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Abstract

Suppose that in a complete graph on N points, each edge is given arbitrarily either the color red or the
color blue, but the total number of blue edges is fixed at T. We find the minimum number of
monochromatic triangles in the graph as a function of N and T. The maximum number of
monochromatic triangles presents a more difficult problem. Here we propose a reasonable conjecture
supported by examples.

1980 Mathematics subject classification (Amer. Math. Soc): 05 C 15.

1. Introduction

Let KN be the complete graph with N vertices (points) and suppose that each edge
(line joining two vertices) is assigned exactly one of two possible colors, here
always blue or red. After the coloring let B be the number of monochromatic
(solid) blue triangles, and let R be the number of solid red triangles. The
minimum of B + R for each N > 0 was determined by the author [2]. Later Sauve
[4] gave a simpler proof of the same theorem using an ingenious method of
assigning weights to each pair of edges at each vertex. The maximum of B + R is
trivially N(N — IX N — 2)/6, and the associated extremal graph is obtained by
painting every edge blue, or painting every edge red.

Suppose that we modify the problem by considering only those colorings of KN

in which the number of blue edges is T where T is a fixed preassigned number.
This also fixes the number of red edges U, and of course U = N(N — l ) /2 — T.
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[2 ] Triangles in a complete chromatic graph 87

Let m(N, T) be the minimum of B + R for all colorings with Tblue edges, and
let M(N,T) be the maximum of B + R under the same conditions. In this work
we find m(N,T) explicitly for every pair of integers N, T, with 0 < 2" <
N(N - l ) /2 and 0 < N < oo.

The problem of finding M(N,T) seems to be more difficult. In Section 4 we
discuss the difficulties and we propose a reasonable conjecture for the form of the
solution.

2. The basic equations

Following Sauve [4], we attach the weight 2 to each pair of blue lines issuing
from a vertex of the graph. We assign the same weight 2, to each pair of red lines.
For a mixed pair, one edge blue and one edge red we assign the weight - 1 . Let b
and rj be the number of blue edges and red edges respectively at the point
Pj, j = 1,2,...,N. Then for eachy

(2.1) bj + rj = N - l ,

a n d

(2-2) 2>, = 27\ £ 0 = 2U,

where all sums run from 1 to N unless otherwise noted. When we compute the
weight of the edges meeting at Pj in accordance with the above assignment of
weights, we obtain

bAbJ ~ !) + rArJ ~ !) - b/r
Then the total weight of the colored graph is

(2.3) W = Zbj(bj - 1) + ZrArj ~ l) " I V>

On the other hand if we examine the weight of each triangle, the weight of a
monochromatic triangle is 6, and the weight of a mixed triangle is 2 - 1 - 1 = 0.
Then for the total weight we also have B + R = W/6. Hence for any coloring,

(2.4) B + R = \Z\bj{bj - 1) + 0(r, - l) - b

Now b(b - 1) + r(r - 1) - br = (b + r)2 - (b + r) - 3br. If we use (2.1) and
(2.2), then the formula (2.4) for B + R gives

- I ) 2 - N(N - 1) -6T(N -
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or

Thus to minimize or maximize B + R with T constant it is sufficient to minimize
or maximize Q = Y.bJ.

We observe that the red edges have disappeared in (2.5). Hence the problem of
minimizing or maximizing B + R is equivalent to the problem of finding extreme
values of Q for an incomplete graph on N vertices with T edges. With this
interpretation, R is the number of independent triples; that is, the number of sets
of three vertices with no edges joining any pair.

A sequence of integers (blt b2,.. .,bN) with

(2.6) N - 1 > bx > b2 > ••• >bN>0,

is called a graph sequence (degree sequence) if there is a graph on N vertices such
that the vertex Pj has degree bj. Since we can always number the vertices in such a
way that (2.6) is satisfied, there is no loss of generality in assuming that the
sequence (bv b2,...,bN) is nonincreasing. A sequence can satisfy (2.6) and still
not be a graph sequence. For example (3,2,1,0) is not the sequence of degrees for
any graph on 4 vertices. A necessary and sufficient condition for a sequence to be
a graph sequence can be found in the text by Behzad and Chartrand [1, p. 12].
For our objective we will need the following necessary conditions:

(2.7) £ft. = 2T, an even number;

(2.8) bx < t h e n u m b e r of n o n z e r o bj in (b2, b3,. . . , b N ) ,

and for each k with 0 < k < N

(2.9) Zbj- E bj<k(k-l).
7 = 1 j-k + 1

3. The minimum number of monochromatic triangles

Suppose that in a sequence (2.6) there are two indices j and k for which
> bk + 2. We replace bj by bj — 1 and bk by bk + 1. Since

this replacement will decrease Q = Ybj. Thus

LEMMA 1. The minimum of Q over all sequences of integers (2.6) that satisfy (2.7)
occurs for a sequence in which either all bj are the same, or no two differ by more
than 1.
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To compute this minimum, we set

(3.1) T = q+N' ° < < > < N >

where q and p are integers. Then the minimizing sequence has the form

(3.2) S = (q + l,q + l,...,q+ \, q, q,... , q ) ,

where there are p terms bj = q + 1, and the remaining bj = q. A brief computa-
tion with this sequence and (2.5) gives

(3.3) B + R

To show that this lower bound is sharp we must produce a graph that has the
required sequence as a graph sequence. From (3.1) we see that IT = Nq + p must
be even. Thus certain combinations of N, q and p cannot occur. Of the eight
possibilities (with respect to parity) we can not have (1) N odd, q odd, p even, (2)
N odd, q even, p odd, (3) N even, q odd, p odd, and (4) N even, q even, p odd.

