors and sums then taken over all spins, which converts spin
sums to traces. Only the appropriate spin states will contribute. The result
will be expressed in terms of Lorentz invariant expressions involving the
four-vector Sμ which has a simple interpretation in the rest frame of the
particle in terms of the direction of its spin.

Let us illustrate these developments with a simple exercise. Consider the
scattering of longitudinally polarized, relativistic (massless) electrons from
point Dirac nucleons with one-photon exchange. Let h = ±1 represent
the helicity of the incident beam with Ph = (1 − h γ5)/2. Calculate the
polarization of the final nucleon defined by

PS ≡ N↑ − N↓
N↑ + N↓

≡ N
D (D.14)

Here the arrows refer to the direction S in the rest frame. Since all
common factors cancel in the ratio, one only needs to consider the Dirac
traces obtained upon insertion of the appropriate projection operators.
One needs the contraction of

η̃μν = trace {γμ(1 − hγ5)(−ikργρ)γν(−ik′
σγσ)} (D.15)

W̃μν = trace {γμ(1 + iγ5γλSλ)(M − ipαγα)γν(M − ip′
βγβ)}

At least four gamma matrices must be paired off with the γ5 to get a
non-zero result, and

trace {γμγνγργσγ5} = 4εμνρσ (D.16)

Hence

η̃μν = −4(kμk
′
ν + kνk

′
μ − δμν k · k′) − 4h εμρνσkρk

′
σ

W̃μν = 4M2δμν − 4(pμp
′
ν + pνp

′
μ − δμν p · p′)

−4M(εμλνβSλp
′
β + εμλανSλpα) (D.17)
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In the contraction of the two tensors, both terms must either be even
or odd in the interchange of μ and ν to get a non-zero result. For the
contraction of the antisymmetric terms use

εμνρσ εμναβ = 2(δραδσβ − δρβδσα)

εμνρσ εμναβ aρbσcαdβ = 2 a · c b · d − 2 a · d b · c (D.18)

Hence for the polarization PS in Eq. (D.14) one has for massless
electrons

N .
= +2hM(S · k p′ · k′ − S · k′ p′ · k − S · k p · k′ + S · k′ p · k)
= −hM q2 S · (k + k′)

D .
= 2M2 k · k′ + 2 k · p k′ · p′ + 2 k · p′ k′ · p (D.19)

In the second line q ≡ k′ − k = p − p′ has been used. One only has a
non-zero PS in this case if h is non-zero and there is a polarization transfer
(see [Ar81]).
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