Suppose that q is even. We may visualize the vertices arranged in order on a
circle. Join each vertex with its nearest q/2 neighbors on either side by blue edges.
Thus PjPk is blue if \j — k\ < q/2, where y or k are reduced mod N if necessary.
This gives each bj — q. Now color PjPk blue for k = j + I + q/2 and j =
1,2,...,p. Then this graph has the sequence (3.2) with respect to blue edges, and
Jjbj = 2T.

Suppose that q is odd. Then q + 1 is even and we proceed as in the first case
joining each vertex by a blue edge to its nearest (q + l ) / 2 neighbors on either
side. Thus PjPk is blue if \j — k\ < (q 4- l ) / 2 . This gives too many blue edges, so
we change some to red as follows. If iV is even, then p is even, and N — p is even.
Then change from blue to red the edges PNPN-v PN~2^N-3'• • • u n t ^ (N - p ) /2
edges have been changed.

If N is odd, and q is odd, then p is odd and N — p is even. We proceed as
before to change from blue to red PNPN-i, PN-I^N 3>- • • u n t i ' (N — p)/2 edges
have been changed. Thus in every possible case we have a graph with the
sequence (3.2) with respect to blue edges. This completes the proof of

THEOREM 1. Suppose that the edges of a complete graph on N vertices are colored
with two colors, red and blue, coloring T edges blue, and the remaining red. Then
minimum (R + B) is given by the right side of (3.3), where p and q are defined by
(3.1).
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4. The maximum number of monochromatic triangles

The same computation that gave Lemma 1 shows that for a maximum we
should make the early bj as large as possible. Suppose that the sequence is subject
only to the conditions (2.6) and (2.7). Define integers q and p by TT = q(N — 1)
+ p where q > 0 and 0 < p < N — 1. Then the sequence S = (N — 1,...,N —
1, p ,0 , . . . ,0) with N — 1 repeated q times will make ILbj a maximum. But S is not
a graph sequence except in the trivial cases, all b^ = 0 or all bj = N - 1.

To find graph sequences with large Hbj, we introduce two special graphs.
First, there are nonnegative integers q and p such that

(4.1) T

With these integers let G* be the graph obtained as follows. Let P1; i^ , . . . ,Pq be a
complete subgraph K on <? vertices. Join each vertex of Kq with each of the
remaining vertices Pq+l,...,PN. Finally join Pq+l to Pq+2,.. .,Pq+p+i using p
edges. Of course this set of vertices is empty if p = 0. Then the graph sequence for
this graph is

(4.2) S* = (N- 1 , . . . , A T - \ , q + p , q + l,...,q + l , q , . . . , q ) ,

where N — 1 occurs q times, q + 1 occurs p times, and q occurs N — q — p — 1
times. An easy computation shows that Y,bj = TT for S*. Since S* is the sequence
for G*, it must satisfy the conditions (2.7), (2.8), and (2.9). Further when
k = q + 1, the sequence S* gives equality in (2.9). Thus the degrees, bv b2, • •., bq+^
are as large as possible. This suggests that G* makes B + R a maximum, when the
edges of G* are colored blue and the remaining edges of KN are colored red. We
will see shortly that this is not always the case.

Next we define non negative integers v and X by

(4.3) -rI~^ = ^
v(v 1)

v(v -

Let Gv be the graph defined as follows. The vertices Px, P2,...,PV form a complete
subgraph on v vertices. Then join each of Pu P2,.. .,PX with Pv+l by an edge. The
graph sequence for Gv is

(4.4) So = (v,...,v,v-l,...,v-l,\,0,...,0)

where v occurs X times and v - 1 occurs v — X times. An easy computation shows
that Y.bj = TT for Sv. As we will see, when the edges of Gv are colored blue and
the remaining edges of KN are colored red, this graph occasionally gives a
maximum for R + B when G* fails.

We now look at several examples. First suppose that N = 4 and T = 3. Then

S* = (3,1,1,1),
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and

Sv= (2,2,2,0), Zbf = U.

Therefore both graphs give the same maximum. In fact S* is the complement of
Sv so R + B must be the same for both graphs.

Next, let N = 5 and T = 4. Then

s* = (4,1,1,1,1), j > ; = 20,

$=(2,2,2,2,0),

This time S* provides the maximum for R + B.
Finally let N = 7 and T = 10. Then

S* = (6,5,2,2,2,2,1),

$ ,= (4,4,4,4,4,0,0),

This time it is Sv that gives a maximum.
For the sequence S* in (4.2), we find

(4.5) 2 > / = 9( tf - I)2

an expression which does not seem to simplify.
For Sv in (4.4) we have

( 4 . 6 ) £Z>,2 = \v2 +{v - \)(v - I ) 2 + \2 = 2T(v - 1 ) + X ( X - 1 ) .

CONJECTURE. If a complete graph on N vertices is colored with T blue edges
and the rest red edges, then max(2? + R) occurs either for the graph G* or Gv. If
this is the case, then max(B + R) is given by (2.5) where either (1) q and p are
defined by (4.1) and ILbj is given by (4.5), or (2) v and X are defined by (4.3) and
T.bj is given by (4.6).

There is a relation between S* and Sv which we now develop. First observe that
the integers N, T, q, and p determine 5* uniquely and conversely S* determines
N, T, q, and p uniquely. Similarly there is a one-to-one correspondence between
the integers N, T, v, and X and the graph sequences Sv. Now consider G the
complement of G. If G is an incomplete graph then G has an edge PtPj if and only
if PtPj is not an edge of G. Or if G is regarded as a complete graph with two
colors, then the colors are interchanged in G. Let S* be the graph sequence
obtained from S* when we replace bj by N — 1 — bj for j = 1,2,... ,N and then
reverse the order. With this notation we have

THEOREM 2. The sequence S* is the graph sequence Svfor the graph G*.
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PROOF. If S* is the sequence (4.2) then

S* = ( N - I - q,...,N - 1 - q,N - 2 - q , . . . ,

N - 2 - q , N - l - q - p , 0 , . . . , 0 ) ,

w h e r e N — 1 — q o c c u r s N — q ~ p - 1 t imes , N — 2 — q o c c u r s p t imes a n d 0

o c c u r s q t i m e s . W e set v = N - 1 - q a n d X = N — q-p — 1. T h e n

S * = (v,...,v,v - l,...,v - 1, A , 0 , . . . , 0 ) ,

where v occurs v — p = X times, v — 1 occurs p = v — X times and 0 occurs
q = N — v — 1 times, (see equation (4.4)). Then S* is the sequence Sv for G*.

COROLLARY. / / G* gives the maximum R + B for all two-color graphs on N
points with T blue edges, then Gv gives the maximum R + B for all two-color graphs
on Npoints with U = N(N - l ) /2 - T blue edges.

5. Bounds for other combinations

In a coloring of KN with blue and red, let BBR be the number of triangles with
two blue edges and one red edge. Similarly let BRR be the number of triangles
with one blue edge and two red edges.

Let us attach the weight x to each pair of blue edges, the weight y to each
mixed pair, and the weight z to each pair of red edges. Again we compute the
weight of KN in two different ways. Following the notation and method of section
2, with this more general system of weights, we obtain

3xB +(x + 2y)BBR +(z + 2y)BRR + 3zR

We replace r, by N - 1 - bj and use Hbj + 2T. Then (5.1) becomes

(5.2) 3xB +(x + 2y)BBR +(z + 2y)BRR + 3zR

^ - l)(N-2)+[2y(N- 1) - x - z(2N - 3)]T

Various selections of weights (x, y, z) in (5.2) give special relations. The selection
(2, -1,2) gives equation (2.5). The selection (0,1,0) gives
(5.3) 2{BBR + BRR) = 2(N - l)T - £ > / .

Equation (5.3) also follows from (2.5) and the fact that the total number of
triangles is N(N - 1)(N - 2)/6, (try (x, y, z) = (1,1,1)).

Let (x, y, z) = (1,0,0). Then (5.2) yields

(5-4) 3B + BBR = -T+^
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Further (x, y, z) = (2, - 1 , 0 ) gives

(5.5) 3 5 - BRR = -NT + £*•? .

Finally (x, y, z) = (0,1,1) gives

(5.6) 2BBR + 3BRR + 3R = jN(N - l)(N - 2) + T - - | £ > / .

These equations are not independent. Since the vectors (1,1,1), (0,1,0), and
(1,0,0) form a basis for E3, it follows that any equation that can be derived from
(5.2) can also be obtained from (5.3), (5.4), and the fact that the total number of
triangles is (^).

The methods that gave Theorem 1, also yield

THEOREM 3. Suppose that the edges of KN are colored with two colors red and blue
and that T edges are colored blue. Define p and q by equation (3.1). Then we have
the following sharp bounds:

(5.7) BBR + BRR < T(N - q - 1) -

(5.8) 3B + BBR > T(q - I) + ;

(5.9) 3B - BRR > T(2q - N) + p(q + 1);

and

(5.10) 2BBR + 3BRR + 3R < ~N(N - l)(N - 2) - T(q - 1) -

Of course (5.7) follows directly from the bound (3.3).
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